File: | out/../deps/openssl/openssl/crypto/ec/ec_mult.c |
Warning: | line 582, column 17 Value stored to 'numblocks' is never read |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | /* |
2 | * Copyright 2001-2021 The OpenSSL Project Authors. All Rights Reserved. |
3 | * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved |
4 | * |
5 | * Licensed under the Apache License 2.0 (the "License"). You may not use |
6 | * this file except in compliance with the License. You can obtain a copy |
7 | * in the file LICENSE in the source distribution or at |
8 | * https://www.openssl.org/source/license.html |
9 | */ |
10 | |
11 | /* |
12 | * ECDSA low level APIs are deprecated for public use, but still ok for |
13 | * internal use. |
14 | */ |
15 | #include "internal/deprecated.h" |
16 | |
17 | #include <string.h> |
18 | #include <openssl/err.h> |
19 | |
20 | #include "internal/cryptlib.h" |
21 | #include "crypto/bn.h" |
22 | #include "ec_local.h" |
23 | #include "internal/refcount.h" |
24 | |
25 | /* |
26 | * This file implements the wNAF-based interleaving multi-exponentiation method |
27 | * Formerly at: |
28 | * http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/moeller.html#multiexp |
29 | * You might now find it here: |
30 | * http://link.springer.com/chapter/10.1007%2F3-540-45537-X_13 |
31 | * http://www.bmoeller.de/pdf/TI-01-08.multiexp.pdf |
32 | * For multiplication with precomputation, we use wNAF splitting, formerly at: |
33 | * http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/moeller.html#fastexp |
34 | */ |
35 | |
36 | /* structure for precomputed multiples of the generator */ |
37 | struct ec_pre_comp_st { |
38 | const EC_GROUP *group; /* parent EC_GROUP object */ |
39 | size_t blocksize; /* block size for wNAF splitting */ |
40 | size_t numblocks; /* max. number of blocks for which we have |
41 | * precomputation */ |
42 | size_t w; /* window size */ |
43 | EC_POINT **points; /* array with pre-calculated multiples of |
44 | * generator: 'num' pointers to EC_POINT |
45 | * objects followed by a NULL */ |
46 | size_t num; /* numblocks * 2^(w-1) */ |
47 | CRYPTO_REF_COUNT references; |
48 | CRYPTO_RWLOCK *lock; |
49 | }; |
50 | |
51 | static EC_PRE_COMP *ec_pre_comp_new(const EC_GROUP *group) |
52 | { |
53 | EC_PRE_COMP *ret = NULL((void*)0); |
54 | |
55 | if (!group) |
56 | return NULL((void*)0); |
57 | |
58 | ret = OPENSSL_zalloc(sizeof(*ret))CRYPTO_zalloc(sizeof(*ret), "../deps/openssl/openssl/crypto/ec/ec_mult.c" , 58); |
59 | if (ret == NULL((void*)0)) { |
60 | ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE)(ERR_new(), ERR_set_debug("../deps/openssl/openssl/crypto/ec/ec_mult.c" ,60,__func__), ERR_set_error)((16),((256|((0x1 << 18L)| (0x2 << 18L)))),((void*)0)); |
61 | return ret; |
62 | } |
63 | |
64 | ret->group = group; |
65 | ret->blocksize = 8; /* default */ |
66 | ret->w = 4; /* default */ |
67 | ret->references = 1; |
68 | |
69 | ret->lock = CRYPTO_THREAD_lock_new(); |
70 | if (ret->lock == NULL((void*)0)) { |
71 | ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE)(ERR_new(), ERR_set_debug("../deps/openssl/openssl/crypto/ec/ec_mult.c" ,71,__func__), ERR_set_error)((16),((256|((0x1 << 18L)| (0x2 << 18L)))),((void*)0)); |
72 | OPENSSL_free(ret)CRYPTO_free(ret, "../deps/openssl/openssl/crypto/ec/ec_mult.c" , 72); |
73 | return NULL((void*)0); |
74 | } |
75 | return ret; |
76 | } |
77 | |
78 | EC_PRE_COMP *EC_ec_pre_comp_dup(EC_PRE_COMP *pre) |
79 | { |
80 | int i; |
81 | if (pre != NULL((void*)0)) |
82 | CRYPTO_UP_REF(&pre->references, &i, pre->lock); |
83 | return pre; |
84 | } |
85 | |
86 | void EC_ec_pre_comp_free(EC_PRE_COMP *pre) |
87 | { |
88 | int i; |
89 | |
90 | if (pre == NULL((void*)0)) |
91 | return; |
92 | |
93 | CRYPTO_DOWN_REF(&pre->references, &i, pre->lock); |
94 | REF_PRINT_COUNT("EC_ec", pre)((void)0);; |
95 | if (i > 0) |
96 | return; |
97 | REF_ASSERT_ISNT(i < 0); |
98 | |
99 | if (pre->points != NULL((void*)0)) { |
100 | EC_POINT **pts; |
101 | |
102 | for (pts = pre->points; *pts != NULL((void*)0); pts++) |
103 | EC_POINT_free(*pts); |
104 | OPENSSL_free(pre->points)CRYPTO_free(pre->points, "../deps/openssl/openssl/crypto/ec/ec_mult.c" , 104); |
105 | } |
106 | CRYPTO_THREAD_lock_free(pre->lock); |
107 | OPENSSL_free(pre)CRYPTO_free(pre, "../deps/openssl/openssl/crypto/ec/ec_mult.c" , 107); |
108 | } |
109 | |
110 | #define EC_POINT_BN_set_flags(P, flags) do { \ |
111 | BN_set_flags((P)->X, (flags)); \ |
112 | BN_set_flags((P)->Y, (flags)); \ |
113 | BN_set_flags((P)->Z, (flags)); \ |
114 | } while(0) |
115 | |
116 | /*- |
117 | * This functions computes a single point multiplication over the EC group, |
118 | * using, at a high level, a Montgomery ladder with conditional swaps, with |
119 | * various timing attack defenses. |
120 | * |
121 | * It performs either a fixed point multiplication |
122 | * (scalar * generator) |
123 | * when point is NULL, or a variable point multiplication |
124 | * (scalar * point) |
125 | * when point is not NULL. |
126 | * |
127 | * `scalar` cannot be NULL and should be in the range [0,n) otherwise all |
