Bug Summary

File:out/../deps/v8/src/compiler/raw-machine-assembler.cc
Warning:line 299, column 11
2nd function call argument is an uninitialized value

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-unknown-linux-gnu -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name raw-machine-assembler.cc -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -mrelocation-model pic -pic-level 2 -pic-is-pie -mframe-pointer=all -relaxed-aliasing -fmath-errno -ffp-contract=on -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/home/maurizio/node-v18.6.0/out -resource-dir /usr/local/lib/clang/16.0.0 -D _GLIBCXX_USE_CXX11_ABI=1 -D NODE_OPENSSL_CONF_NAME=nodejs_conf -D NODE_OPENSSL_HAS_QUIC -D V8_GYP_BUILD -D V8_TYPED_ARRAY_MAX_SIZE_IN_HEAP=64 -D __STDC_FORMAT_MACROS -D OPENSSL_NO_PINSHARED -D OPENSSL_THREADS -D V8_TARGET_ARCH_X64 -D V8_HAVE_TARGET_OS -D V8_TARGET_OS_LINUX -D V8_EMBEDDER_STRING="-node.8" -D ENABLE_DISASSEMBLER -D V8_PROMISE_INTERNAL_FIELD_COUNT=1 -D V8_SHORT_BUILTIN_CALLS -D OBJECT_PRINT -D V8_INTL_SUPPORT -D V8_ATOMIC_OBJECT_FIELD_WRITES -D V8_ENABLE_LAZY_SOURCE_POSITIONS -D V8_USE_SIPHASH -D V8_SHARED_RO_HEAP -D V8_WIN64_UNWINDING_INFO -D V8_ENABLE_REGEXP_INTERPRETER_THREADED_DISPATCH -D V8_SNAPSHOT_COMPRESSION -D V8_ENABLE_WEBASSEMBLY -D V8_ENABLE_JAVASCRIPT_PROMISE_HOOKS -D V8_ALLOCATION_FOLDING -D V8_ALLOCATION_SITE_TRACKING -D V8_SCRIPTORMODULE_LEGACY_LIFETIME -D V8_ADVANCED_BIGINT_ALGORITHMS -D UCONFIG_NO_SERVICE=1 -D U_ENABLE_DYLOAD=0 -D U_STATIC_IMPLEMENTATION=1 -D U_HAVE_STD_STRING=1 -D UCONFIG_NO_BREAK_ITERATION=0 -I ../deps/v8 -I ../deps/v8/include -I /home/maurizio/node-v18.6.0/out/Release/obj/gen/generate-bytecode-output-root -I /home/maurizio/node-v18.6.0/out/Release/obj/gen -I ../deps/icu-small/source/i18n -I ../deps/icu-small/source/common -internal-isystem /usr/lib/gcc/x86_64-redhat-linux/8/../../../../include/c++/8 -internal-isystem /usr/lib/gcc/x86_64-redhat-linux/8/../../../../include/c++/8/x86_64-redhat-linux -internal-isystem /usr/lib/gcc/x86_64-redhat-linux/8/../../../../include/c++/8/backward -internal-isystem /usr/local/lib/clang/16.0.0/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-redhat-linux/8/../../../../x86_64-redhat-linux/include -internal-externc-isystem /include -internal-externc-isystem /usr/include -O3 -Wno-unused-parameter -Wno-return-type -std=gnu++17 -fdeprecated-macro -fdebug-compilation-dir=/home/maurizio/node-v18.6.0/out -ferror-limit 19 -fno-rtti -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -analyzer-output=html -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2022-08-22-142216-507842-1 -x c++ ../deps/v8/src/compiler/raw-machine-assembler.cc

../deps/v8/src/compiler/raw-machine-assembler.cc

1// Copyright 2014 the V8 project authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#include "src/compiler/raw-machine-assembler.h"
6
7#include "src/base/small-vector.h"
8#include "src/compiler/compiler-source-position-table.h"
9#include "src/compiler/node-properties.h"
10#include "src/compiler/pipeline.h"
11#include "src/compiler/scheduler.h"
12#include "src/heap/factory-inl.h"
13
14namespace v8 {
15namespace internal {
16namespace compiler {
17
18RawMachineAssembler::RawMachineAssembler(
19 Isolate* isolate, Graph* graph, CallDescriptor* call_descriptor,
20 MachineRepresentation word, MachineOperatorBuilder::Flags flags,
21 MachineOperatorBuilder::AlignmentRequirements alignment_requirements)
22 : isolate_(isolate),
23 graph_(graph),
24 schedule_(zone()->New<Schedule>(zone())),
25 source_positions_(zone()->New<SourcePositionTable>(graph)),
26 machine_(zone(), word, flags, alignment_requirements),
27 common_(zone()),
28 simplified_(zone()),
29 call_descriptor_(call_descriptor),
30 target_parameter_(nullptr),
31 parameters_(parameter_count(), zone()),
32 current_block_(schedule()->start()) {
33 int param_count = static_cast<int>(parameter_count());
34 // Add an extra input for the JSFunction parameter to the start node.
35 graph->SetStart(graph->NewNode(common_.Start(param_count + 1)));
36 if (call_descriptor->IsJSFunctionCall()) {
37 target_parameter_ = AddNode(
38 common()->Parameter(Linkage::kJSCallClosureParamIndex), graph->start());
39 }
40 for (size_t i = 0; i < parameter_count(); ++i) {
41 parameters_[i] =
42 AddNode(common()->Parameter(static_cast<int>(i)), graph->start());
43 }
44 graph->SetEnd(graph->NewNode(common_.End(0)));
45 source_positions_->AddDecorator();
46}
47
48void RawMachineAssembler::SetCurrentExternalSourcePosition(
49 FileAndLine file_and_line) {
50 int file_id =
51 isolate()->LookupOrAddExternallyCompiledFilename(file_and_line.first);
52 SourcePosition p = SourcePosition::External(file_and_line.second, file_id);
53 DCHECK(p.ExternalLine() == file_and_line.second)((void) 0);
54 source_positions()->SetCurrentPosition(p);
55}
56
57FileAndLine RawMachineAssembler::GetCurrentExternalSourcePosition() const {
58 SourcePosition p = source_positions_->GetCurrentPosition();
59 if (!p.IsKnown()) return {nullptr, -1};
60 int file_id = p.ExternalFileId();
61 const char* file_name = isolate()->GetExternallyCompiledFilename(file_id);
62 int line = p.ExternalLine();
63 return {file_name, line};
64}
65
66Node* RawMachineAssembler::NullConstant() {
67 return HeapConstant(isolate()->factory()->null_value());
68}
69
70Node* RawMachineAssembler::UndefinedConstant() {
71 return HeapConstant(isolate()->factory()->undefined_value());
72}
73
74Node* RawMachineAssembler::RelocatableIntPtrConstant(intptr_t value,
75 RelocInfo::Mode rmode) {
76 return kSystemPointerSize == 8
77 ? RelocatableInt64Constant(value, rmode)
78 : RelocatableInt32Constant(static_cast<int>(value), rmode);
79}
80
81Node* RawMachineAssembler::OptimizedAllocate(
82 Node* size, AllocationType allocation,
83 AllowLargeObjects allow_large_objects) {
84 return AddNode(
85 simplified()->AllocateRaw(Type::Any(), allocation, allow_large_objects),
86 size);
87}
88
89Schedule* RawMachineAssembler::ExportForTest() {
90 // Compute the correct codegen order.
91 DCHECK(schedule_->rpo_order()->empty())((void) 0);
92 if (FLAG_trace_turbo_scheduler) {
93 PrintF("--- RAW SCHEDULE -------------------------------------------\n");
94 StdoutStream{} << *schedule_;
95 }
96 schedule_->EnsureCFGWellFormedness();
97 Scheduler::ComputeSpecialRPO(zone(), schedule_);
98 Scheduler::GenerateDominatorTree(schedule_);
99 schedule_->PropagateDeferredMark();
100 if (FLAG_trace_turbo_scheduler) {
101 PrintF("--- EDGE SPLIT AND PROPAGATED DEFERRED SCHEDULE ------------\n");
102 StdoutStream{} << *schedule_;
103 }
104 // Invalidate RawMachineAssembler.
105 source_positions_->RemoveDecorator();
106 Schedule* schedule = schedule_;
107 schedule_ = nullptr;
108 return schedule;
109}
110
111Graph* RawMachineAssembler::ExportForOptimization() {
112 // Compute the correct codegen order.
113 DCHECK(schedule_->rpo_order()->empty())((void) 0);
114 if (FLAG_trace_turbo_scheduler) {
1
Assuming 'FLAG_trace_turbo_scheduler' is false
2
Taking false branch
115 PrintF("--- RAW SCHEDULE -------------------------------------------\n");
116 StdoutStream{} << *schedule_;
117 }
118 schedule_->EnsureCFGWellFormedness();
119 OptimizeControlFlow(schedule_, graph(), common());
120 Scheduler::ComputeSpecialRPO(zone(), schedule_);
121 if (FLAG_trace_turbo_scheduler) {
3
Assuming 'FLAG_trace_turbo_scheduler' is false
4
Taking false branch
122 PrintF("--- SCHEDULE BEFORE GRAPH CREATION -------------------------\n");
123 StdoutStream{} << *schedule_;
124 }
125 MakeReschedulable();
5
Calling 'RawMachineAssembler::MakeReschedulable'
126 // Invalidate RawMachineAssembler.
127 schedule_ = nullptr;
128 return graph();
129}
130
131void RawMachineAssembler::OptimizeControlFlow(Schedule* schedule, Graph* graph,
132 CommonOperatorBuilder* common) {
133 for (bool changed = true; changed;) {
134 changed = false;
135 for (size_t i = 0; i < schedule->all_blocks()->size(); ++i) {
136 BasicBlock* block = (*schedule->all_blocks())[i];
137 if (block == nullptr) continue;
138
139 // Short-circuit a goto if the succeeding block is not a control-flow
140 // merge. This is not really useful on it's own since graph construction
141 // has the same effect, but combining blocks improves the pattern-match on
142 // their structure below.
143 if (block->control() == BasicBlock::kGoto) {
144 DCHECK_EQ(block->SuccessorCount(), 1)((void) 0);
145 BasicBlock* successor = block->SuccessorAt(0);
146 if (successor->PredecessorCount() == 1) {
147 DCHECK_EQ(successor->PredecessorAt(0), block)((void) 0);
148 for (Node* node : *successor) {
149 schedule->SetBlockForNode(nullptr, node);
150 schedule->AddNode(block, node);
151 }
152 block->set_control(successor->control());
153 Node* control_input = successor->control_input();
154 block->set_control_input(control_input);
155 if (control_input) {
156 schedule->SetBlockForNode(block, control_input);
157 }
158 if (successor->deferred()) block->set_deferred(true);
159 block->ClearSuccessors();
160 schedule->MoveSuccessors(successor, block);
161 schedule->ClearBlockById(successor->id());
162 changed = true;
163 --i;
164 continue;
165 }
166 }
167 // Block-cloning in the simple case where a block consists only of a phi
168 // node and a branch on that phi. This just duplicates the branch block
169 // for each predecessor, replacing the phi node with the corresponding phi
170 // input.
171 if (block->control() == BasicBlock::kBranch && block->NodeCount() == 1) {
172 Node* phi = block->NodeAt(0);
173 if (phi->opcode() != IrOpcode::kPhi) continue;
174 Node* branch = block->control_input();
175 DCHECK_EQ(branch->opcode(), IrOpcode::kBranch)((void) 0);
176 if (NodeProperties::GetValueInput(branch, 0) != phi) continue;
177 if (phi->UseCount() != 1) continue;
178 DCHECK_EQ(phi->op()->ValueInputCount(), block->PredecessorCount())((void) 0);
179
180 // Turn projection blocks into normal blocks.
181 DCHECK_EQ(block->SuccessorCount(), 2)((void) 0);
182 BasicBlock* true_block = block->SuccessorAt(0);
183 BasicBlock* false_block = block->SuccessorAt(1);
184 DCHECK_EQ(true_block->NodeAt(0)->opcode(), IrOpcode::kIfTrue)((void) 0);
185 DCHECK_EQ(false_block->NodeAt(0)->opcode(), IrOpcode::kIfFalse)((void) 0);
186 (*true_block->begin())->Kill();
187 true_block->RemoveNode(true_block->begin());
188 (*false_block->begin())->Kill();
189 false_block->RemoveNode(false_block->begin());
190 true_block->ClearPredecessors();
191 false_block->ClearPredecessors();
192
193 size_t arity = block->PredecessorCount();
194 for (size_t j = 0; j < arity; ++j) {
195 BasicBlock* predecessor = block->PredecessorAt(j);
196 predecessor->ClearSuccessors();
197 if (block->deferred()) predecessor->set_deferred(true);
198 Node* branch_clone = graph->CloneNode(branch);
199 int phi_input = static_cast<int>(j);
200 NodeProperties::ReplaceValueInput(
201 branch_clone, NodeProperties::GetValueInput(phi, phi_input), 0);
202 BasicBlock* new_true_block = schedule->NewBasicBlock();
203 BasicBlock* new_false_block = schedule->NewBasicBlock();
204 new_true_block->AddNode(
205 graph->NewNode(common->IfTrue(), branch_clone));
206 new_false_block->AddNode(
207 graph->NewNode(common->IfFalse(), branch_clone));
208 schedule->AddGoto(new_true_block, true_block);
209 schedule->AddGoto(new_false_block, false_block);
210 DCHECK_EQ(predecessor->control(), BasicBlock::kGoto)((void) 0);
211 predecessor->set_control(BasicBlock::kNone);
212 schedule->AddBranch(predecessor, branch_clone, new_true_block,
213 new_false_block);
214 }
215 branch->Kill();
216 schedule->ClearBlockById(block->id());
217 changed = true;
218 continue;
219 }
220 }
221 }
222}
223
224void RawMachineAssembler::MakeReschedulable() {
225 std::vector<Node*> block_final_control(schedule_->all_blocks_.size());
226 std::vector<Node*> block_final_effect(schedule_->all_blocks_.size());
227
228 struct LoopHeader {
229 BasicBlock* block;
230 Node* loop_node;
231 Node* effect_phi;
232 };
233 std::vector<LoopHeader> loop_headers;
234
235 // These are hoisted outside of the loop to avoid re-allocation.
236 std::vector<Node*> merge_inputs;
237 std::vector<Node*> effect_phi_inputs;
238
239 for (BasicBlock* block : *schedule_->rpo_order()) {
240 Node* current_control;
241 Node* current_effect;
6
'current_effect' declared without an initial value
242 if (block == schedule_->start()) {
7
Assuming the condition is false
8
Taking false branch
243 current_control = current_effect = graph()->start();
244 } else if (block == schedule_->end()) {
9
Assuming the condition is true
10
Taking true branch
245 for (size_t i = 0; i < block->PredecessorCount(); ++i) {
11
Assuming the condition is false
12
Loop condition is false. Execution continues on line 290
246 NodeProperties::MergeControlToEnd(
247 graph(), common(), block->PredecessorAt(i)->control_input());
248 }
249 } else if (block->IsLoopHeader()) {
250 // The graph()->start() inputs are just placeholders until we computed the
251 // real back-edges and re-structure the control flow so the loop has
252 // exactly two predecessors.
253 current_control = graph()->NewNode(common()->Loop(2), graph()->start(),
254 graph()->start());
255 current_effect =
256 graph()->NewNode(common()->EffectPhi(2), graph()->start(),
257 graph()->start(), current_control);
258
259 Node* terminate = graph()->NewNode(common()->Terminate(), current_effect,
260 current_control);
261 NodeProperties::MergeControlToEnd(graph(), common(), terminate);
262 loop_headers.push_back(
263 LoopHeader{block, current_control, current_effect});
264 } else if (block->PredecessorCount() == 1) {
265 BasicBlock* predecessor = block->PredecessorAt(0);
266 DCHECK_LT(predecessor->rpo_number(), block->rpo_number())((void) 0);
267 current_effect = block_final_effect[predecessor->id().ToSize()];
268 current_control = block_final_control[predecessor->id().ToSize()];
269 } else {
270 // Create control merge nodes and effect phis for all predecessor blocks.
271 merge_inputs.clear();
272 effect_phi_inputs.clear();
273 int predecessor_count = static_cast<int>(block->PredecessorCount());
274 for (int i = 0; i < predecessor_count; ++i) {
275 BasicBlock* predecessor = block->PredecessorAt(i);
276 DCHECK_LT(predecessor->rpo_number(), block->rpo_number())((void) 0);
277 merge_inputs.push_back(block_final_control[predecessor->id().ToSize()]);
278 effect_phi_inputs.push_back(
279 block_final_effect[predecessor->id().ToSize()]);
280 }
281 current_control = graph()->NewNode(common()->Merge(predecessor_count),
282 static_cast<int>(merge_inputs.size()),
283 merge_inputs.data());
284 effect_phi_inputs.push_back(current_control);
285 current_effect = graph()->NewNode(
286 common()->EffectPhi(predecessor_count),
287 static_cast<int>(effect_phi_inputs.size()), effect_phi_inputs.data());
288 }
289
290 auto update_current_control_and_effect = [&](Node* node) {
291 bool existing_effect_and_control =
292 IrOpcode::IsIfProjectionOpcode(node->opcode()) ||
293 IrOpcode::IsPhiOpcode(node->opcode());
294 if (node->op()->EffectInputCount() > 0) {
14
Assuming the condition is true
15
Taking true branch
295 DCHECK_EQ(1, node->op()->EffectInputCount())((void) 0);
296 if (existing_effect_and_control
15.1
'existing_effect_and_control' is false
15.1
'existing_effect_and_control' is false
) {
16
Taking false branch
297 NodeProperties::ReplaceEffectInput(node, current_effect);
298 } else {
299 node->AppendInput(graph()->zone(), current_effect);
17
2nd function call argument is an uninitialized value
300 }
301 }
302 if (node->op()->ControlInputCount() > 0) {
303 DCHECK_EQ(1, node->op()->ControlInputCount())((void) 0);
304 if (existing_effect_and_control) {
305 NodeProperties::ReplaceControlInput(node, current_control);
306 } else {
307 node->AppendInput(graph()->zone(), current_control);
308 }
309 }
310 if (node->op()->EffectOutputCount() > 0) {
311 DCHECK_EQ(1, node->op()->EffectOutputCount())((void) 0);
312 current_effect = node;
313 }
314 if (node->op()->ControlOutputCount() > 0) {
315 current_control = node;
316 }
317 };
318
319 for (Node* node : *block) {
320 update_current_control_and_effect(node);
13
Calling 'operator()'
321 }
322 if (block->deferred()) MarkControlDeferred(current_control);
323
324 if (Node* block_terminator = block->control_input()) {
325 update_current_control_and_effect(block_terminator);
326 }
327
328 block_final_effect[block->id().ToSize()] = current_effect;
329 block_final_control[block->id().ToSize()] = current_control;
330 }
331
332 // Fix-up loop backedges and re-structure control flow so that loop nodes have
333 // exactly two control predecessors.
334 for (const LoopHeader& loop_header : loop_headers) {
335 BasicBlock* block = loop_header.block;
336 std::vector<BasicBlock*> loop_entries;
337 std::vector<BasicBlock*> loop_backedges;
338 for (size_t i = 0; i < block->PredecessorCount(); ++i) {
339 BasicBlock* predecessor = block->PredecessorAt(i);
340 if (block->LoopContains(predecessor)) {
341 loop_backedges.push_back(predecessor);
342 } else {
343 DCHECK(loop_backedges.empty())((void) 0);
344 loop_entries.push_back(predecessor);
345 }
346 }
347 DCHECK(!loop_entries.empty())((void) 0);
348 DCHECK(!loop_backedges.empty())((void) 0);
349
350 int entrance_count = static_cast<int>(loop_entries.size());
351 int backedge_count = static_cast<int>(loop_backedges.size());
352 Node* control_loop_entry = CreateNodeFromPredecessors(
353 loop_entries, block_final_control, common()->Merge(entrance_count), {});
354 Node* control_backedge =
355 CreateNodeFromPredecessors(loop_backedges, block_final_control,
356 common()->Merge(backedge_count), {});
357 Node* effect_loop_entry = CreateNodeFromPredecessors(
358 loop_entries, block_final_effect, common()->EffectPhi(entrance_count),
359 {control_loop_entry});
360 Node* effect_backedge = CreateNodeFromPredecessors(
361 loop_backedges, block_final_effect, common()->EffectPhi(backedge_count),
362 {control_backedge});
363
364 loop_header.loop_node->ReplaceInput(0, control_loop_entry);
365 loop_header.loop_node->ReplaceInput(1, control_backedge);
366 loop_header.effect_phi->ReplaceInput(0, effect_loop_entry);
367 loop_header.effect_phi->ReplaceInput(1, effect_backedge);
368
369 for (Node* node : *block) {
370 if (node->opcode() == IrOpcode::kPhi) {
371 MakePhiBinary(node, static_cast<int>(loop_entries.size()),
372 control_loop_entry, control_backedge);
373 }
374 }
375 }
376}
377
378Node* RawMachineAssembler::CreateNodeFromPredecessors(
379 const std::vector<BasicBlock*>& predecessors,
380 const std::vector<Node*>& sidetable, const Operator* op,
381 const std::vector<Node*>& additional_inputs) {
382 if (predecessors.size() == 1) {
383 return sidetable[predecessors.front()->id().ToSize()];
384 }
385 std::vector<Node*> inputs;
386 inputs.reserve(predecessors.size());
387 for (BasicBlock* predecessor : predecessors) {
388 inputs.push_back(sidetable[predecessor->id().ToSize()]);
389 }
390 for (Node* additional_input : additional_inputs) {
391 inputs.push_back(additional_input);
392 }
393 return graph()->NewNode(op, static_cast<int>(inputs.size()), inputs.data());
394}
395
396void RawMachineAssembler::MakePhiBinary(Node* phi, int split_point,
397 Node* left_control,
398 Node* right_control) {
399 int value_count = phi->op()->ValueInputCount();
400 if (value_count == 2) return;
401 DCHECK_LT(split_point, value_count)((void) 0);
402 DCHECK_GT(split_point, 0)((void) 0);
403
404 MachineRepresentation rep = PhiRepresentationOf(phi->op());
405 int left_input_count = split_point;
406 int right_input_count = value_count - split_point;
407
408 Node* left_input;
409 if (left_input_count == 1) {
410 left_input = NodeProperties::GetValueInput(phi, 0);
411 } else {
412 std::vector<Node*> inputs;
413 inputs.reserve(left_input_count);
414 for (int i = 0; i < left_input_count; ++i) {
415 inputs.push_back(NodeProperties::GetValueInput(phi, i));
416 }
417 inputs.push_back(left_control);
418 left_input =
419 graph()->NewNode(common()->Phi(rep, static_cast<int>(left_input_count)),
420 static_cast<int>(inputs.size()), inputs.data());
421 }
422
423 Node* right_input;
424 if (right_input_count == 1) {
425 right_input = NodeProperties::GetValueInput(phi, split_point);
426 } else {
427 std::vector<Node*> inputs;
428 for (int i = split_point; i < value_count; ++i) {
429 inputs.push_back(NodeProperties::GetValueInput(phi, i));
430 }
431 inputs.push_back(right_control);
432 right_input = graph()->NewNode(
433 common()->Phi(rep, static_cast<int>(right_input_count)),
434 static_cast<int>(inputs.size()), inputs.data());
435 }
436
437 Node* control = NodeProperties::GetControlInput(phi);
438 phi->TrimInputCount(3);
439 phi->ReplaceInput(0, left_input);
440 phi->ReplaceInput(1, right_input);
441 phi->ReplaceInput(2, control);
442 NodeProperties::ChangeOp(phi, common()->Phi(rep, 2));
443}
444
445void RawMachineAssembler::MarkControlDeferred(Node* control_node) {
446 BranchHint new_branch_hint;
447 Node* responsible_branch = nullptr;
448 while (responsible_branch == nullptr) {
449 switch (control_node->opcode()) {
450 case IrOpcode::kIfException:
451 // IfException projections are deferred by default.
452 return;
453 case IrOpcode::kIfSuccess:
454 control_node = NodeProperties::GetControlInput(control_node);
455 continue;
456 case IrOpcode::kIfValue: {
457 IfValueParameters parameters = IfValueParametersOf(control_node->op());
458 if (parameters.hint() != BranchHint::kFalse) {
459 NodeProperties::ChangeOp(
460 control_node, common()->IfValue(parameters.value(),
461 parameters.comparison_order(),
462 BranchHint::kFalse));
463 }
464 return;
465 }
466 case IrOpcode::kIfDefault:
467 if (BranchHintOf(control_node->op()) != BranchHint::kFalse) {
468 NodeProperties::ChangeOp(control_node,
469 common()->IfDefault(BranchHint::kFalse));
470 }
471 return;
472 case IrOpcode::kIfTrue: {
473 Node* branch = NodeProperties::GetControlInput(control_node);
474 BranchHint hint = BranchHintOf(branch->op());
475 if (hint == BranchHint::kTrue) {
476 // The other possibility is also deferred, so the responsible branch
477 // has to be before.
478 control_node = NodeProperties::GetControlInput(branch);
479 continue;
480 }
481 new_branch_hint = BranchHint::kFalse;
482 responsible_branch = branch;
483 break;
484 }
485 case IrOpcode::kIfFalse: {
486 Node* branch = NodeProperties::GetControlInput(control_node);
487 BranchHint hint = BranchHintOf(branch->op());
488 if (hint == BranchHint::kFalse) {
489 // The other possibility is also deferred, so the responsible branch
490 // has to be before.