128 | * constant time bets are off (where n is the cardinality of the EC group). |
129 | * |
130 | * This function expects `group->order` and `group->cardinality` to be well |
131 | * defined and non-zero: it fails with an error code otherwise. |
132 | * |
133 | * NB: This says nothing about the constant-timeness of the ladder step |
134 | * implementation (i.e., the default implementation is based on EC_POINT_add and |
135 | * EC_POINT_dbl, which of course are not constant time themselves) or the |
136 | * underlying multiprecision arithmetic. |
137 | * |
138 | * The product is stored in `r`. |
139 | * |
140 | * This is an internal function: callers are in charge of ensuring that the |
141 | * input parameters `group`, `r`, `scalar` and `ctx` are not NULL. |
142 | * |
143 | * Returns 1 on success, 0 otherwise. |
144 | */ |
145 | int ossl_ec_scalar_mul_ladder(const EC_GROUP *group, EC_POINT *r, |
146 | const BIGNUM *scalar, const EC_POINT *point, |
147 | BN_CTX *ctx) |
148 | { |
149 | int i, cardinality_bits, group_top, kbit, pbit, Z_is_one; |
150 | EC_POINT *p = NULL((void*)0); |
151 | EC_POINT *s = NULL((void*)0); |
152 | BIGNUM *k = NULL((void*)0); |
153 | BIGNUM *lambda = NULL((void*)0); |
154 | BIGNUM *cardinality = NULL((void*)0); |
155 | int ret = 0; |
156 | |
157 | /* early exit if the input point is the point at infinity */ |
158 | if (point != NULL((void*)0) && EC_POINT_is_at_infinity(group, point)) |
159 | return EC_POINT_set_to_infinity(group, r); |
160 | |
161 | if (BN_is_zero(group->order)) { |
162 | ERR_raise(ERR_LIB_EC, EC_R_UNKNOWN_ORDER)(ERR_new(), ERR_set_debug("../deps/openssl/openssl/crypto/ec/ec_mult.c" ,162,__func__), ERR_set_error)((16),(114),((void*)0)); |
163 | return 0; |
164 | } |
165 | if (BN_is_zero(group->cofactor)) { |
166 | ERR_raise(ERR_LIB_EC, EC_R_UNKNOWN_COFACTOR)(ERR_new(), ERR_set_debug("../deps/openssl/openssl/crypto/ec/ec_mult.c" ,166,__func__), ERR_set_error)((16),(164),((void*)0)); |
167 | return 0; |
168 | } |
169 | |
170 | BN_CTX_start(ctx); |
171 | |
172 | if (((p = EC_POINT_new(group)) == NULL((void*)0)) |
173 | || ((s = EC_POINT_new(group)) == NULL((void*)0))) { |
174 | ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE)(ERR_new(), ERR_set_debug("../deps/openssl/openssl/crypto/ec/ec_mult.c" ,174,__func__), ERR_set_error)((16),((256|((0x1 << 18L) |(0x2 << 18L)))),((void*)0)); |
175 | goto err; |
176 | } |
177 | |
178 | if (point == NULL((void*)0)) { |
179 | if (!EC_POINT_copy(p, group->generator)) { |
180 | ERR_raise(ERR_LIB_EC, ERR_R_EC_LIB)(ERR_new(), ERR_set_debug("../deps/openssl/openssl/crypto/ec/ec_mult.c" ,180,__func__), ERR_set_error)((16),((16 | (0x2 << 18L) )),((void*)0)); |
181 | goto err; |
182 | } |
183 | } else { |
184 | if (!EC_POINT_copy(p, point)) { |
185 | ERR_raise(ERR_LIB_EC, ERR_R_EC_LIB)(ERR_new(), ERR_set_debug("../deps/openssl/openssl/crypto/ec/ec_mult.c" ,185,__func__), ERR_set_error)((16),((16 | (0x2 << 18L) )),((void*)0)); |
186 | goto err; |
187 | } |
188 | } |
189 | |
190 | EC_POINT_BN_set_flags(p, BN_FLG_CONSTTIME0x04); |
191 | EC_POINT_BN_set_flags(r, BN_FLG_CONSTTIME0x04); |
192 | EC_POINT_BN_set_flags(s, BN_FLG_CONSTTIME0x04); |
193 | |
194 | cardinality = BN_CTX_get(ctx); |
195 | lambda = BN_CTX_get(ctx); |
196 | k = BN_CTX_get(ctx); |
197 | if (k == NULL((void*)0)) { |
198 | ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE)(ERR_new(), ERR_set_debug("../deps/openssl/openssl/crypto/ec/ec_mult.c" ,198,__func__), ERR_set_error)((16),((256|((0x1 << 18L) |(0x2 << 18L)))),((void*)0)); |
199 | goto err; |
200 | } |
201 | |
202 | if (!BN_mul(cardinality, group->order, group->cofactor, ctx)) { |
203 | ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB)(ERR_new(), ERR_set_debug("../deps/openssl/openssl/crypto/ec/ec_mult.c" ,203,__func__), ERR_set_error)((16),((3 | (0x2 << 18L)) ),((void*)0)); |
204 | goto err; |
205 | } |
206 | |
207 | /* |
208 | * Group cardinalities are often on a word boundary. |
209 | * So when we pad the scalar, some timing diff might |
210 | * pop if it needs to be expanded due to carries. |
211 | * So expand ahead of time. |
212 | */ |
213 | cardinality_bits = BN_num_bits(cardinality); |
214 | group_top = bn_get_top(cardinality); |
215 | if ((bn_wexpand(k, group_top + 2) == NULL((void*)0)) |
216 | || (bn_wexpand(lambda, group_top + 2) == NULL((void*)0))) { |
217 | ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB)(ERR_new(), ERR_set_debug("../deps/openssl/openssl/crypto/ec/ec_mult.c" ,217,__func__), ERR_set_error)((16),((3 | (0x2 << 18L)) ),((void*)0)); |
218 | goto err; |
219 | } |
220 | |
221 | if (!BN_copy(k, scalar)) { |
222 | ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB)(ERR_new(), ERR_set_debug("../deps/openssl/openssl/crypto/ec/ec_mult.c" ,222,__func__), ERR_set_error)((16),((3 | (0x2 << 18L)) ),((void*)0)); |
223 | goto err; |
224 | } |
225 | |
226 | BN_set_flags(k, BN_FLG_CONSTTIME0x04); |
227 | |
228 | if ((BN_num_bits(k) > cardinality_bits) || (BN_is_negative(k))) { |
229 | /*- |
230 | * this is an unusual input, and we don't guarantee |
231 | * constant-timeness |
232 | */ |
233 | if (!BN_nnmod(k, k, cardinality, ctx)) { |
234 | ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB)(ERR_new(), ERR_set_debug("../deps/openssl/openssl/crypto/ec/ec_mult.c" ,234,__func__), ERR_set_error)((16),((3 | (0x2 << 18L)) ),((void*)0)); |
235 | goto err; |
236 | } |
237 | } |
238 | |
239 | if (!BN_add(lambda, k, cardinality)) { |
240 | ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB)(ERR_new(), ERR_set_debug("../deps/openssl/openssl/crypto/ec/ec_mult.c" ,240,__func__), ERR_set_error)((16),((3 | (0x2 << 18L)) ),((void*)0)); |
241 | goto err; |
242 | } |
243 | BN_set_flags(lambda, BN_FLG_CONSTTIME0x04); |
244 | if (!BN_add(k, lambda, cardinality)) { |
245 | ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB)(ERR_new(), ERR_set_debug("../deps/openssl/openssl/crypto/ec/ec_mult.c" ,245,__func__), ERR_set_error)((16),((3 | (0x2 << 18L)) ),((void*)0)); |
246 | goto err; |
247 | } |
248 | /* |
249 | * lambda := scalar + cardinality |
250 | * k := scalar + 2*cardinality |
251 | */ |
252 | kbit = BN_is_bit_set(lambda, cardinality_bits); |
253 | BN_consttime_swap(kbit, k, lambda, group_top + 2); |
254 | |
255 | group_top = bn_get_top(group->field); |
256 | if ((bn_wexpand(s->X, group_top) == NULL((void*)0)) |
257 | || (bn_wexpand(s->Y, group_top) == NULL((void*)0)) |
258 | || (bn_wexpand(s->Z, group_top) == NULL((void*)0)) |
259 | || (bn_wexpand(r->X, group_top) == NULL((void*)0)) |
260 | || (bn_wexpand(r->Y, group_top) == NULL((void*)0)) |
261 | || (bn_wexpand(r->Z, group_top) == NULL((void*)0)) |
262 | || (bn_wexpand(p->X, group_top) == NULL((void*)0)) |
263 | || (bn_wexpand(p->Y, group_top) == NULL((void*)0)) |
264 | || (bn_wexpand(p->Z, group_top) == NULL((void*)0))) { |
265 | ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB)(ERR_new(), ERR_set_debug("../deps/openssl/openssl/crypto/ec/ec_mult.c" ,265,__func__), ERR_set_error)((16),((3 | (0x2 << 18L)) ),((void*)0)); |
266 | goto err; |
267 | } |
268 | |
269 | /* ensure input point is in affine coords for ladder step efficiency */ |
270 | if (!p->Z_is_one && (group->meth->make_affine == NULL((void*)0) |
271 | || !group->meth->make_affine(group, p, ctx))) { |
272 | ERR_raise(ERR_LIB_EC, ERR_R_EC_LIB)(ERR_new(), ERR_set_debug("../deps/openssl/openssl/crypto/ec/ec_mult.c" ,272,__func__), ERR_set_error)((16),((16 | (0x2 << 18L) )),((void*)0)); |
273 | goto err; |
274 | } |
275 | |
276 | /* Initialize the Montgomery ladder */ |
277 | if (!ec_point_ladder_pre(group, r, s, p, ctx)) { |
278 | ERR_raise(ERR_LIB_EC, EC_R_LADDER_PRE_FAILURE)(ERR_new(), ERR_set_debug("../deps/openssl/openssl/crypto/ec/ec_mult.c" ,278,__func__), ERR_set_error)((16),(153),((void*)0)); |
279 | goto err; |
280 | } |
281 | |
282 | /* top bit is a 1, in a fixed pos */ |
283 | pbit = 1; |
284 | |
285 | #define EC_POINT_CSWAP(c, a, b, w, t) do { \ |
286 | BN_consttime_swap(c, (a)->X, (b)->X, w); \ |
287 | BN_consttime_swap(c, (a)->Y, (b)->Y, w); \ |
288 | BN_consttime_swap(c, (a)->Z, (b)->Z, w); \ |
289 | t = ((a)->Z_is_one ^ (b)->Z_is_one) & (c); \ |
290 | (a)->Z_is_one ^= (t); \ |
291 | (b)->Z_is_one ^= (t); \ |
292 | } while(0) |
293 | |
294 | /*- |
295 | * The ladder step, with branches, is |
296 | * |
297 | * k[i] == 0: S = add(R, S), R = dbl(R) |
298 | * k[i] == 1: R = add(S, R), S = dbl(S) |
299 | * |
300 | * Swapping R, S conditionally on k[i] leaves you with state |
301 | * |
302 | * k[i] == 0: T, U = R, S |
303 | * k[i] == 1: T, U = S, R |
304 | * |
305 | * Then perform the ECC ops. |
306 | * |
307 | * U = add(T, U) |
308 | * T = dbl(T) |
309 | * |
310 | * Which leaves you with state |
311 | * |
312 | * k[i] == 0: U = add(R, S), T = dbl(R) |
313 | * k[i] == 1: U = add(S, R), T = dbl(S) |
314 | * |
315 | * Swapping T, U conditionally on k[i] leaves you with state |
316 | * |
317 | * k[i] == 0: R, S = T, U |
318 | * k[i] == 1: R, S = U, T |
319 | * |
320 | * Which leaves you with state |
321 | * |
322 | * k[i] == 0: S = add(R, S), R = dbl(R) |
323 | * k[i] == 1: R = add(S, R), S = dbl(S) |
324 | * |
325 | * So we get the same logic, but instead of a branch it's a |
326 | * conditional swap, followed by ECC ops, then another conditional swap. |
327 | * |
328 | * Optimization: The end of iteration i and start of i-1 looks like |
329 | * |
330 | * ... |
331 | * CSWAP(k[i], R, S) |
332 | * ECC |
333 | * CSWAP(k[i], R, S) |
334 | * (next iteration) |
335 | * CSWAP(k[i-1], R, S) |
336 | * ECC |
337 | * CSWAP(k[i-1], R, S) |
338 | * ... |
339 | * |
340 | * So instead of two contiguous swaps, you can merge the condition |
341 | * bits and do a single swap. |
342 | * |
343 | * k[i] k[i-1] Outcome |
344 | * 0 0 No Swap |
345 | * 0 1 Swap |
346 | * 1 0 Swap |
347 | * 1 1 No Swap |
348 | * |
349 | * This is XOR. pbit tracks the previous bit of k. |
350 | */ |
351 | |
352 | for (i = cardinality_bits - 1; i >= 0; i--) { |
353 | kbit = BN_is_bit_set(k, i) ^ pbit; |
354 | EC_POINT_CSWAP(kbit, r, s, group_top, Z_is_one); |
355 | |
356 | /* Perform a single step of the Montgomery ladder */ |
357 | if (!ec_point_ladder_step(group, r, s, p, ctx)) { |