491 control_node = NodeProperties::GetControlInput(branch);
492 continue;
493 }
494 new_branch_hint = BranchHint::kTrue;
495 responsible_branch = branch;
496 break;
497 }
498 case IrOpcode::kMerge:
499 for (int i = 0; i < control_node->op()->ControlInputCount(); ++i) {
500 MarkControlDeferred(NodeProperties::GetControlInput(control_node, i));
501 }
502 return;
503 case IrOpcode::kLoop:
504 control_node = NodeProperties::GetControlInput(control_node, 0);
505 continue;
506 case IrOpcode::kBranch:
507 case IrOpcode::kSwitch:
508 UNREACHABLE()V8_Fatal("unreachable code");
509 case IrOpcode::kStart:
510 return;
511 default:
512 DCHECK_EQ(1, control_node->op()->ControlInputCount())((void) 0);
513 control_node = NodeProperties::GetControlInput(control_node);
514 continue;
515 }
516 }
517
518 BranchHint hint = BranchHintOf(responsible_branch->op());
519 if (hint == new_branch_hint) return;
520 NodeProperties::ChangeOp(responsible_branch,
521 common()->Branch(new_branch_hint));
522}
523
524Node* RawMachineAssembler::TargetParameter() {
525 DCHECK_NOT_NULL(target_parameter_)((void) 0);
526 return target_parameter_;
527}
528
529Node* RawMachineAssembler::Parameter(size_t index) {
530 DCHECK_LT(index, parameter_count())((void) 0);
531 return parameters_[index];
532}
533
534
535void RawMachineAssembler::Goto(RawMachineLabel* label) {
536 DCHECK(current_block_ != schedule()->end())((void) 0);
537 schedule()->AddGoto(CurrentBlock(), Use(label));
538 current_block_ = nullptr;
539}
540
541
542void RawMachineAssembler::Branch(Node* condition, RawMachineLabel* true_val,
543 RawMachineLabel* false_val) {
544 DCHECK(current_block_ != schedule()->end())((void) 0);
545 Node* branch = MakeNode(common()->Branch(BranchHint::kNone), 1, &condition);
546 BasicBlock* true_block = schedule()->NewBasicBlock();
547 BasicBlock* false_block = schedule()->NewBasicBlock();
548 schedule()->AddBranch(CurrentBlock(), branch, true_block, false_block);
549
550 true_block->AddNode(MakeNode(common()->IfTrue(), 1, &branch));
551 schedule()->AddGoto(true_block, Use(true_val));
552
553 false_block->AddNode(MakeNode(common()->IfFalse(), 1, &branch));
554 schedule()->AddGoto(false_block, Use(false_val));
555
556 current_block_ = nullptr;
557}
558
559void RawMachineAssembler::Continuations(Node* call, RawMachineLabel* if_success,
560 RawMachineLabel* if_exception) {
561 DCHECK_NOT_NULL(schedule_)((void) 0);
562 DCHECK_NOT_NULL(current_block_)((void) 0);
563 schedule()->AddCall(CurrentBlock(), call, Use(if_success), Use(if_exception));
564 current_block_ = nullptr;
565}
566
567void RawMachineAssembler::Switch(Node* index, RawMachineLabel* default_label,
568 const int32_t* case_values,
569 RawMachineLabel** case_labels,
570 size_t case_count) {
571 DCHECK_NE(schedule()->end(), current_block_)((void) 0);
572 size_t succ_count = case_count + 1;
573 Node* switch_node = MakeNode(common()->Switch(succ_count), 1, &index);
574 BasicBlock** succ_blocks = zone()->NewArray<BasicBlock*>(succ_count);
575 for (size_t i = 0; i < case_count; ++i) {
576 int32_t case_value = case_values[i];
577 BasicBlock* case_block = schedule()->NewBasicBlock();
578 Node* case_node =
579 graph()->NewNode(common()->IfValue(case_value), switch_node);
580 schedule()->AddNode(case_block, case_node);
581 schedule()->AddGoto(case_block, Use(case_labels[i]));
582 succ_blocks[i] = case_block;
583 }
584 BasicBlock* default_block = schedule()->NewBasicBlock();
585 Node* default_node = graph()->NewNode(common()->IfDefault(), switch_node);
586 schedule()->AddNode(default_block, default_node);
587 schedule()->AddGoto(default_block, Use(default_label));
588 succ_blocks[case_count] = default_block;
589 schedule()->AddSwitch(CurrentBlock(), switch_node, succ_blocks, succ_count);
590 current_block_ = nullptr;
591}
592
593void RawMachineAssembler::Return(Node* value) {
594 Node* values[] = {Int32Constant(0), value};
595 Node* ret = MakeNode(common()->Return(1), 2, values);
596 schedule()->AddReturn(CurrentBlock(), ret);
597 current_block_ = nullptr;
598}
599
600void RawMachineAssembler::Return(Node* v1, Node* v2) {
601 Node* values[] = {Int32Constant(0), v1, v2};
602 Node* ret = MakeNode(common()->Return(2), 3, values);
603 schedule()->AddReturn(CurrentBlock(), ret);
604 current_block_ = nullptr;
605}
606
607void RawMachineAssembler::Return(Node* v1, Node* v2, Node* v3) {
608 Node* values[] = {Int32Constant(0), v1, v2, v3};
609 Node* ret = MakeNode(common()->Return(3), 4, values);
610 schedule()->AddReturn(CurrentBlock(), ret);
611 current_block_ = nullptr;
612}
613
614void RawMachineAssembler::Return(Node* v1, Node* v2, Node* v3, Node* v4) {
615 Node* values[] = {Int32Constant(0), v1, v2, v3, v4};
616 Node* ret = MakeNode(common()->Return(4), 5, values);
617 schedule()->AddReturn(CurrentBlock(), ret);
618 current_block_ = nullptr;
619}
620
621void RawMachineAssembler::Return(int count, Node* vs[]) {
622 using Node_ptr = Node*;
623 Node** values = new Node_ptr[count + 1];
624 values[0] = Int32Constant(0);
625 for (int i = 0; i < count; ++i) values[i + 1] = vs[i];
626 Node* ret = MakeNode(common()->Return(count), count + 1, values);
627 schedule()->AddReturn(CurrentBlock(), ret);
628 current_block_ = nullptr;
629 delete[] values;
630}
631
632void RawMachineAssembler::PopAndReturn(Node* pop, Node* value) {
633 // PopAndReturn is supposed to be using ONLY in CSA/Torque builtins for
634 // dropping ALL JS arguments that are currently located on the stack.
635 // The check below ensures that there are no directly accessible stack
636 // parameters from current builtin, which implies that the builtin with
637 // JS calling convention (TFJ) was created with kDontAdaptArgumentsSentinel.
638 // This simplifies semantics of this instruction because in case of presence
639 // of directly accessible stack parameters it's impossible to distinguish
640 // the following cases:
641 // 1) stack parameter is included in JS arguments (and therefore it will be
642 // dropped as a part of 'pop' number of arguments),
643 // 2) stack parameter is NOT included in JS arguments (and therefore it should
644 // be dropped in ADDITION to the 'pop' number of arguments).
645 // Additionally, in order to simplify assembly code, PopAndReturn is also
646 // not allowed in builtins with stub linkage and parameters on stack.
647 CHECK_EQ(call_descriptor()->ParameterSlotCount(), 0)do { bool _cmp = ::v8::base::CmpEQImpl< typename ::v8::base
::pass_value_or_ref<decltype(call_descriptor()->ParameterSlotCount
())>::type, typename ::v8::base::pass_value_or_ref<decltype
(0)>::type>((call_descriptor()->ParameterSlotCount()
), (0)); do { if ((__builtin_expect(!!(!(_cmp)), 0))) { V8_Fatal
("Check failed: %s.", "call_descriptor()->ParameterSlotCount()"
" " "==" " " "0"); } } while (false); } while (false)
;
648 Node* values[] = {pop, value};
649 Node* ret = MakeNode(common()->Return(1), 2, values);
650 schedule()->AddReturn(CurrentBlock(), ret);
651 current_block_ = nullptr;
652}
653
654void RawMachineAssembler::PopAndReturn(Node* pop, Node* v1, Node* v2) {
655 Node* values[] = {pop, v1, v2};
656 Node* ret = MakeNode(common()->Return(2), 3, values);
657 schedule()->AddReturn(CurrentBlock(), ret);
658 current_block_ = nullptr;
659}
660
661void RawMachineAssembler::PopAndReturn(Node* pop, Node* v1, Node* v2,
662 Node* v3) {
663 Node* values[] = {pop, v1, v2, v3};
664 Node* ret = MakeNode(common()->Return(3), 4, values);
665 schedule()->AddReturn(CurrentBlock(), ret);
666 current_block_ = nullptr;
667}
668
669void RawMachineAssembler::PopAndReturn(Node* pop, Node* v1, Node* v2, Node* v3,
670 Node* v4) {
671 Node* values[] = {pop, v1, v2, v3, v4};
672 Node* ret = MakeNode(common()->Return(4), 5, values);
673 schedule()->AddReturn(CurrentBlock(), ret);
674 current_block_ = nullptr;
675}
676
677void RawMachineAssembler::AbortCSADcheck(Node* message) {
678 AddNode(machine()->AbortCSADcheck(), message);
679}
680
681void RawMachineAssembler::DebugBreak() { AddNode(machine()->DebugBreak()); }
682
683void RawMachineAssembler::Unreachable() {
684 Node* ret = MakeNode(common()->Throw(), 0, nullptr);
685 schedule()->AddThrow(CurrentBlock(), ret);
686 current_block_ = nullptr;
687}
688
689void RawMachineAssembler::Comment(const std::string& msg) {
690 size_t length = msg.length() + 1;
691 char* zone_buffer = zone()->NewArray<char>(length);
692 MemCopy(zone_buffer, msg.c_str(), length);
693 AddNode(machine()->Comment(zone_buffer));
694}
695
696void RawMachineAssembler::StaticAssert(Node* value, const char* source) {
697 AddNode(common()->StaticAssert(source), value);
698}
699
700Node* RawMachineAssembler::CallN(CallDescriptor* call_descriptor,
701 int input_count, Node* const* inputs) {
702 DCHECK(!call_descriptor->NeedsFrameState())((void) 0);
703 // +1 is for target.
704 DCHECK_EQ(input_count, call_descriptor->ParameterCount() + 1)((void) 0);
705 return AddNode(common()->Call(call_descriptor), input_count, inputs);
706}
707
708Node* RawMachineAssembler::CallNWithFrameState(CallDescriptor* call_descriptor,
709 int input_count,
710 Node* const* inputs) {
711 DCHECK(call_descriptor->NeedsFrameState())((void) 0);
712 // +2 is for target and frame state.
713 DCHECK_EQ(input_count, call_descriptor->ParameterCount() + 2)((void) 0);
714 return AddNode(common()->Call(call_descriptor), input_count, inputs);
715}
716
717void RawMachineAssembler::TailCallN(CallDescriptor* call_descriptor,
718 int input_count, Node* const* inputs) {
719 // +1 is for target.