358 | ERR_raise(ERR_LIB_EC, EC_R_LADDER_STEP_FAILURE)(ERR_new(), ERR_set_debug("../deps/openssl/openssl/crypto/ec/ec_mult.c" ,358,__func__), ERR_set_error)((16),(162),((void*)0)); |
359 | goto err; |
360 | } |
361 | /* |
362 | * pbit logic merges this cswap with that of the |
363 | * next iteration |
364 | */ |
365 | pbit ^= kbit; |
366 | } |
367 | /* one final cswap to move the right value into r */ |
368 | EC_POINT_CSWAP(pbit, r, s, group_top, Z_is_one); |
369 | #undef EC_POINT_CSWAP |
370 | |
371 | /* Finalize ladder (and recover full point coordinates) */ |
372 | if (!ec_point_ladder_post(group, r, s, p, ctx)) { |
373 | ERR_raise(ERR_LIB_EC, EC_R_LADDER_POST_FAILURE)(ERR_new(), ERR_set_debug("../deps/openssl/openssl/crypto/ec/ec_mult.c" ,373,__func__), ERR_set_error)((16),(136),((void*)0)); |
374 | goto err; |
375 | } |
376 | |
377 | ret = 1; |
378 | |
379 | err: |
380 | EC_POINT_free(p); |
381 | EC_POINT_clear_free(s); |
382 | BN_CTX_end(ctx); |
383 | |
384 | return ret; |
385 | } |
386 | |
387 | #undef EC_POINT_BN_set_flags |
388 | |
389 | /* |
390 | * Table could be optimised for the wNAF-based implementation, |
391 | * sometimes smaller windows will give better performance (thus the |
392 | * boundaries should be increased) |
393 | */ |
394 | #define EC_window_bits_for_scalar_size(b)((size_t) ((b) >= 2000 ? 6 : (b) >= 800 ? 5 : (b) >= 300 ? 4 : (b) >= 70 ? 3 : (b) >= 20 ? 2 : 1)) \ |
395 | ((size_t) \ |
396 | ((b) >= 2000 ? 6 : \ |
397 | (b) >= 800 ? 5 : \ |
398 | (b) >= 300 ? 4 : \ |
399 | (b) >= 70 ? 3 : \ |
400 | (b) >= 20 ? 2 : \ |
401 | 1)) |
402 | |
403 | /*- |
404 | * Compute |
405 | * \sum scalars[i]*points[i], |
406 | * also including |
407 | * scalar*generator |
408 | * in the addition if scalar != NULL |
409 | */ |
410 | int ossl_ec_wNAF_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar, |
411 | size_t num, const EC_POINT *points[], |
412 | const BIGNUM *scalars[], BN_CTX *ctx) |
413 | { |
414 | const EC_POINT *generator = NULL((void*)0); |
415 | EC_POINT *tmp = NULL((void*)0); |
416 | size_t totalnum; |
417 | size_t blocksize = 0, numblocks = 0; /* for wNAF splitting */ |
418 | size_t pre_points_per_block = 0; |
419 | size_t i, j; |
420 | int k; |
421 | int r_is_inverted = 0; |
422 | int r_is_at_infinity = 1; |
423 | size_t *wsize = NULL((void*)0); /* individual window sizes */ |
424 | signed char **wNAF = NULL((void*)0); /* individual wNAFs */ |
425 | size_t *wNAF_len = NULL((void*)0); |
426 | size_t max_len = 0; |
427 | size_t num_val; |
428 | EC_POINT **val = NULL((void*)0); /* precomputation */ |
429 | EC_POINT **v; |
430 | EC_POINT ***val_sub = NULL((void*)0); /* pointers to sub-arrays of 'val' or |
431 | * 'pre_comp->points' */ |
432 | const EC_PRE_COMP *pre_comp = NULL((void*)0); |
433 | int num_scalar = 0; /* flag: will be set to 1 if 'scalar' must be |
434 | * treated like other scalars, i.e. |
435 | * precomputation is not available */ |
436 | int ret = 0; |
437 | |
438 | if (!BN_is_zero(group->order) && !BN_is_zero(group->cofactor)) { |
439 | /*- |
440 | * Handle the common cases where the scalar is secret, enforcing a |
441 | * scalar multiplication implementation based on a Montgomery ladder, |
442 | * with various timing attack defenses. |
443 | */ |
444 | if ((scalar != group->order) && (scalar != NULL((void*)0)) && (num == 0)) { |
445 | /*- |
446 | * In this case we want to compute scalar * GeneratorPoint: this |
447 | * codepath is reached most prominently by (ephemeral) key |
448 | * generation of EC cryptosystems (i.e. ECDSA keygen and sign setup, |
449 | * ECDH keygen/first half), where the scalar is always secret. This |
450 | * is why we ignore if BN_FLG_CONSTTIME is actually set and we |
451 | * always call the ladder version. |
452 | */ |
453 | return ossl_ec_scalar_mul_ladder(group, r, scalar, NULL((void*)0), ctx); |
454 | } |
455 | if ((scalar == NULL((void*)0)) && (num == 1) && (scalars[0] != group->order)) { |
456 | /*- |
457 | * In this case we want to compute scalar * VariablePoint: this |
458 | * codepath is reached most prominently by the second half of ECDH, |
459 | * where the secret scalar is multiplied by the peer's public point. |
460 | * To protect the secret scalar, we ignore if BN_FLG_CONSTTIME is |
461 | * actually set and we always call the ladder version. |
462 | */ |
463 | return ossl_ec_scalar_mul_ladder(group, r, scalars[0], points[0], |
464 | ctx); |
465 | } |
466 | } |
467 | |
468 | if (scalar != NULL((void*)0)) { |
469 | generator = EC_GROUP_get0_generator(group); |
470 | if (generator == NULL((void*)0)) { |
471 | ERR_raise(ERR_LIB_EC, EC_R_UNDEFINED_GENERATOR)(ERR_new(), ERR_set_debug("../deps/openssl/openssl/crypto/ec/ec_mult.c" ,471,__func__), ERR_set_error)((16),(113),((void*)0)); |
472 | goto err; |
473 | } |
474 | |
475 | /* look if we can use precomputed multiples of generator */ |
476 | |
477 | pre_comp = group->pre_comp.ec; |
478 | if (pre_comp && pre_comp->numblocks |
479 | && (EC_POINT_cmp(group, generator, pre_comp->points[0], ctx) == |
480 | 0)) { |
481 | blocksize = pre_comp->blocksize; |