720 DCHECK_EQ(input_count, call_descriptor->ParameterCount() + 1)((void) 0);
721 Node* tail_call =
722 MakeNode(common()->TailCall(call_descriptor), input_count, inputs);
723 schedule()->AddTailCall(CurrentBlock(), tail_call);
724 current_block_ = nullptr;
725}
726
727namespace {
728
729enum FunctionDescriptorMode { kHasFunctionDescriptor, kNoFunctionDescriptor };
730
731Node* CallCFunctionImpl(
732 RawMachineAssembler* rasm, Node* function,
733 base::Optional<MachineType> return_type,
734 std::initializer_list<RawMachineAssembler::CFunctionArg> args,
735 bool caller_saved_regs, SaveFPRegsMode mode,
736 FunctionDescriptorMode no_function_descriptor) {
737 static constexpr std::size_t kNumCArgs = 10;
738
739 MachineSignature::Builder builder(rasm->zone(), return_type ? 1 : 0,
740 args.size());
741 if (return_type) {
742 builder.AddReturn(*return_type);
743 }
744 for (const auto& arg : args) builder.AddParam(arg.first);
745
746 bool caller_saved_fp_regs =
747 caller_saved_regs && (mode == SaveFPRegsMode::kSave);
748 CallDescriptor::Flags flags = CallDescriptor::kNoFlags;
749 if (caller_saved_regs) flags |= CallDescriptor::kCallerSavedRegisters;
750 if (caller_saved_fp_regs) flags |= CallDescriptor::kCallerSavedFPRegisters;
751 if (no_function_descriptor) flags |= CallDescriptor::kNoFunctionDescriptor;
752 auto call_descriptor =
753 Linkage::GetSimplifiedCDescriptor(rasm->zone(), builder.Build(), flags);
754
755 base::SmallVector<Node*, kNumCArgs> nodes(args.size() + 1);
756 nodes[0] = function;
757 std::transform(
758 args.begin(), args.end(), std::next(nodes.begin()),
759 [](const RawMachineAssembler::CFunctionArg& arg) { return arg.second; });
760
761 auto common = rasm->common();
762 return rasm->AddNode(common->Call(call_descriptor),
763 static_cast<int>(nodes.size()), nodes.begin());
764}
765
766} // namespace
767
768Node* RawMachineAssembler::CallCFunction(
769 Node* function, base::Optional<MachineType> return_type,
770 std::initializer_list<RawMachineAssembler::CFunctionArg> args) {
771 return CallCFunctionImpl(this, function, return_type, args, false,
772 SaveFPRegsMode::kIgnore, kHasFunctionDescriptor);
773}
774
775Node* RawMachineAssembler::CallCFunctionWithoutFunctionDescriptor(
776 Node* function, MachineType return_type,
777 std::initializer_list<RawMachineAssembler::CFunctionArg> args) {
778 return CallCFunctionImpl(this, function, return_type, args, false,
779 SaveFPRegsMode::kIgnore, kNoFunctionDescriptor);
780}
781
782Node* RawMachineAssembler::CallCFunctionWithCallerSavedRegisters(
783 Node* function, MachineType return_type, SaveFPRegsMode mode,
784 std::initializer_list<RawMachineAssembler::CFunctionArg> args) {
785 return CallCFunctionImpl(this, function, return_type, args, true, mode,
786 kHasFunctionDescriptor);
787}
788
789BasicBlock* RawMachineAssembler::Use(RawMachineLabel* label) {
790 label->used_ = true;
791 return EnsureBlock(label);
792}
793
794BasicBlock* RawMachineAssembler::EnsureBlock(RawMachineLabel* label) {
795 if (label->block_ == nullptr) {
796 label->block_ = schedule()->NewBasicBlock();
797 }
798 return label->block_;
799}
800
801void RawMachineAssembler::Bind(RawMachineLabel* label) {
802 DCHECK_NULL(current_block_)((void) 0);
803 DCHECK(!label->bound_)((void) 0);
804 label->bound_ = true;
805 current_block_ = EnsureBlock(label);
806 current_block_->set_deferred(label->deferred_);
807}
808
809#if DEBUG
810void RawMachineAssembler::Bind(RawMachineLabel* label,
811 AssemblerDebugInfo info) {
812 if (current_block_ != nullptr) {
813 std::stringstream str;
814 str << "Binding label without closing previous block:"
815 << "\n# label: " << info
816 << "\n# previous block: " << *current_block_;
817 FATAL("%s", str.str().c_str())V8_Fatal("%s", str.str().c_str());
818 }
819 Bind(label);
820 current_block_->set_debug_info(info);
821}
822
823void RawMachineAssembler::PrintCurrentBlock(std::ostream& os) {
824 os << CurrentBlock();
825}
826
827void RawMachineAssembler::SetInitialDebugInformation(
828 AssemblerDebugInfo debug_info) {
829 CurrentBlock()->set_debug_info(debug_info);
830}
831#endif // DEBUG
832
833bool RawMachineAssembler::InsideBlock() { return current_block_ != nullptr; }
834
835BasicBlock* RawMachineAssembler::CurrentBlock() {
836 DCHECK(current_block_)((void) 0);
837 return current_block_;
838}
839
840Node* RawMachineAssembler::Phi(MachineRepresentation rep, int input_count,
841 Node* const* inputs) {
842 Node** buffer = zone()->NewArray<Node*>(input_count + 1);
843 std::copy(inputs, inputs + input_count, buffer);
844 buffer[input_count] = graph()->start();
845 return AddNode(common()->Phi(rep, input_count), input_count + 1, buffer);
846}
847
848void RawMachineAssembler::AppendPhiInput(Node* phi, Node* new_input) {
849 const Operator* op = phi->op();
850 const Operator* new_op = common()->ResizeMergeOrPhi(op, phi->InputCount());
851 phi->InsertInput(zone(), phi->InputCount() - 1, new_input);
852 NodeProperties::ChangeOp(phi, new_op);
853}
854
855Node* RawMachineAssembler::AddNode(const Operator* op, int input_count,
856 Node* const* inputs) {
857 DCHECK_NOT_NULL(schedule_)((void) 0);
858 DCHECK_NOT_NULL(current_block_)((void) 0);
859 Node* node = MakeNode(op, input_count, inputs);
860 schedule()->AddNode(CurrentBlock(), node);
861 return node;
862}
863
864Node* RawMachineAssembler::MakeNode(const Operator* op, int input_count,
865 Node* const* inputs) {
866 // The raw machine assembler nodes do not have effect and control inputs,
867 // so we disable checking input counts here.
868 return graph()->NewNodeUnchecked(op, input_count, inputs);
869}
870
871RawMachineLabel::~RawMachineLabel() {
872#if DEBUG
873 if (bound_ == used_) return;
874 std::stringstream str;
875 if (bound_) {
876 str << "A label has been bound but it's not used."
877 << "\n# label: " << *block_;
878 } else {
879 str << "A label has been used but it's not bound.";
880 }
881 FATAL("%s", str.str().c_str())V8_Fatal("%s", str.str().c_str());
882#endif // DEBUG
883}
884
885} // namespace compiler
886} // namespace internal
887} // namespace v8

/usr/lib/gcc/x86_64-redhat-linux/8/../../../../include/c++/8/bits/stl_vector.h

1// Vector implementation -*- C++ -*-
2
3// Copyright (C) 2001-2018 Free Software Foundation, Inc.
4//
5// This file is part of the GNU ISO C++ Library. This library is free
6// software; you can redistribute it and/or modify it under the
7// terms of the GNU General Public License as published by the
8// Free Software Foundation; either version 3, or (at your option)
9// any later version.
10
11// This library is distributed in the hope that it will be useful,
12// but WITHOUT ANY WARRANTY; without even the implied warranty of
13// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14// GNU General Public License for more details.
15
16// Under Section 7 of GPL version 3, you are granted additional
17// permissions described in the GCC Runtime Library Exception, version
18// 3.1, as published by the Free Software Foundation.
19
20// You should have received a copy of the GNU General Public License and
21// a copy of the GCC Runtime Library Exception along with this program;
22// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
23// <http://www.gnu.org/licenses/>.
24
25/*
26 *
27 * Copyright (c) 1994
28 * Hewlett-Packard Company
29 *
30 * Permission to use, copy, modify, distribute and sell this software
31 * and its documentation for any purpose is hereby granted without fee,
32 * provided that the above copyright notice appear in all copies and
33 * that both that copyright notice and this permission notice appear
34 * in supporting documentation. Hewlett-Packard Company makes no
35 * representations about the suitability of this software for any
36 * purpose. It is provided "as is" without express or implied warranty.
37 *
38 *
39 * Copyright (c) 1996
40 * Silicon Graphics Computer Systems, Inc.
41 *
42 * Permission to use, copy, modify, distribute and sell this software
43 * and its documentation for any purpose is hereby granted without fee,
44 * provided that the above copyright notice appear in all copies and
45 * that both that copyright notice and this permission notice appear
46 * in supporting documentation. Silicon Graphics makes no
47 * representations about the suitability of this software for any
48 * purpose. It is provided "as is" without express or implied warranty.
49 */
50
51/** @file bits/stl_vector.h
52 * This is an internal header file, included by other library headers.
53 * Do not attempt to use it directly. @headername{vector}
54 */
55
56#ifndef _STL_VECTOR_H1
57#define _STL_VECTOR_H1 1
58
59#include <bits/stl_iterator_base_funcs.h>
60#include <bits/functexcept.h>
61#include <bits/concept_check.h>
62#if __cplusplus201703L >= 201103L
63#include <initializer_list>
64#endif
65
66#include <debug/assertions.h>
67
68#if _GLIBCXX_SANITIZE_STD_ALLOCATOR && _GLIBCXX_SANITIZE_VECTOR
69extern "C" void
70__sanitizer_annotate_contiguous_container(const void*, const void*,
71 const void*, const void*);
72#endif
73
74namespace std _GLIBCXX_VISIBILITY(default)__attribute__ ((__visibility__ ("default")))
75{
76_GLIBCXX_BEGIN_NAMESPACE_VERSION
77_GLIBCXX_BEGIN_NAMESPACE_CONTAINER
78
79 /// See bits/stl_deque.h's _Deque_base for an explanation.
80 template<typename _Tp, typename _Alloc>
81 struct _Vector_base
82 {
83 typedef typename __gnu_cxx::__alloc_traits<_Alloc>::template
84 rebind<_Tp>::other _Tp_alloc_type;
85 typedef typename __gnu_cxx::__alloc_traits<_Tp_alloc_type>::pointer
86 pointer;
87
88 struct _Vector_impl
89 : public _Tp_alloc_type
90 {
91 pointer _M_start;
92 pointer _M_finish;
93 pointer _M_end_of_storage;
94
95 _Vector_impl()
96 : _Tp_alloc_type(), _M_start(), _M_finish(), _M_end_of_storage()
97 { }
98
99 _Vector_impl(_Tp_alloc_type const& __a) _GLIBCXX_NOEXCEPTnoexcept
100 : _Tp_alloc_type(__a), _M_start(), _M_finish(), _M_end_of_storage()
101 { }
102
103#if __cplusplus201703L >= 201103L
104 _Vector_impl(_Tp_alloc_type&& __a) noexcept
105 : _Tp_alloc_type(std::move(__a)),
106 _M_start(), _M_finish(), _M_end_of_storage()
107 { }
108#endif
109
110 void _M_swap_data(_Vector_impl& __x) _GLIBCXX_NOEXCEPTnoexcept
111 {
112 std::swap(_M_start, __x._M_start);
113 std::swap(_M_finish, __x._M_finish);
114 std::swap(_M_end_of_storage, __x._M_end_of_storage);
115 }
116
117#if _GLIBCXX_SANITIZE_STD_ALLOCATOR && _GLIBCXX_SANITIZE_VECTOR
118 template<typename = _Tp_alloc_type>
119 struct _Asan
120 {
121 typedef typename __gnu_cxx::__alloc_traits<_Tp_alloc_type>
122 ::size_type size_type;
123
124 static void _S_shrink(_Vector_impl&, size_type) { }
125 static void _S_on_dealloc(_Vector_impl&) { }
126
127 typedef _Vector_impl& _Reinit;
128
129 struct _Grow
130 {
131 _Grow(_Vector_impl&, size_type) { }
132 void _M_grew(size_type) { }
133 };
134 };
135
136 // Enable ASan annotations for memory obtained from std::allocator.
137 template<typename _Up>
138 struct _Asan<allocator<_Up> >
139 {
140 typedef typename __gnu_cxx::__alloc_traits<_Tp_alloc_type>
141 ::size_type size_type;
142
143 // Adjust ASan annotation for [_M_start, _M_end_of_storage) to
144 // mark end of valid region as __curr instead of __prev.
145 static void
146 _S_adjust(_Vector_impl& __impl, pointer __prev, pointer __curr)
147 {
148 __sanitizer_annotate_contiguous_container(__impl._M_start,
149 __impl._M_end_of_storage, __prev, __curr);
150 }
151
152 static void
153 _S_grow(_Vector_impl& __impl, size_type __n)
154 { _S_adjust(__impl, __impl._M_finish, __impl._M_finish + __n); }
155
156 static void
157 _S_shrink(_Vector_impl& __impl, size_type __n)
158 { _S_adjust(__impl, __impl._M_finish + __n, __impl._M_finish); }
159
160 static void
161 _S_on_dealloc(_Vector_impl& __impl)
162 {
163 if (__impl._M_start)
164 _S_adjust(__impl, __impl._M_finish, __impl._M_end_of_storage);
165 }
166
167 // Used on reallocation to tell ASan unused capacity is invalid.
168 struct _Reinit
169 {
170 explicit _Reinit(_Vector_impl& __impl) : _M_impl(__impl)
171 {
172 // Mark unused capacity as valid again before deallocating it.
173 _S_on_dealloc(_M_impl);
174 }
175
176 ~_Reinit()
177 {
178 // Mark unused capacity as invalid after reallocation.
179 if (_M_impl._M_start)
180 _S_adjust(_M_impl, _M_impl._M_end_of_storage,
181 _M_impl._M_finish);
182 }
183
184 _Vector_impl& _M_impl;
185
186#if __cplusplus201703L >= 201103L
187 _Reinit(const _Reinit&) = delete;
188 _Reinit& operator=(const _Reinit&) = delete;
189#endif
190 };
191
192 // Tell ASan when unused capacity is initialized to be valid.
193 struct _Grow
194 {
195 _Grow(_Vector_impl& __impl, size_type __n)
196 : _M_impl(__impl), _M_n(__n)
197 { _S_grow(_M_impl, __n); }
198
199 ~_Grow() { if (_M_n) _S_shrink(_M_impl, _M_n); }
200
201 void _M_grew(size_type __n) { _M_n -= __n; }
202
203#if __cplusplus201703L >= 201103L
204 _Grow(const _Grow&) = delete;
205 _Grow& operator=(const _Grow&) = delete;
206#endif
207 private:
208 _Vector_impl& _M_impl;
209 size_type _M_n;
210 };
211 };
212
213#define _GLIBCXX_ASAN_ANNOTATE_REINIT \
214 typename _Base::_Vector_impl::template _Asan<>::_Reinit const \
215 __attribute__((__unused__)) __reinit_guard(this->_M_impl)
216#define _GLIBCXX_ASAN_ANNOTATE_GROW(n) \
217 typename _Base::_Vector_impl::template _Asan<>::_Grow \
218 __attribute__((__unused__)) __grow_guard(this->_M_impl, (n))
219#define _GLIBCXX_ASAN_ANNOTATE_GREW(n) __grow_guard._M_grew(n)
220#define _GLIBCXX_ASAN_ANNOTATE_SHRINK(n) \
221 _Base::_Vector_impl::template _Asan<>::_S_shrink(this->_M_impl, n)
222#define _GLIBCXX_ASAN_ANNOTATE_BEFORE_DEALLOC \
223 _Base::_Vector_impl::template _Asan<>::_S_on_dealloc(this->_M_impl)
224#else // ! (_GLIBCXX_SANITIZE_STD_ALLOCATOR && _GLIBCXX_SANITIZE_VECTOR)
225#define _GLIBCXX_ASAN_ANNOTATE_REINIT
226#define _GLIBCXX_ASAN_ANNOTATE_GROW(n)
227#define _GLIBCXX_ASAN_ANNOTATE_GREW(n)
228#define _GLIBCXX_ASAN_ANNOTATE_SHRINK(n)
229#define _GLIBCXX_ASAN_ANNOTATE_BEFORE_DEALLOC
230#endif // _GLIBCXX_SANITIZE_STD_ALLOCATOR && _GLIBCXX_SANITIZE_VECTOR
231 };
232
233 public:
234 typedef _Alloc allocator_type;
235
236 _Tp_alloc_type&
237 _M_get_Tp_allocator() _GLIBCXX_NOEXCEPTnoexcept
238 { return *static_cast<_Tp_alloc_type*>(&this->_M_impl); }
239
240 const _Tp_alloc_type&
241 _M_get_Tp_allocator() const _GLIBCXX_NOEXCEPTnoexcept
242 { return *static_cast<const _Tp_alloc_type*>(&this->_M_impl); }
243
244 allocator_type
245 get_allocator() const _GLIBCXX_NOEXCEPTnoexcept
246 { return allocator_type(_M_get_Tp_allocator()); }
247
248 _Vector_base()
249 : _M_impl() { }
250
251 _Vector_base(const allocator_type& __a) _GLIBCXX_NOEXCEPTnoexcept
252 : _M_impl(__a) { }
253
254 _Vector_base(size_t __n)
255 : _M_impl()
256 { _M_create_storage(__n); }
257
258 _Vector_base(size_t __n, const allocator_type& __a)
259 : _M_impl(__a)
260 { _M_create_storage(__n); }
261
262#if __cplusplus201703L >= 201103L
263 _Vector_base(_Tp_alloc_type&& __a) noexcept
264 : _M_impl(std::move(__a)) { }
265
266 _Vector_base(_Vector_base&& __x) noexcept
267 : _M_impl(std::move(__x._M_get_Tp_allocator()))
268 { this->_M_impl._M_swap_data(__x._M_impl); }
269
270 _Vector_base(_Vector_base&& __x, const allocator_type& __a)
271 : _M_impl(__a)
272 {
273 if (__x.get_allocator() == __a)
274 this->_M_impl._M_swap_data(__x._M_impl);
275 else
276 {
277 size_t __n = __x._M_impl._M_finish - __x._M_impl._M_start;
278 _M_create_storage(__n);
279 }
280 }
281#endif
282
283 ~_Vector_base() _GLIBCXX_NOEXCEPTnoexcept
284 {
285 _M_deallocate(_M_impl._M_start,
286 _M_impl._M_end_of_storage - _M_impl._M_start);
287 }
288
289 public:
290 _Vector_impl _M_impl;
291
292 pointer
293 _M_allocate(size_t __n)
294 {
295 typedef __gnu_cxx::__alloc_traits<_Tp_alloc_type> _Tr;
296 return __n != 0 ? _Tr::allocate(_M_impl, __n) : pointer();
297 }
298
299 void
300 _M_deallocate(pointer __p, size_t __n)
301 {
302 typedef __gnu_cxx::__alloc_traits<_Tp_alloc_type> _Tr;
303 if (__p)
304 _Tr::deallocate(_M_impl, __p, __n);
305 }
306
307 private:
308 void
309 _M_create_storage(size_t __n)
310 {
311 this->_M_impl._M_start = this->_M_allocate(__n);
312 this->_M_impl._M_finish = this->_M_impl._M_start;
313 this->_M_impl._M_end_of_storage = this->_M_impl._M_start + __n;
314 }
315 };
316
317 /**
318 * @brief A standard container which offers fixed time access to
319 * individual elements in any order.
320 *
321 * @ingroup sequences
322 *
323 * @tparam _Tp Type of element.
324 * @tparam _Alloc Allocator type, defaults to allocator<_Tp>.
325 *
326 * Meets the requirements of a <a href="tables.html#65">container</a>, a
327 * <a href="tables.html#66">reversible container</a>, and a
328 * <a href="tables.html#67">sequence</a>, including the
329 * <a href="tables.html#68">optional sequence requirements</a> with the
330 * %exception of @c push_front and @c pop_front.
331 *
332 * In some terminology a %vector can be described as a dynamic
333 * C-style array, it offers fast and efficient access to individual
334 * elements in any order and saves the user from worrying about
335 * memory and size allocation. Subscripting ( @c [] ) access is
336 * also provided as with C-style arrays.
337 */
338 template<typename _Tp, typename _Alloc = std::allocator<_Tp> >
339 class vector : protected _Vector_base<_Tp, _Alloc>
340 {
341#ifdef _GLIBCXX_CONCEPT_CHECKS
342 // Concept requirements.
343 typedef typename _Alloc::value_type _Alloc_value_type;
344# if __cplusplus201703L < 201103L
345 __glibcxx_class_requires(_Tp, _SGIAssignableConcept)
346# endif
347 __glibcxx_class_requires2(_Tp, _Alloc_value_type, _SameTypeConcept)
348#endif
349
350#if __cplusplus201703L >= 201103L
351 static_assert(is_same<typename remove_cv<_Tp>::type, _Tp>::value,
352 "std::vector must have a non-const, non-volatile value_type");
353# ifdef __STRICT_ANSI__
354 static_assert(is_same<typename _Alloc::value_type, _Tp>::value,
355 "std::vector must have the same value_type as its allocator");
356# endif
357#endif
358
359 typedef _Vector_base<_Tp, _Alloc> _Base;
360 typedef typename _Base::_Tp_alloc_type _Tp_alloc_type;
361 typedef __gnu_cxx::__alloc_traits<_Tp_alloc_type> _Alloc_traits;
362
363 public:
364 typedef _Tp value_type;
365 typedef typename _Base::pointer pointer;
366 typedef typename _Alloc_traits::const_pointer const_pointer;
367 typedef typename _Alloc_traits::reference reference;
368 typedef typename _Alloc_traits::const_reference const_reference;
369 typedef __gnu_cxx::__normal_iterator<pointer, vector> iterator;
370 typedef __gnu_cxx::__normal_iterator<const_pointer, vector>
371 const_iterator;
372 typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
373 typedef std::reverse_iterator<iterator> reverse_iterator;
374 typedef size_t size_type;
375 typedef ptrdiff_t difference_type;
376 typedef _Alloc allocator_type;
377
378 protected:
379 using _Base::_M_allocate;
380 using _Base::_M_deallocate;
381 using _Base::_M_impl;
382 using _Base::_M_get_Tp_allocator;
383
384 public:
385 // [23.2.4.1] construct/copy/destroy
386 // (assign() and get_allocator() are also listed in this section)
387
388 /**
389 * @brief Creates a %vector with no elements.
390 */
391 vector()
392#if __cplusplus201703L >= 201103L
393 noexcept(is_nothrow_default_constructible<_Alloc>::value)
394#endif
395 : _Base() { }
396
397 /**
398 * @brief Creates a %vector with no elements.
399 * @param __a An allocator object.
400 */
401 explicit
402 vector(const allocator_type& __a) _GLIBCXX_NOEXCEPTnoexcept
403 : _Base(__a) { }
404
405#if __cplusplus201703L >= 201103L
406 /**
407 * @brief Creates a %vector with default constructed elements.
408 * @param __n The number of elements to initially create.
409 * @param __a An allocator.
410 *
411 * This constructor fills the %vector with @a __n default
412 * constructed elements.
413 */
414 explicit
415 vector(size_type __n, const allocator_type& __a = allocator_type())
416 : _Base(__n, __a)
417 { _M_default_initialize(__n); }
418
419 /**
420 * @brief Creates a %vector with copies of an exemplar element.
421 * @param __n The number of elements to initially create.
422 * @param __value An element to copy.
423 * @param __a An allocator.
424 *
425 * This constructor fills the %vector with @a __n copies of @a __value.
426 */
427 vector(size_type __n, const value_type& __value,
428 const allocator_type& __a = allocator_type())
429 : _Base(__n, __a)
430 { _M_fill_initialize(__n, __value); }
431#else
432 /**
433 * @brief Creates a %vector with copies of an exemplar element.
434 * @param __n The number of elements to initially create.
435 * @param __value An element to copy.
436 * @param __a An allocator.
437 *
438 * This constructor fills the %vector with @a __n copies of @a __value.
439 */
440 explicit
441 vector(size_type __n, const value_type& __value = value_type(),
442 const allocator_type& __a = allocator_type())
443 : _Base(__n, __a)
444 { _M_fill_initialize(__n, __value); }
445#endif
446
447 /**
448 * @brief %Vector copy constructor.
449 * @param __x A %vector of identical element and allocator types.
450 *
451 * All the elements of @a __x are copied, but any unused capacity in
452 * @a __x will not be copied
453 * (i.e. capacity() == size() in the new %vector).
454 *
455 * The newly-created %vector uses a copy of the allocator object used
456 * by @a __x (unless the allocator traits dictate a different object).
457 */
458 vector(const vector& __x)
459 : _Base(__x.size(),
460 _Alloc_traits::_S_select_on_copy(__x._M_get_Tp_allocator()))
461 {
462 this->_M_impl._M_finish =
463 std::__uninitialized_copy_a(__x.begin(), __x.end(),
464 this->_M_impl._M_start,
465 _M_get_Tp_allocator());
466 }
467
468#if __cplusplus201703L >= 201103L
469 /**
470 * @brief %Vector move constructor.
471 * @param __x A %vector of identical element and allocator types.
472 *
473 * The newly-created %vector contains the exact contents of @a __x.
474 * The contents of @a __x are a valid, but unspecified %vector.
475 */
476 vector(vector&& __x) noexcept
477 : _Base(std::move(__x)) { }
478
479 /// Copy constructor with alternative allocator
480 vector(const vector& __x, const allocator_type& __a)
481 : _Base(__x.size(), __a)
482 {
483 this->_M_impl._M_finish =
484 std::__uninitialized_copy_a(__x.begin(), __x.end(),
485 this->_M_impl._M_start,
486 _M_get_Tp_allocator());
487 }
488
489 /// Move constructor with alternative allocator
490 vector(vector&& __rv, const allocator_type& __m)
491 noexcept(_Alloc_traits::_S_always_equal())
492 : _Base(std::move(__rv), __m)
493 {
494 if (__rv.get_allocator() != __m)
495 {
496 this->_M_impl._M_finish =
497 std::__uninitialized_move_a(__rv.begin(), __rv.end(),
498 this->_M_impl._M_start,
499 _M_get_Tp_allocator());
500 __rv.clear();
501 }
502 }
503
504 /**
505 * @brief Builds a %vector from an initializer list.
506 * @param __l An initializer_list.
507 * @param __a An allocator.
508 *
509 * Create a %vector consisting of copies of the elements in the
510 * initializer_list @a __l.
511 *
512 * This will call the element type's copy constructor N times
513 * (where N is @a __l.size()) and do no memory reallocation.
514 */
515 vector(initializer_list<value_type> __l,
516 const allocator_type& __a = allocator_type())
517 : _Base(__a)
518 {
519 _M_range_initialize(__l.begin(), __l.end(),
520 random_access_iterator_tag());
521 }
522#endif
523
524 /**
525 * @brief Builds a %vector from a range.
526 * @param __first An input iterator.
527 * @param __last An input iterator.
528 * @param __a An allocator.
529 *
530 * Create a %vector consisting of copies of the elements from
531 * [first,last).
532 *
533 * If the iterators are forward, bidirectional, or
534 * random-access, then this will call the elements' copy
535 * constructor N times (where N is distance(first,last)) and do
536 * no memory reallocation. But if only input iterators are
537 * used, then this will do at most 2N calls to the copy
538 * constructor, and logN memory reallocations.
539 */
540#if __cplusplus201703L >= 201103L
541 template<typename _InputIterator,
542 typename = std::_RequireInputIter<_InputIterator>>
543 vector(_InputIterator __first, _InputIterator __last,
544 const allocator_type& __a = allocator_type())
545 : _Base(__a)
546 { _M_initialize_dispatch(__first, __last, __false_type()); }
547#else
548 template<typename _InputIterator>
549 vector(_InputIterator __first, _InputIterator __last,
550 const allocator_type& __a = allocator_type())
551 : _Base(__a)
552 {
553 // Check whether it's an integral type. If so, it's not an iterator.
554 typedef typename std::__is_integer<_InputIterator>::__type _Integral;
555 _M_initialize_dispatch(__first, __last, _Integral());
556 }
557#endif
558
559 /**
560 * The dtor only erases the elements, and note that if the
561 * elements themselves are pointers, the pointed-to memory is
562 * not touched in any way. Managing the pointer is the user's
563 * responsibility.
564 */
565 ~vector() _GLIBCXX_NOEXCEPTnoexcept
566 {
567 std::_Destroy(this->_M_impl._M_start, this->_M_impl._M_finish,
568 _M_get_Tp_allocator());
569 _GLIBCXX_ASAN_ANNOTATE_BEFORE_DEALLOC;
570 }
571
572 /**
573 * @brief %Vector assignment operator.
574 * @param __x A %vector of identical element and allocator types.
575 *
576 * All the elements of @a __x are copied, but any unused capacity in
577 * @a __x will not be copied.