482 | |
483 | /* |
484 | * determine maximum number of blocks that wNAF splitting may |
485 | * yield (NB: maximum wNAF length is bit length plus one) |
486 | */ |
487 | numblocks = (BN_num_bits(scalar) / blocksize) + 1; |
488 | |
489 | /* |
490 | * we cannot use more blocks than we have precomputation for |
491 | */ |
492 | if (numblocks > pre_comp->numblocks) |
493 | numblocks = pre_comp->numblocks; |
494 | |
495 | pre_points_per_block = (size_t)1 << (pre_comp->w - 1); |
496 | |
497 | /* check that pre_comp looks sane */ |
498 | if (pre_comp->num != (pre_comp->numblocks * pre_points_per_block)) { |
499 | ERR_raise(ERR_LIB_EC, ERR_R_INTERNAL_ERROR)(ERR_new(), ERR_set_debug("../deps/openssl/openssl/crypto/ec/ec_mult.c" ,499,__func__), ERR_set_error)((16),((259|((0x1 << 18L) |(0x2 << 18L)))),((void*)0)); |
500 | goto err; |
501 | } |
502 | } else { |
503 | /* can't use precomputation */ |
504 | pre_comp = NULL((void*)0); |
505 | numblocks = 1; |
506 | num_scalar = 1; /* treat 'scalar' like 'num'-th element of |
507 | * 'scalars' */ |
508 | } |
509 | } |
510 | |
511 | totalnum = num + numblocks; |
512 | |
513 | wsize = OPENSSL_malloc(totalnum * sizeof(wsize[0]))CRYPTO_malloc(totalnum * sizeof(wsize[0]), "../deps/openssl/openssl/crypto/ec/ec_mult.c" , 513); |
514 | wNAF_len = OPENSSL_malloc(totalnum * sizeof(wNAF_len[0]))CRYPTO_malloc(totalnum * sizeof(wNAF_len[0]), "../deps/openssl/openssl/crypto/ec/ec_mult.c" , 514); |
515 | /* include space for pivot */ |
516 | wNAF = OPENSSL_malloc((totalnum + 1) * sizeof(wNAF[0]))CRYPTO_malloc((totalnum + 1) * sizeof(wNAF[0]), "../deps/openssl/openssl/crypto/ec/ec_mult.c" , 516); |
517 | val_sub = OPENSSL_malloc(totalnum * sizeof(val_sub[0]))CRYPTO_malloc(totalnum * sizeof(val_sub[0]), "../deps/openssl/openssl/crypto/ec/ec_mult.c" , 517); |
518 | |
519 | /* Ensure wNAF is initialised in case we end up going to err */ |
520 | if (wNAF != NULL((void*)0)) |
521 | wNAF[0] = NULL((void*)0); /* preliminary pivot */ |
522 | |
523 | if (wsize == NULL((void*)0) || wNAF_len == NULL((void*)0) || wNAF == NULL((void*)0) || val_sub == NULL((void*)0)) { |
524 | ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE)(ERR_new(), ERR_set_debug("../deps/openssl/openssl/crypto/ec/ec_mult.c" ,524,__func__), ERR_set_error)((16),((256|((0x1 << 18L) |(0x2 << 18L)))),((void*)0)); |
525 | goto err; |
526 | } |
527 | |
528 | /* |
529 | * num_val will be the total number of temporarily precomputed points |
530 | */ |
531 | num_val = 0; |
532 | |
533 | for (i = 0; i < num + num_scalar; i++) { |
534 | size_t bits; |
535 | |
536 | bits = i < num ? BN_num_bits(scalars[i]) : BN_num_bits(scalar); |
537 | wsize[i] = EC_window_bits_for_scalar_size(bits)((size_t) ((bits) >= 2000 ? 6 : (bits) >= 800 ? 5 : (bits ) >= 300 ? 4 : (bits) >= 70 ? 3 : (bits) >= 20 ? 2 : 1)); |
538 | num_val += (size_t)1 << (wsize[i] - 1); |
539 | wNAF[i + 1] = NULL((void*)0); /* make sure we always have a pivot */ |
540 | wNAF[i] = |
541 | bn_compute_wNAF((i < num ? scalars[i] : scalar), wsize[i], |
542 | &wNAF_len[i]); |
543 | if (wNAF[i] == NULL((void*)0)) |
544 | goto err; |
545 | if (wNAF_len[i] > max_len) |
546 | max_len = wNAF_len[i]; |
547 | } |
548 | |
549 | if (numblocks) { |
550 | /* we go here iff scalar != NULL */ |
551 | |
552 | if (pre_comp == NULL((void*)0)) { |
553 | if (num_scalar != 1) { |
554 | ERR_raise(ERR_LIB_EC, ERR_R_INTERNAL_ERROR)(ERR_new(), ERR_set_debug("../deps/openssl/openssl/crypto/ec/ec_mult.c" ,554,__func__), ERR_set_error)((16),((259|((0x1 << 18L) |(0x2 << 18L)))),((void*)0)); |
555 | goto err; |
556 | } |
557 | /* we have already generated a wNAF for 'scalar' */ |
558 | } else { |
559 | signed char *tmp_wNAF = NULL((void*)0); |
560 | size_t tmp_len = 0; |
561 | |
562 | if (num_scalar != 0) { |
563 | ERR_raise(ERR_LIB_EC, ERR_R_INTERNAL_ERROR)(ERR_new(), ERR_set_debug("../deps/openssl/openssl/crypto/ec/ec_mult.c" ,563,__func__), ERR_set_error)((16),((259|((0x1 << 18L) |(0x2 << 18L)))),((void*)0)); |
564 | goto err; |
565 | } |
566 | |
567 | /* |
568 | * use the window size for which we have precomputation |
569 | */ |
570 | wsize[num] = pre_comp->w; |
571 | tmp_wNAF = bn_compute_wNAF(scalar, wsize[num], &tmp_len); |
572 | if (!tmp_wNAF) |
573 | goto err; |
574 | |
575 | if (tmp_len <= max_len) { |
576 | /* |
577 | * One of the other wNAFs is at least as long as the wNAF |
578 | * belonging to the generator, so wNAF splitting will not buy |
579 | * us anything. |
580 | */ |
581 | |
582 | numblocks = 1; |
Value stored to 'numblocks' is never read | |
583 | totalnum = num + 1; /* don't use wNAF splitting */ |
584 | wNAF[num] = tmp_wNAF; |
585 | wNAF[num + 1] = NULL((void*)0); |
586 | wNAF_len[num] = tmp_len; |
587 | /* |
588 | * pre_comp->points starts with the points that we need here: |
589 | */ |
590 | val_sub[num] = pre_comp->points; |
591 | } else { |
592 | /* |
593 | * don't include tmp_wNAF directly into wNAF array - use wNAF |
594 | * splitting and include the blocks |
595 | */ |
596 | |
597 | signed char *pp; |
598 | EC_POINT **tmp_points; |
599 | |
600 | if (tmp_len < numblocks * blocksize) { |