578 *
579 * Whether the allocator is copied depends on the allocator traits.
580 */
581 vector&
582 operator=(const vector& __x);
583
584#if __cplusplus201703L >= 201103L
585 /**
586 * @brief %Vector move assignment operator.
587 * @param __x A %vector of identical element and allocator types.
588 *
589 * The contents of @a __x are moved into this %vector (without copying,
590 * if the allocators permit it).
591 * Afterwards @a __x is a valid, but unspecified %vector.
592 *
593 * Whether the allocator is moved depends on the allocator traits.
594 */
595 vector&
596 operator=(vector&& __x) noexcept(_Alloc_traits::_S_nothrow_move())
597 {
598 constexpr bool __move_storage =
599 _Alloc_traits::_S_propagate_on_move_assign()
600 || _Alloc_traits::_S_always_equal();
601 _M_move_assign(std::move(__x), __bool_constant<__move_storage>());
602 return *this;
603 }
604
605 /**
606 * @brief %Vector list assignment operator.
607 * @param __l An initializer_list.
608 *
609 * This function fills a %vector with copies of the elements in the
610 * initializer list @a __l.
611 *
612 * Note that the assignment completely changes the %vector and
613 * that the resulting %vector's size is the same as the number
614 * of elements assigned.
615 */
616 vector&
617 operator=(initializer_list<value_type> __l)
618 {
619 this->_M_assign_aux(__l.begin(), __l.end(),
620 random_access_iterator_tag());
621 return *this;
622 }
623#endif
624
625 /**
626 * @brief Assigns a given value to a %vector.
627 * @param __n Number of elements to be assigned.
628 * @param __val Value to be assigned.
629 *
630 * This function fills a %vector with @a __n copies of the given
631 * value. Note that the assignment completely changes the
632 * %vector and that the resulting %vector's size is the same as
633 * the number of elements assigned.
634 */
635 void
636 assign(size_type __n, const value_type& __val)
637 { _M_fill_assign(__n, __val); }
638
639 /**
640 * @brief Assigns a range to a %vector.
641 * @param __first An input iterator.
642 * @param __last An input iterator.
643 *
644 * This function fills a %vector with copies of the elements in the
645 * range [__first,__last).
646 *
647 * Note that the assignment completely changes the %vector and
648 * that the resulting %vector's size is the same as the number
649 * of elements assigned.
650 */
651#if __cplusplus201703L >= 201103L
652 template<typename _InputIterator,
653 typename = std::_RequireInputIter<_InputIterator>>
654 void
655 assign(_InputIterator __first, _InputIterator __last)
656 { _M_assign_dispatch(__first, __last, __false_type()); }
657#else
658 template<typename _InputIterator>
659 void
660 assign(_InputIterator __first, _InputIterator __last)
661 {
662 // Check whether it's an integral type. If so, it's not an iterator.
663 typedef typename std::__is_integer<_InputIterator>::__type _Integral;
664 _M_assign_dispatch(__first, __last, _Integral());
665 }
666#endif
667
668#if __cplusplus201703L >= 201103L
669 /**
670 * @brief Assigns an initializer list to a %vector.
671 * @param __l An initializer_list.
672 *
673 * This function fills a %vector with copies of the elements in the
674 * initializer list @a __l.
675 *
676 * Note that the assignment completely changes the %vector and
677 * that the resulting %vector's size is the same as the number
678 * of elements assigned.
679 */
680 void
681 assign(initializer_list<value_type> __l)
682 {
683 this->_M_assign_aux(__l.begin(), __l.end(),
684 random_access_iterator_tag());
685 }
686#endif
687
688 /// Get a copy of the memory allocation object.
689 using _Base::get_allocator;
690
691 // iterators
692 /**
693 * Returns a read/write iterator that points to the first
694 * element in the %vector. Iteration is done in ordinary
695 * element order.
696 */
697 iterator
698 begin() _GLIBCXX_NOEXCEPTnoexcept
699 { return iterator(this->_M_impl._M_start); }
700
701 /**
702 * Returns a read-only (constant) iterator that points to the
703 * first element in the %vector. Iteration is done in ordinary
704 * element order.
705 */
706 const_iterator
707 begin() const _GLIBCXX_NOEXCEPTnoexcept
708 { return const_iterator(this->_M_impl._M_start); }
709
710 /**
711 * Returns a read/write iterator that points one past the last
712 * element in the %vector. Iteration is done in ordinary
713 * element order.
714 */
715 iterator
716 end() _GLIBCXX_NOEXCEPTnoexcept
717 { return iterator(this->_M_impl._M_finish); }
718
719 /**
720 * Returns a read-only (constant) iterator that points one past
721 * the last element in the %vector. Iteration is done in
722 * ordinary element order.
723 */
724 const_iterator
725 end() const _GLIBCXX_NOEXCEPTnoexcept
726 { return const_iterator(this->_M_impl._M_finish); }
727
728 /**
729 * Returns a read/write reverse iterator that points to the
730 * last element in the %vector. Iteration is done in reverse
731 * element order.
732 */
733 reverse_iterator
734 rbegin() _GLIBCXX_NOEXCEPTnoexcept
735 { return reverse_iterator(end()); }
736
737 /**
738 * Returns a read-only (constant) reverse iterator that points
739 * to the last element in the %vector. Iteration is done in
740 * reverse element order.
741 */
742 const_reverse_iterator
743 rbegin() const _GLIBCXX_NOEXCEPTnoexcept
744 { return const_reverse_iterator(end()); }
745
746 /**
747 * Returns a read/write reverse iterator that points to one
748 * before the first element in the %vector. Iteration is done
749 * in reverse element order.
750 */
751 reverse_iterator
752 rend() _GLIBCXX_NOEXCEPTnoexcept
753 { return reverse_iterator(begin()); }
754
755 /**
756 * Returns a read-only (constant) reverse iterator that points
757 * to one before the first element in the %vector. Iteration
758 * is done in reverse element order.
759 */
760 const_reverse_iterator
761 rend() const _GLIBCXX_NOEXCEPTnoexcept
762 { return const_reverse_iterator(begin()); }
763
764#if __cplusplus201703L >= 201103L
765 /**
766 * Returns a read-only (constant) iterator that points to the
767 * first element in the %vector. Iteration is done in ordinary
768 * element order.
769 */
770 const_iterator
771 cbegin() const noexcept
772 { return const_iterator(this->_M_impl._M_start); }
773
774 /**
775 * Returns a read-only (constant) iterator that points one past
776 * the last element in the %vector. Iteration is done in
777 * ordinary element order.
778 */
779 const_iterator
780 cend() const noexcept
781 { return const_iterator(this->_M_impl._M_finish); }
782
783 /**
784 * Returns a read-only (constant) reverse iterator that points
785 * to the last element in the %vector. Iteration is done in
786 * reverse element order.
787 */
788 const_reverse_iterator
789 crbegin() const noexcept
790 { return const_reverse_iterator(end()); }
791
792 /**
793 * Returns a read-only (constant) reverse iterator that points
794 * to one before the first element in the %vector. Iteration
795 * is done in reverse element order.
796 */
797 const_reverse_iterator
798 crend() const noexcept
799 { return const_reverse_iterator(begin()); }
800#endif
801
802 // [23.2.4.2] capacity
803 /** Returns the number of elements in the %vector. */
804 size_type
805 size() const _GLIBCXX_NOEXCEPTnoexcept
806 { return size_type(this->_M_impl._M_finish - this->_M_impl._M_start); }
807
808 /** Returns the size() of the largest possible %vector. */
809 size_type
810 max_size() const _GLIBCXX_NOEXCEPTnoexcept
811 { return _Alloc_traits::max_size(_M_get_Tp_allocator()); }
812
813#if __cplusplus201703L >= 201103L
814 /**
815 * @brief Resizes the %vector to the specified number of elements.
816 * @param __new_size Number of elements the %vector should contain.
817 *
818 * This function will %resize the %vector to the specified
819 * number of elements. If the number is smaller than the
820 * %vector's current size the %vector is truncated, otherwise
821 * default constructed elements are appended.
822 */
823 void
824 resize(size_type __new_size)
825 {
826 if (__new_size > size())
827 _M_default_append(__new_size - size());
828 else if (__new_size < size())
829 _M_erase_at_end(this->_M_impl._M_start + __new_size);
830 }
831
832 /**
833 * @brief Resizes the %vector to the specified number of elements.
834 * @param __new_size Number of elements the %vector should contain.
835 * @param __x Data with which new elements should be populated.
836 *
837 * This function will %resize the %vector to the specified
838 * number of elements. If the number is smaller than the
839 * %vector's current size the %vector is truncated, otherwise
840 * the %vector is extended and new elements are populated with
841 * given data.
842 */
843 void
844 resize(size_type __new_size, const value_type& __x)
845 {
846 if (__new_size > size())
847 _M_fill_insert(end(), __new_size - size(), __x);
848 else if (__new_size < size())
849 _M_erase_at_end(this->_M_impl._M_start + __new_size);
850 }
851#else
852 /**
853 * @brief Resizes the %vector to the specified number of elements.
854 * @param __new_size Number of elements the %vector should contain.
855 * @param __x Data with which new elements should be populated.
856 *
857 * This function will %resize the %vector to the specified
858 * number of elements. If the number is smaller than the
859 * %vector's current size the %vector is truncated, otherwise
860 * the %vector is extended and new elements are populated with
861 * given data.
862 */
863 void
864 resize(size_type __new_size, value_type __x = value_type())
865 {
866 if (__new_size > size())
867 _M_fill_insert(end(), __new_size - size(), __x);
868 else if (__new_size < size())
869 _M_erase_at_end(this->_M_impl._M_start + __new_size);
870 }
871#endif
872
873#if __cplusplus201703L >= 201103L
874 /** A non-binding request to reduce capacity() to size(). */
875 void
876 shrink_to_fit()
877 { _M_shrink_to_fit(); }
878#endif
879
880 /**
881 * Returns the total number of elements that the %vector can
882 * hold before needing to allocate more memory.
883 */
884 size_type
885 capacity() const _GLIBCXX_NOEXCEPTnoexcept
886 { return size_type(this->_M_impl._M_end_of_storage
887 - this->_M_impl._M_start); }
888
889 /**
890 * Returns true if the %vector is empty. (Thus begin() would
891 * equal end().)
892 */
893 bool
894 empty() const _GLIBCXX_NOEXCEPTnoexcept
895 { return begin() == end(); }
896
897 /**
898 * @brief Attempt to preallocate enough memory for specified number of
899 * elements.
900 * @param __n Number of elements required.
901 * @throw std::length_error If @a n exceeds @c max_size().
902 *
903 * This function attempts to reserve enough memory for the
904 * %vector to hold the specified number of elements. If the
905 * number requested is more than max_size(), length_error is
906 * thrown.
907 *
908 * The advantage of this function is that if optimal code is a
909 * necessity and the user can determine the number of elements
910 * that will be required, the user can reserve the memory in
911 * %advance, and thus prevent a possible reallocation of memory
912 * and copying of %vector data.
913 */
914 void
915 reserve(size_type __n);
916
917 // element access
918 /**
919 * @brief Subscript access to the data contained in the %vector.
920 * @param __n The index of the element for which data should be
921 * accessed.
922 * @return Read/write reference to data.
923 *
924 * This operator allows for easy, array-style, data access.
925 * Note that data access with this operator is unchecked and
926 * out_of_range lookups are not defined. (For checked lookups
927 * see at().)
928 */
929 reference
930 operator[](size_type __n) _GLIBCXX_NOEXCEPTnoexcept
931 {
932 __glibcxx_requires_subscript(__n);
933 return *(this->_M_impl._M_start + __n);
934 }
935
936 /**
937 * @brief Subscript access to the data contained in the %vector.
938 * @param __n The index of the element for which data should be
939 * accessed.
940 * @return Read-only (constant) reference to data.
941 *
942 * This operator allows for easy, array-style, data access.
943 * Note that data access with this operator is unchecked and
944 * out_of_range lookups are not defined. (For checked lookups
945 * see at().)
946 */
947 const_reference
948 operator[](size_type __n) const _GLIBCXX_NOEXCEPTnoexcept
949 {
950 __glibcxx_requires_subscript(__n);
951 return *(this->_M_impl._M_start + __n);
952 }
953
954 protected:
955 /// Safety check used only from at().
956 void
957 _M_range_check(size_type __n) const
958 {
959 if (__n >= this->size())
960 __throw_out_of_range_fmt(__N("vector::_M_range_check: __n "("vector::_M_range_check: __n " "(which is %zu) >= this->size() "
"(which is %zu)")
961 "(which is %zu) >= this->size() "("vector::_M_range_check: __n " "(which is %zu) >= this->size() "
"(which is %zu)")
962 "(which is %zu)")("vector::_M_range_check: __n " "(which is %zu) >= this->size() "
"(which is %zu)")
,
963 __n, this->size());
964 }
965
966 public:
967 /**
968 * @brief Provides access to the data contained in the %vector.
969 * @param __n The index of the element for which data should be
970 * accessed.
971 * @return Read/write reference to data.
972 * @throw std::out_of_range If @a __n is an invalid index.
973 *
974 * This function provides for safer data access. The parameter
975 * is first checked that it is in the range of the vector. The
976 * function throws out_of_range if the check fails.