601 | /* |
602 | * possibly we can do with fewer blocks than estimated |
603 | */ |
604 | numblocks = (tmp_len + blocksize - 1) / blocksize; |
605 | if (numblocks > pre_comp->numblocks) { |
606 | ERR_raise(ERR_LIB_EC, ERR_R_INTERNAL_ERROR)(ERR_new(), ERR_set_debug("../deps/openssl/openssl/crypto/ec/ec_mult.c" ,606,__func__), ERR_set_error)((16),((259|((0x1 << 18L) |(0x2 << 18L)))),((void*)0)); |
607 | OPENSSL_free(tmp_wNAF)CRYPTO_free(tmp_wNAF, "../deps/openssl/openssl/crypto/ec/ec_mult.c" , 607); |
608 | goto err; |
609 | } |
610 | totalnum = num + numblocks; |
611 | } |
612 | |
613 | /* split wNAF in 'numblocks' parts */ |
614 | pp = tmp_wNAF; |
615 | tmp_points = pre_comp->points; |
616 | |
617 | for (i = num; i < totalnum; i++) { |
618 | if (i < totalnum - 1) { |
619 | wNAF_len[i] = blocksize; |
620 | if (tmp_len < blocksize) { |
621 | ERR_raise(ERR_LIB_EC, ERR_R_INTERNAL_ERROR)(ERR_new(), ERR_set_debug("../deps/openssl/openssl/crypto/ec/ec_mult.c" ,621,__func__), ERR_set_error)((16),((259|((0x1 << 18L) |(0x2 << 18L)))),((void*)0)); |
622 | OPENSSL_free(tmp_wNAF)CRYPTO_free(tmp_wNAF, "../deps/openssl/openssl/crypto/ec/ec_mult.c" , 622); |
623 | goto err; |
624 | } |
625 | tmp_len -= blocksize; |
626 | } else |
627 | /* |
628 | * last block gets whatever is left (this could be |
629 | * more or less than 'blocksize'!) |
630 | */ |
631 | wNAF_len[i] = tmp_len; |
632 | |
633 | wNAF[i + 1] = NULL((void*)0); |
634 | wNAF[i] = OPENSSL_malloc(wNAF_len[i])CRYPTO_malloc(wNAF_len[i], "../deps/openssl/openssl/crypto/ec/ec_mult.c" , 634); |
635 | if (wNAF[i] == NULL((void*)0)) { |
636 | ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE)(ERR_new(), ERR_set_debug("../deps/openssl/openssl/crypto/ec/ec_mult.c" ,636,__func__), ERR_set_error)((16),((256|((0x1 << 18L) |(0x2 << 18L)))),((void*)0)); |
637 | OPENSSL_free(tmp_wNAF)CRYPTO_free(tmp_wNAF, "../deps/openssl/openssl/crypto/ec/ec_mult.c" , 637); |
638 | goto err; |
639 | } |
640 | memcpy(wNAF[i], pp, wNAF_len[i]); |
641 | if (wNAF_len[i] > max_len) |
642 | max_len = wNAF_len[i]; |
643 | |
644 | if (*tmp_points == NULL((void*)0)) { |
645 | ERR_raise(ERR_LIB_EC, ERR_R_INTERNAL_ERROR)(ERR_new(), ERR_set_debug("../deps/openssl/openssl/crypto/ec/ec_mult.c" ,645,__func__), ERR_set_error)((16),((259|((0x1 << 18L) |(0x2 << 18L)))),((void*)0)); |
646 | OPENSSL_free(tmp_wNAF)CRYPTO_free(tmp_wNAF, "../deps/openssl/openssl/crypto/ec/ec_mult.c" , 646); |
647 | goto err; |
648 | } |
649 | val_sub[i] = tmp_points; |
650 | tmp_points += pre_points_per_block; |
651 | pp += blocksize; |
652 | } |
653 | OPENSSL_free(tmp_wNAF)CRYPTO_free(tmp_wNAF, "../deps/openssl/openssl/crypto/ec/ec_mult.c" , 653); |
654 | } |
655 | } |
656 | } |
657 | |
658 | /* |
659 | * All points we precompute now go into a single array 'val'. |
660 | * 'val_sub[i]' is a pointer to the subarray for the i-th point, or to a |
661 | * subarray of 'pre_comp->points' if we already have precomputation. |
662 | */ |
663 | val = OPENSSL_malloc((num_val + 1) * sizeof(val[0]))CRYPTO_malloc((num_val + 1) * sizeof(val[0]), "../deps/openssl/openssl/crypto/ec/ec_mult.c" , 663); |
664 | if (val == NULL((void*)0)) { |
665 | ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE)(ERR_new(), ERR_set_debug("../deps/openssl/openssl/crypto/ec/ec_mult.c" ,665,__func__), ERR_set_error)((16),((256|((0x1 << 18L) |(0x2 << 18L)))),((void*)0)); |
666 | goto err; |
667 | } |
668 | val[num_val] = NULL((void*)0); /* pivot element */ |
669 | |
670 | /* allocate points for precomputation */ |
671 | v = val; |
672 | for (i = 0; i < num + num_scalar; i++) { |
673 | val_sub[i] = v; |
674 | for (j = 0; j < ((size_t)1 << (wsize[i] - 1)); j++) { |
675 | *v = EC_POINT_new(group); |
676 | if (*v == NULL((void*)0)) |
677 | goto err; |
678 | v++; |
679 | } |
680 | } |
681 | if (!(v == val + num_val)) { |
682 | ERR_raise(ERR_LIB_EC, ERR_R_INTERNAL_ERROR)(ERR_new(), ERR_set_debug("../deps/openssl/openssl/crypto/ec/ec_mult.c" ,682,__func__), ERR_set_error)((16),((259|((0x1 << 18L) |(0x2 << 18L)))),((void*)0)); |
683 | goto err; |
684 | } |
685 | |
686 | if ((tmp = EC_POINT_new(group)) == NULL((void*)0)) |
687 | goto err; |
688 | |
689 | /*- |
690 | * prepare precomputed values: |
691 | * val_sub[i][0] := points[i] |
692 | * val_sub[i][1] := 3 * points[i] |
693 | * val_sub[i][2] := 5 * points[i] |
694 | * ... |
695 | */ |
696 | for (i = 0; i < num + num_scalar; i++) { |
697 | if (i < num) { |
698 | if (!EC_POINT_copy(val_sub[i][0], points[i])) |
699 | goto err; |
700 | } else { |
701 | if (!EC_POINT_copy(val_sub[i][0], generator)) |
702 | goto err; |
703 | } |
704 | |
705 | if (wsize[i] > 1) { |
706 | if (!EC_POINT_dbl(group, tmp, val_sub[i][0], ctx)) |
707 | goto err; |
708 | for (j = 1; j < ((size_t)1 << (wsize[i] - 1)); j++) { |
709 | if (!EC_POINT_add |
710 | (group, val_sub[i][j], val_sub[i][j - 1], tmp, ctx)) |
711 | goto err; |
712 | } |
713 | } |
714 | } |
715 | |
716 | if (group->meth->points_make_affine == NULL((void*)0) |
717 | || !group->meth->points_make_affine(group, num_val, val, ctx)) |
718 | goto err; |
719 | |
720 | r_is_at_infinity = 1; |
721 | |
722 | for (k = max_len - 1; k >= 0; k--) { |
723 | if (!r_is_at_infinity) { |
724 | if (!EC_POINT_dbl(group, r, r, ctx)) |
725 | goto err; |
726 | } |
727 | |
728 | for (i = 0; i < totalnum; i++) { |
729 | if (wNAF_len[i] > (size_t)k) { |
730 | int digit = wNAF[i][k]; |
731 | int is_neg; |
732 | |
733 | if (digit) { |
734 | is_neg = digit < 0; |
735 | |
736 | if (is_neg) |
737 | digit = -digit; |
738 | |
739 | if (is_neg != r_is_inverted) { |
740 | if (!r_is_at_infinity) { |
741 | if (!EC_POINT_invert(group, r, ctx)) |
742 | goto err; |
743 | } |
744 | r_is_inverted = !r_is_inverted; |
745 | } |
746 | |
747 | /* digit > 0 */ |
748 | |
749 | if (r_is_at_infinity) { |
750 | if (!EC_POINT_copy(r, val_sub[i][digit >> 1])) |
751 | goto err; |
752 | |
753 | /*- |
754 | * Apply coordinate blinding for EC_POINT. |
755 | * |
756 | * The underlying EC_METHOD can optionally implement this function: |
757 | * ossl_ec_point_blind_coordinates() returns 0 in case of errors or 1 on |
758 | * success or if coordinate blinding is not implemented for this |
759 | * group. |
760 | */ |
761 | if (!ossl_ec_point_blind_coordinates(group, r, ctx)) { |
762 | ERR_raise(ERR_LIB_EC, EC_R_POINT_COORDINATES_BLIND_FAILURE)(ERR_new(), ERR_set_debug("../deps/openssl/openssl/crypto/ec/ec_mult.c" ,762,__func__), ERR_set_error)((16),(163),((void*)0)); |
763 | goto err; |
764 | } |
765 | |
766 | r_is_at_infinity = 0; |
767 | } else { |
768 | if (!EC_POINT_add |
769 | (group, r, r, val_sub[i][digit >> 1], ctx)) |
770 | goto err; |
771 | } |
772 | } |
773 | } |
774 | } |
775 | } |
776 | |
777 | if (r_is_at_infinity) { |
778 | if (!EC_POINT_set_to_infinity(group, r)) |
779 | goto err; |
780 | } else { |
781 | if (r_is_inverted) |
782 | if (!EC_POINT_invert(group, r, ctx)) |
783 | goto err; |
784 | } |
785 | |
786 | ret = 1; |
787 | |
788 | err: |
789 | EC_POINT_free(tmp); |
790 | OPENSSL_free(wsize)CRYPTO_free(wsize, "../deps/openssl/openssl/crypto/ec/ec_mult.c" , 790); |
791 | OPENSSL_free(wNAF_len)CRYPTO_free(wNAF_len, "../deps/openssl/openssl/crypto/ec/ec_mult.c" , 791); |
792 | if (wNAF != NULL((void*)0)) { |
793 | signed char **w; |
794 | |
795 | for (w = wNAF; *w != NULL((void*)0); w++) |
796 | OPENSSL_free(*w)CRYPTO_free(*w, "../deps/openssl/openssl/crypto/ec/ec_mult.c" , 796); |
797 | |
798 | OPENSSL_free(wNAF)CRYPTO_free(wNAF, "../deps/openssl/openssl/crypto/ec/ec_mult.c" , 798); |
799 | } |
800 | if (val != NULL((void*)0)) { |
801 | for (v = val; *v != NULL((void*)0); v++) |
802 | EC_POINT_clear_free(*v); |
803 | |
804 | OPENSSL_free(val)CRYPTO_free(val, "../deps/openssl/openssl/crypto/ec/ec_mult.c" , 804); |
805 | } |
806 | OPENSSL_free(val_sub)CRYPTO_free(val_sub, "../deps/openssl/openssl/crypto/ec/ec_mult.c" , 806); |
807 | return ret; |
808 | } |
809 | |
810 | /*- |
811 | * ossl_ec_wNAF_precompute_mult() |
812 | * creates an EC_PRE_COMP object with preprecomputed multiples of the generator |
813 | * for use with wNAF splitting as implemented in ossl_ec_wNAF_mul(). |
814 | * |
815 | * 'pre_comp->points' is an array of multiples of the generator |
816 | * of the following form: |
817 | * points[0] = generator; |
818 | * points[1] = 3 * generator; |
819 | * ... |
820 | * points[2^(w-1)-1] = (2^(w-1)-1) * generator; |
821 | * points[2^(w-1)] = 2^blocksize * generator; |
822 | * points[2^(w-1)+1] = 3 * 2^blocksize * generator; |
823 | * ... |
824 | * points[2^(w-1)*(numblocks-1)-1] = (2^(w-1)) * 2^(blocksize*(numblocks-2)) * generator |
825 | * points[2^(w-1)*(numblocks-1)] = 2^(blocksize*(numblocks-1)) * generator |
826 | * ... |
827 | * points[2^(w-1)*numblocks-1] = (2^(w-1)) * 2^(blocksize*(numblocks-1)) * generator |
828 | * points[2^(w-1)*numblocks] = NULL |
829 | */ |
830 | int ossl_ec_wNAF_precompute_mult(EC_GROUP *group, BN_CTX *ctx) |
831 | { |
832 | const EC_POINT *generator; |
833 | EC_POINT *tmp_point = NULL((void*)0), *base = NULL((void*)0), **var; |
834 | const BIGNUM *order; |
835 | size_t i, bits, w, pre_points_per_block, blocksize, numblocks, num; |
836 | EC_POINT **points = NULL((void*)0); |
837 | EC_PRE_COMP *pre_comp; |
838 | int ret = 0; |
839 | int used_ctx = 0; |
840 | #ifndef FIPS_MODULE |
841 | BN_CTX *new_ctx = NULL((void*)0); |
842 | #endif |
843 | |
844 | /* if there is an old EC_PRE_COMP object, throw it away */ |
845 | EC_pre_comp_free(group); |
846 | if ((pre_comp = ec_pre_comp_new(group)) == NULL((void*)0)) |
847 | return 0; |
848 | |
849 | generator = EC_GROUP_get0_generator(group); |
850 | if (generator == NULL((void*)0)) { |
851 | ERR_raise(ERR_LIB_EC, EC_R_UNDEFINED_GENERATOR)(ERR_new(), ERR_set_debug("../deps/openssl/openssl/crypto/ec/ec_mult.c" ,851,__func__), ERR_set_error)((16),(113),((void*)0)); |
852 | goto err; |
853 | } |
854 | |
855 | #ifndef FIPS_MODULE |
856 | if (ctx == NULL((void*)0)) |
857 | ctx = new_ctx = BN_CTX_new(); |
858 | #endif |
859 | if (ctx == NULL((void*)0)) |
860 | goto err; |
861 | |
862 | BN_CTX_start(ctx); |
863 | used_ctx = 1; |
864 | |
865 | order = EC_GROUP_get0_order(group); |
866 | if (order == NULL((void*)0)) |