977 */
978 reference
979 at(size_type __n)
980 {
981 _M_range_check(__n);
982 return (*this)[__n];
983 }
984
985 /**
986 * @brief Provides access to the data contained in the %vector.
987 * @param __n The index of the element for which data should be
988 * accessed.
989 * @return Read-only (constant) reference to data.
990 * @throw std::out_of_range If @a __n is an invalid index.
991 *
992 * This function provides for safer data access. The parameter
993 * is first checked that it is in the range of the vector. The
994 * function throws out_of_range if the check fails.
995 */
996 const_reference
997 at(size_type __n) const
998 {
999 _M_range_check(__n);
1000 return (*this)[__n];
1001 }
1002
1003 /**
1004 * Returns a read/write reference to the data at the first
1005 * element of the %vector.
1006 */
1007 reference
1008 front() _GLIBCXX_NOEXCEPTnoexcept
1009 {
1010 __glibcxx_requires_nonempty();
1011 return *begin();
1012 }
1013
1014 /**
1015 * Returns a read-only (constant) reference to the data at the first
1016 * element of the %vector.
1017 */
1018 const_reference
1019 front() const _GLIBCXX_NOEXCEPTnoexcept
1020 {
1021 __glibcxx_requires_nonempty();
1022 return *begin();
1023 }
1024
1025 /**
1026 * Returns a read/write reference to the data at the last
1027 * element of the %vector.
1028 */
1029 reference
1030 back() _GLIBCXX_NOEXCEPTnoexcept
1031 {
1032 __glibcxx_requires_nonempty();
1033 return *(end() - 1);
1034 }
1035
1036 /**
1037 * Returns a read-only (constant) reference to the data at the
1038 * last element of the %vector.
1039 */
1040 const_reference
1041 back() const _GLIBCXX_NOEXCEPTnoexcept
1042 {
1043 __glibcxx_requires_nonempty();
1044 return *(end() - 1);
1045 }
1046
1047 // _GLIBCXX_RESOLVE_LIB_DEFECTS
1048 // DR 464. Suggestion for new member functions in standard containers.
1049 // data access
1050 /**
1051 * Returns a pointer such that [data(), data() + size()) is a valid
1052 * range. For a non-empty %vector, data() == &front().
1053 */
1054 _Tp*
1055 data() _GLIBCXX_NOEXCEPTnoexcept
1056 { return _M_data_ptr(this->_M_impl._M_start); }
1057
1058 const _Tp*
1059 data() const _GLIBCXX_NOEXCEPTnoexcept
1060 { return _M_data_ptr(this->_M_impl._M_start); }
1061
1062 // [23.2.4.3] modifiers
1063 /**
1064 * @brief Add data to the end of the %vector.
1065 * @param __x Data to be added.
1066 *
1067 * This is a typical stack operation. The function creates an
1068 * element at the end of the %vector and assigns the given data
1069 * to it. Due to the nature of a %vector this operation can be
1070 * done in constant time if the %vector has preallocated space
1071 * available.
1072 */
1073 void
1074 push_back(const value_type& __x)
1075 {
1076 if (this->_M_impl._M_finish != this->_M_impl._M_end_of_storage)
1077 {
1078 _GLIBCXX_ASAN_ANNOTATE_GROW(1);
1079 _Alloc_traits::construct(this->_M_impl, this->_M_impl._M_finish,
1080 __x);
1081 ++this->_M_impl._M_finish;
1082 _GLIBCXX_ASAN_ANNOTATE_GREW(1);
1083 }
1084 else
1085 _M_realloc_insert(end(), __x);
1086 }
1087
1088#if __cplusplus201703L >= 201103L
1089 void
1090 push_back(value_type&& __x)
1091 { emplace_back(std::move(__x)); }
1092
1093 template<typename... _Args>
1094#if __cplusplus201703L > 201402L
1095 reference
1096#else
1097 void
1098#endif
1099 emplace_back(_Args&&... __args);
1100#endif
1101
1102 /**
1103 * @brief Removes last element.
1104 *
1105 * This is a typical stack operation. It shrinks the %vector by one.
1106 *
1107 * Note that no data is returned, and if the last element's
1108 * data is needed, it should be retrieved before pop_back() is
1109 * called.
1110 */
1111 void
1112 pop_back() _GLIBCXX_NOEXCEPTnoexcept
1113 {
1114 __glibcxx_requires_nonempty();
1115 --this->_M_impl._M_finish;
1116 _Alloc_traits::destroy(this->_M_impl, this->_M_impl._M_finish);
1117 _GLIBCXX_ASAN_ANNOTATE_SHRINK(1);
1118 }
1119
1120#if __cplusplus201703L >= 201103L
1121 /**
1122 * @brief Inserts an object in %vector before specified iterator.
1123 * @param __position A const_iterator into the %vector.
1124 * @param __args Arguments.
1125 * @return An iterator that points to the inserted data.
1126 *
1127 * This function will insert an object of type T constructed
1128 * with T(std::forward<Args>(args)...) before the specified location.
1129 * Note that this kind of operation could be expensive for a %vector
1130 * and if it is frequently used the user should consider using
1131 * std::list.
1132 */
1133 template<typename... _Args>
1134 iterator
1135 emplace(const_iterator __position, _Args&&... __args)
1136 { return _M_emplace_aux(__position, std::forward<_Args>(__args)...); }
1137
1138 /**
1139 * @brief Inserts given value into %vector before specified iterator.
1140 * @param __position A const_iterator into the %vector.
1141 * @param __x Data to be inserted.
1142 * @return An iterator that points to the inserted data.
1143 *
1144 * This function will insert a copy of the given value before
1145 * the specified location. Note that this kind of operation
1146 * could be expensive for a %vector and if it is frequently
1147 * used the user should consider using std::list.
1148 */
1149 iterator
1150 insert(const_iterator __position, const value_type& __x);
1151#else
1152 /**
1153 * @brief Inserts given value into %vector before specified iterator.
1154 * @param __position An iterator into the %vector.
1155 * @param __x Data to be inserted.
1156 * @return An iterator that points to the inserted data.
1157 *
1158 * This function will insert a copy of the given value before
1159 * the specified location. Note that this kind of operation
1160 * could be expensive for a %vector and if it is frequently
1161 * used the user should consider using std::list.
1162 */
1163 iterator
1164 insert(iterator __position, const value_type& __x);
1165#endif
1166
1167#if __cplusplus201703L >= 201103L
1168 /**
1169 * @brief Inserts given rvalue into %vector before specified iterator.
1170 * @param __position A const_iterator into the %vector.
1171 * @param __x Data to be inserted.
1172 * @return An iterator that points to the inserted data.
1173 *
1174 * This function will insert a copy of the given rvalue before
1175 * the specified location. Note that this kind of operation
1176 * could be expensive for a %vector and if it is frequently
1177 * used the user should consider using std::list.
1178 */
1179 iterator
1180 insert(const_iterator __position, value_type&& __x)
1181 { return _M_insert_rval(__position, std::move(__x)); }
1182
1183 /**
1184 * @brief Inserts an initializer_list into the %vector.
1185 * @param __position An iterator into the %vector.
1186 * @param __l An initializer_list.
1187 *
1188 * This function will insert copies of the data in the
1189 * initializer_list @a l into the %vector before the location
1190 * specified by @a position.
1191 *
1192 * Note that this kind of operation could be expensive for a
1193 * %vector and if it is frequently used the user should
1194 * consider using std::list.
1195 */
1196 iterator
1197 insert(const_iterator __position, initializer_list<value_type> __l)
1198 {
1199 auto __offset = __position - cbegin();
1200 _M_range_insert(begin() + __offset, __l.begin(), __l.end(),
1201 std::random_access_iterator_tag());
1202 return begin() + __offset;
1203 }
1204#endif
1205
1206#if __cplusplus201703L >= 201103L
1207 /**
1208 * @brief Inserts a number of copies of given data into the %vector.
1209 * @param __position A const_iterator into the %vector.
1210 * @param __n Number of elements to be inserted.
1211 * @param __x Data to be inserted.
1212 * @return An iterator that points to the inserted data.
1213 *
1214 * This function will insert a specified number of copies of
1215 * the given data before the location specified by @a position.
1216 *
1217 * Note that this kind of operation could be expensive for a
1218 * %vector and if it is frequently used the user should
1219 * consider using std::list.
1220 */
1221 iterator
1222 insert(const_iterator __position, size_type __n, const value_type& __x)
1223 {
1224 difference_type __offset = __position - cbegin();
1225 _M_fill_insert(begin() + __offset, __n, __x);
1226 return begin() + __offset;
1227 }
1228#else
1229 /**
1230 * @brief Inserts a number of copies of given data into the %vector.
1231 * @param __position An iterator into the %vector.
1232 * @param __n Number of elements to be inserted.
1233 * @param __x Data to be inserted.
1234 *
1235 * This function will insert a specified number of copies of
1236 * the given data before the location specified by @a position.
1237 *
1238 * Note that this kind of operation could be expensive for a
1239 * %vector and if it is frequently used the user should
1240 * consider using std::list.
1241 */
1242 void
1243 insert(iterator __position, size_type __n, const value_type& __x)
1244 { _M_fill_insert(__position, __n, __x); }
1245#endif
1246
1247#if __cplusplus201703L >= 201103L
1248 /**
1249 * @brief Inserts a range into the %vector.
1250 * @param __position A const_iterator into the %vector.
1251 * @param __first An input iterator.
1252 * @param __last An input iterator.
1253 * @return An iterator that points to the inserted data.
1254 *
1255 * This function will insert copies of the data in the range
1256 * [__first,__last) into the %vector before the location specified
1257 * by @a pos.
1258 *
1259 * Note that this kind of operation could be expensive for a
1260 * %vector and if it is frequently used the user should
1261 * consider using std::list.
1262 */
1263 template<typename _InputIterator,
1264 typename = std::_RequireInputIter<_InputIterator>>
1265 iterator
1266 insert(const_iterator __position, _InputIterator __first,
1267 _InputIterator __last)
1268 {
1269 difference_type __offset = __position - cbegin();
1270 _M_insert_dispatch(begin() + __offset,
1271 __first, __last, __false_type());
1272 return begin() + __offset;
1273 }
1274#else
1275 /**
1276 * @brief Inserts a range into the %vector.
1277 * @param __position An iterator into the %vector.
1278 * @param __first An input iterator.
1279 * @param __last An input iterator.
1280 *
1281 * This function will insert copies of the data in the range
1282 * [__first,__last) into the %vector before the location specified
1283 * by @a pos.
1284 *
1285 * Note that this kind of operation could be expensive for a
1286 * %vector and if it is frequently used the user should
1287 * consider using std::list.
1288 */
1289 template<typename _InputIterator>
1290 void
1291 insert(iterator __position, _InputIterator __first,
1292 _InputIterator __last)
1293 {
1294 // Check whether it's an integral type. If so, it's not an iterator.
1295 typedef typename std::__is_integer<_InputIterator>::__type _Integral;
1296 _M_insert_dispatch(__position, __first, __last, _Integral());
1297 }
1298#endif
1299
1300 /**
1301 * @brief Remove element at given position.
1302 * @param __position Iterator pointing to element to be erased.
1303 * @return An iterator pointing to the next element (or end()).
1304 *
1305 * This function will erase the element at the given position and thus
1306 * shorten the %vector by one.
1307 *
1308 * Note This operation could be expensive and if it is
1309 * frequently used the user should consider using std::list.
1310 * The user is also cautioned that this function only erases
1311 * the element, and that if the element is itself a pointer,
1312 * the pointed-to memory is not touched in any way. Managing
1313 * the pointer is the user's responsibility.
1314 */
1315 iterator
1316#if __cplusplus201703L >= 201103L
1317 erase(const_iterator __position)
1318 { return _M_erase(begin() + (__position - cbegin())); }
1319#else
1320 erase(iterator __position)
1321 { return _M_erase(__position); }
1322#endif
1323
1324 /**
1325 * @brief Remove a range of elements.
1326 * @param __first Iterator pointing to the first element to be erased.
1327 * @param __last Iterator pointing to one past the last element to be
1328 * erased.
1329 * @return An iterator pointing to the element pointed to by @a __last
1330 * prior to erasing (or end()).
1331 *
1332 * This function will erase the elements in the range
1333 * [__first,__last) and shorten the %vector accordingly.
1334 *
1335 * Note This operation could be expensive and if it is
1336 * frequently used the user should consider using std::list.
1337 * The user is also cautioned that this function only erases
1338 * the elements, and that if the elements themselves are
1339 * pointers, the pointed-to memory is not touched in any way.
1340 * Managing the pointer is the user's responsibility.
1341 */
1342 iterator
1343#if __cplusplus201703L >= 201103L
1344 erase(const_iterator __first, const_iterator __last)
1345 {
1346 const auto __beg = begin();
1347 const auto __cbeg = cbegin();
1348 return _M_erase(__beg + (__first - __cbeg), __beg + (__last - __cbeg));
1349 }
1350#else
1351 erase(iterator __first, iterator __last)
1352 { return _M_erase(__first, __last); }
1353#endif
1354
1355 /**
1356 * @brief Swaps data with another %vector.
1357 * @param __x A %vector of the same element and allocator types.