867 | goto err; |
868 | if (BN_is_zero(order)) { |
869 | ERR_raise(ERR_LIB_EC, EC_R_UNKNOWN_ORDER)(ERR_new(), ERR_set_debug("../deps/openssl/openssl/crypto/ec/ec_mult.c" ,869,__func__), ERR_set_error)((16),(114),((void*)0)); |
870 | goto err; |
871 | } |
872 | |
873 | bits = BN_num_bits(order); |
874 | /* |
875 | * The following parameters mean we precompute (approximately) one point |
876 | * per bit. TBD: The combination 8, 4 is perfect for 160 bits; for other |
877 | * bit lengths, other parameter combinations might provide better |
878 | * efficiency. |
879 | */ |
880 | blocksize = 8; |
881 | w = 4; |
882 | if (EC_window_bits_for_scalar_size(bits)((size_t) ((bits) >= 2000 ? 6 : (bits) >= 800 ? 5 : (bits ) >= 300 ? 4 : (bits) >= 70 ? 3 : (bits) >= 20 ? 2 : 1)) > w) { |
883 | /* let's not make the window too small ... */ |
884 | w = EC_window_bits_for_scalar_size(bits)((size_t) ((bits) >= 2000 ? 6 : (bits) >= 800 ? 5 : (bits ) >= 300 ? 4 : (bits) >= 70 ? 3 : (bits) >= 20 ? 2 : 1)); |
885 | } |
886 | |
887 | numblocks = (bits + blocksize - 1) / blocksize; /* max. number of blocks |
888 | * to use for wNAF |
889 | * splitting */ |
890 | |
891 | pre_points_per_block = (size_t)1 << (w - 1); |
892 | num = pre_points_per_block * numblocks; /* number of points to compute |
893 | * and store */ |
894 | |
895 | points = OPENSSL_malloc(sizeof(*points) * (num + 1))CRYPTO_malloc(sizeof(*points) * (num + 1), "../deps/openssl/openssl/crypto/ec/ec_mult.c" , 895); |
896 | if (points == NULL((void*)0)) { |
897 | ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE)(ERR_new(), ERR_set_debug("../deps/openssl/openssl/crypto/ec/ec_mult.c" ,897,__func__), ERR_set_error)((16),((256|((0x1 << 18L) |(0x2 << 18L)))),((void*)0)); |
898 | goto err; |
899 | } |
900 | |
901 | var = points; |
902 | var[num] = NULL((void*)0); /* pivot */ |
903 | for (i = 0; i < num; i++) { |
904 | if ((var[i] = EC_POINT_new(group)) == NULL((void*)0)) { |
905 | ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE)(ERR_new(), ERR_set_debug("../deps/openssl/openssl/crypto/ec/ec_mult.c" ,905,__func__), ERR_set_error)((16),((256|((0x1 << 18L) |(0x2 << 18L)))),((void*)0)); |
906 | goto err; |
907 | } |
908 | } |
909 | |
910 | if ((tmp_point = EC_POINT_new(group)) == NULL((void*)0) |
911 | || (base = EC_POINT_new(group)) == NULL((void*)0)) { |
912 | ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE)(ERR_new(), ERR_set_debug("../deps/openssl/openssl/crypto/ec/ec_mult.c" ,912,__func__), ERR_set_error)((16),((256|((0x1 << 18L) |(0x2 << 18L)))),((void*)0)); |
913 | goto err; |
914 | } |
915 | |
916 | if (!EC_POINT_copy(base, generator)) |
917 | goto err; |
918 | |
919 | /* do the precomputation */ |
920 | for (i = 0; i < numblocks; i++) { |
921 | size_t j; |
922 | |
923 | if (!EC_POINT_dbl(group, tmp_point, base, ctx)) |
924 | goto err; |
925 | |
926 | if (!EC_POINT_copy(*var++, base)) |
927 | goto err; |
928 | |
929 | for (j = 1; j < pre_points_per_block; j++, var++) { |
930 | /* |
931 | * calculate odd multiples of the current base point |
932 | */ |
933 | if (!EC_POINT_add(group, *var, tmp_point, *(var - 1), ctx)) |
934 | goto err; |
935 | } |
936 | |
937 | if (i < numblocks - 1) { |
938 | /* |
939 | * get the next base (multiply current one by 2^blocksize) |
940 | */ |
941 | size_t k; |
942 | |
943 | if (blocksize <= 2) { |
944 | ERR_raise(ERR_LIB_EC, ERR_R_INTERNAL_ERROR)(ERR_new(), ERR_set_debug("../deps/openssl/openssl/crypto/ec/ec_mult.c" ,944,__func__), ERR_set_error)((16),((259|((0x1 << 18L) |(0x2 << 18L)))),((void*)0)); |
945 | goto err; |
946 | } |
947 | |
948 | if (!EC_POINT_dbl(group, base, tmp_point, ctx)) |
949 | goto err; |
950 | for (k = 2; k < blocksize; k++) { |
951 | if (!EC_POINT_dbl(group, base, base, ctx)) |
952 | goto err; |
953 | } |
954 | } |
955 | } |
956 | |
957 | if (group->meth->points_make_affine == NULL((void*)0) |
958 | || !group->meth->points_make_affine(group, num, points, ctx)) |
959 | goto err; |
960 | |
961 | pre_comp->group = group; |
962 | pre_comp->blocksize = blocksize; |
963 | pre_comp->numblocks = numblocks; |
964 | pre_comp->w = w; |
965 | pre_comp->points = points; |
966 | points = NULL((void*)0); |
967 | pre_comp->num = num; |
968 | SETPRECOMP(group, ec, pre_comp)group->pre_comp_type = PCT_ec, group->pre_comp.ec = pre_comp; |
969 | pre_comp = NULL((void*)0); |
970 | ret = 1; |
971 | |
972 | err: |
973 | if (used_ctx) |
974 | BN_CTX_end(ctx); |
975 | #ifndef FIPS_MODULE |
976 | BN_CTX_free(new_ctx); |
977 | #endif |
978 | EC_ec_pre_comp_free(pre_comp); |
979 | if (points) { |
980 | EC_POINT **p; |
981 | |
982 | for (p = points; *p != NULL((void*)0); p++) |
983 | EC_POINT_free(*p); |
984 | OPENSSL_free(points)CRYPTO_free(points, "../deps/openssl/openssl/crypto/ec/ec_mult.c" , 984); |
985 | } |
986 | EC_POINT_free(tmp_point); |
987 | EC_POINT_free(base); |
988 | return ret; |
989 | } |
990 | |
991 | int ossl_ec_wNAF_have_precompute_mult(const EC_GROUP *group) |
992 | { |
993 | return HAVEPRECOMP(group, ec)group->pre_comp_type == PCT_ec && group->pre_comp .ec != ((void*)0); |
994 | } |