1358 *
1359 * This exchanges the elements between two vectors in constant time.
1360 * (Three pointers, so it should be quite fast.)
1361 * Note that the global std::swap() function is specialized such that
1362 * std::swap(v1,v2) will feed to this function.
1363 *
1364 * Whether the allocators are swapped depends on the allocator traits.
1365 */
1366 void
1367 swap(vector& __x) _GLIBCXX_NOEXCEPTnoexcept
1368 {
1369#if __cplusplus201703L >= 201103L
1370 __glibcxx_assert(_Alloc_traits::propagate_on_container_swap::value
1371 || _M_get_Tp_allocator() == __x._M_get_Tp_allocator());
1372#endif
1373 this->_M_impl._M_swap_data(__x._M_impl);
1374 _Alloc_traits::_S_on_swap(_M_get_Tp_allocator(),
1375 __x._M_get_Tp_allocator());
1376 }
1377
1378 /**
1379 * Erases all the elements. Note that this function only erases the
1380 * elements, and that if the elements themselves are pointers, the
1381 * pointed-to memory is not touched in any way. Managing the pointer is
1382 * the user's responsibility.
1383 */
1384 void
1385 clear() _GLIBCXX_NOEXCEPTnoexcept
1386 { _M_erase_at_end(this->_M_impl._M_start); }
1387
1388 protected:
1389 /**
1390 * Memory expansion handler. Uses the member allocation function to
1391 * obtain @a n bytes of memory, and then copies [first,last) into it.
1392 */
1393 template<typename _ForwardIterator>
1394 pointer
1395 _M_allocate_and_copy(size_type __n,
1396 _ForwardIterator __first, _ForwardIterator __last)
1397 {
1398 pointer __result = this->_M_allocate(__n);
1399 __tryif (true)
1400 {
1401 std::__uninitialized_copy_a(__first, __last, __result,
1402 _M_get_Tp_allocator());
1403 return __result;
1404 }
1405 __catch(...)if (false)
1406 {
1407 _M_deallocate(__result, __n);
1408 __throw_exception_again;
1409 }
1410 }
1411
1412
1413 // Internal constructor functions follow.
1414
1415 // Called by the range constructor to implement [23.1.1]/9
1416
1417 // _GLIBCXX_RESOLVE_LIB_DEFECTS
1418 // 438. Ambiguity in the "do the right thing" clause
1419 template<typename _Integer>
1420 void
1421 _M_initialize_dispatch(_Integer __n, _Integer __value, __true_type)
1422 {
1423 this->_M_impl._M_start = _M_allocate(static_cast<size_type>(__n));
1424 this->_M_impl._M_end_of_storage =
1425 this->_M_impl._M_start + static_cast<size_type>(__n);
1426 _M_fill_initialize(static_cast<size_type>(__n), __value);
1427 }
1428
1429 // Called by the range constructor to implement [23.1.1]/9
1430 template<typename _InputIterator>
1431 void
1432 _M_initialize_dispatch(_InputIterator __first, _InputIterator __last,
1433 __false_type)
1434 {
1435 typedef typename std::iterator_traits<_InputIterator>::
1436 iterator_category _IterCategory;
1437 _M_range_initialize(__first, __last, _IterCategory());
1438 }
1439
1440 // Called by the second initialize_dispatch above
1441 template<typename _InputIterator>
1442 void
1443 _M_range_initialize(_InputIterator __first, _InputIterator __last,
1444 std::input_iterator_tag)
1445 {
1446 __tryif (true) {
1447 for (; __first != __last; ++__first)
1448#if __cplusplus201703L >= 201103L
1449 emplace_back(*__first);
1450#else
1451 push_back(*__first);
1452#endif
1453 } __catch(...)if (false) {
1454 clear();
1455 __throw_exception_again;
1456 }
1457 }
1458
1459 // Called by the second initialize_dispatch above
1460 template<typename _ForwardIterator>
1461 void
1462 _M_range_initialize(_ForwardIterator __first, _ForwardIterator __last,
1463 std::forward_iterator_tag)
1464 {
1465 const size_type __n = std::distance(__first, __last);
1466 this->_M_impl._M_start = this->_M_allocate(__n);
1467 this->_M_impl._M_end_of_storage = this->_M_impl._M_start + __n;
1468 this->_M_impl._M_finish =
1469 std::__uninitialized_copy_a(__first, __last,
1470 this->_M_impl._M_start,
1471 _M_get_Tp_allocator());
1472 }
1473
1474 // Called by the first initialize_dispatch above and by the
1475 // vector(n,value,a) constructor.
1476 void
1477 _M_fill_initialize(size_type __n, const value_type& __value)
1478 {
1479 this->_M_impl._M_finish =
1480 std::__uninitialized_fill_n_a(this->_M_impl._M_start, __n, __value,
1481 _M_get_Tp_allocator());
1482 }
1483
1484#if __cplusplus201703L >= 201103L
1485 // Called by the vector(n) constructor.
1486 void
1487 _M_default_initialize(size_type __n)
1488 {
1489 this->_M_impl._M_finish =
1490 std::__uninitialized_default_n_a(this->_M_impl._M_start, __n,
1491 _M_get_Tp_allocator());
1492 }
1493#endif
1494
1495 // Internal assign functions follow. The *_aux functions do the actual
1496 // assignment work for the range versions.
1497
1498 // Called by the range assign to implement [23.1.1]/9
1499
1500 // _GLIBCXX_RESOLVE_LIB_DEFECTS
1501 // 438. Ambiguity in the "do the right thing" clause
1502 template<typename _Integer>
1503 void
1504 _M_assign_dispatch(_Integer __n, _Integer __val, __true_type)
1505 { _M_fill_assign(__n, __val); }
1506
1507 // Called by the range assign to implement [23.1.1]/9
1508 template<typename _InputIterator>
1509 void
1510 _M_assign_dispatch(_InputIterator __first, _InputIterator __last,
1511 __false_type)
1512 { _M_assign_aux(__first, __last, std::__iterator_category(__first)); }
1513
1514 // Called by the second assign_dispatch above
1515 template<typename _InputIterator>
1516 void
1517 _M_assign_aux(_InputIterator __first, _InputIterator __last,
1518 std::input_iterator_tag);
1519
1520 // Called by the second assign_dispatch above
1521 template<typename _ForwardIterator>
1522 void
1523 _M_assign_aux(_ForwardIterator __first, _ForwardIterator __last,
1524 std::forward_iterator_tag);
1525
1526 // Called by assign(n,t), and the range assign when it turns out
1527 // to be the same thing.
1528 void
1529 _M_fill_assign(size_type __n, const value_type& __val);
1530
1531 // Internal insert functions follow.
1532
1533 // Called by the range insert to implement [23.1.1]/9
1534
1535 // _GLIBCXX_RESOLVE_LIB_DEFECTS
1536 // 438. Ambiguity in the "do the right thing" clause
1537 template<typename _Integer>
1538 void
1539 _M_insert_dispatch(iterator __pos, _Integer __n, _Integer __val,
1540 __true_type)
1541 { _M_fill_insert(__pos, __n, __val); }
1542
1543 // Called by the range insert to implement [23.1.1]/9
1544 template<typename _InputIterator>
1545 void
1546 _M_insert_dispatch(iterator __pos, _InputIterator __first,
1547 _InputIterator __last, __false_type)
1548 {
1549 _M_range_insert(__pos, __first, __last,
1550 std::__iterator_category(__first));
1551 }
1552
1553 // Called by the second insert_dispatch above
1554 template<typename _InputIterator>
1555 void
1556 _M_range_insert(iterator __pos, _InputIterator __first,
1557 _InputIterator __last, std::input_iterator_tag);
1558
1559 // Called by the second insert_dispatch above
1560 template<typename _ForwardIterator>
1561 void
1562 _M_range_insert(iterator __pos, _ForwardIterator __first,
1563 _ForwardIterator __last, std::forward_iterator_tag);
1564
1565 // Called by insert(p,n,x), and the range insert when it turns out to be
1566 // the same thing.
1567 void
1568 _M_fill_insert(iterator __pos, size_type __n, const value_type& __x);
1569
1570#if __cplusplus201703L >= 201103L
1571 // Called by resize(n).
1572 void
1573 _M_default_append(size_type __n);
1574
1575 bool
1576 _M_shrink_to_fit();
1577#endif
1578
1579#if __cplusplus201703L < 201103L
1580 // Called by insert(p,x)
1581 void
1582 _M_insert_aux(iterator __position, const value_type& __x);
1583
1584 void
1585 _M_realloc_insert(iterator __position, const value_type& __x);
1586#else
1587 // A value_type object constructed with _Alloc_traits::construct()
1588 // and destroyed with _Alloc_traits::destroy().
1589 struct _Temporary_value
1590 {
1591 template<typename... _Args>
1592 explicit
1593 _Temporary_value(vector* __vec, _Args&&... __args) : _M_this(__vec)
1594 {
1595 _Alloc_traits::construct(_M_this->_M_impl, _M_ptr(),
1596 std::forward<_Args>(__args)...);
1597 }
1598
1599 ~_Temporary_value()
1600 { _Alloc_traits::destroy(_M_this->_M_impl, _M_ptr()); }
1601
1602 value_type&
1603 _M_val() { return *_M_ptr(); }
1604
1605 private:
1606 _Tp*
1607 _M_ptr() { return reinterpret_cast<_Tp*>(&__buf); }
1608
1609 vector* _M_this;
1610 typename aligned_storage<sizeof(_Tp), alignof(_Tp)>::type __buf;
1611 };
1612
1613 // Called by insert(p,x) and other functions when insertion needs to
1614 // reallocate or move existing elements. _Arg is either _Tp& or _Tp.
1615 template<typename _Arg>
1616 void
1617 _M_insert_aux(iterator __position, _Arg&& __arg);
1618
1619 template<typename... _Args>
1620 void
1621 _M_realloc_insert(iterator __position, _Args&&... __args);
1622
1623 // Either move-construct at the end, or forward to _M_insert_aux.
1624 iterator
1625 _M_insert_rval(const_iterator __position, value_type&& __v);
1626
1627 // Try to emplace at the end, otherwise forward to _M_insert_aux.
1628 template<typename... _Args>
1629 iterator
1630 _M_emplace_aux(const_iterator __position, _Args&&... __args);
1631
1632 // Emplacing an rvalue of the correct type can use _M_insert_rval.
1633 iterator
1634 _M_emplace_aux(const_iterator __position, value_type&& __v)
1635 { return _M_insert_rval(__position, std::move(__v)); }
1636#endif
1637
1638 // Called by _M_fill_insert, _M_insert_aux etc.
1639 size_type
1640 _M_check_len(size_type __n, const char* __s) const
1641 {
1642 if (max_size() - size() < __n)
1643 __throw_length_error(__N(__s)(__s));
1644
1645 const size_type __len = size() + std::max(size(), __n);
1646 return (__len < size() || __len > max_size()) ? max_size() : __len;
1647 }
1648
1649 // Internal erase functions follow.
1650
1651 // Called by erase(q1,q2), clear(), resize(), _M_fill_assign,
1652 // _M_assign_aux.
1653 void
1654 _M_erase_at_end(pointer __pos) _GLIBCXX_NOEXCEPTnoexcept
1655 {
1656 if (size_type __n = this->_M_impl._M_finish - __pos)
1657 {
1658 std::_Destroy(__pos, this->_M_impl._M_finish,
1659 _M_get_Tp_allocator());
1660 this->_M_impl._M_finish = __pos;
1661 _GLIBCXX_ASAN_ANNOTATE_SHRINK(__n);
1662 }
1663 }
1664
1665 iterator
1666 _M_erase(iterator __position);
1667
1668 iterator
1669 _M_erase(iterator __first, iterator __last);
1670
1671#if __cplusplus201703L >= 201103L
1672 private:
1673 // Constant-time move assignment when source object's memory can be
1674 // moved, either because the source's allocator will move too
1675 // or because the allocators are equal.
1676 void
1677 _M_move_assign(vector&& __x, std::true_type) noexcept
1678 {
1679 vector __tmp(get_allocator());
1680 this->_M_impl._M_swap_data(__tmp._M_impl);
1681 this->_M_impl._M_swap_data(__x._M_impl);
1682 std::__alloc_on_move(_M_get_Tp_allocator(), __x._M_get_Tp_allocator());
1683 }
1684
1685 // Do move assignment when it might not be possible to move source
1686 // object's memory, resulting in a linear-time operation.
1687 void
1688 _M_move_assign(vector&& __x, std::false_type)
1689 {
1690 if (__x._M_get_Tp_allocator() == this->_M_get_Tp_allocator())
1691 _M_move_assign(std::move(__x), std::true_type());
1692 else
1693 {
1694 // The rvalue's allocator cannot be moved and is not equal,
1695 // so we need to individually move each element.
1696 this->assign(std::__make_move_if_noexcept_iterator(__x.begin()),
1697 std::__make_move_if_noexcept_iterator(__x.end()));
1698 __x.clear();
1699 }
1700 }
1701#endif
1702
1703 template<typename _Up>
1704 _Up*
1705 _M_data_ptr(_Up* __ptr) const _GLIBCXX_NOEXCEPTnoexcept
1706 { return __ptr; }
1707
1708#if __cplusplus201703L >= 201103L
1709 template<typename _Ptr>
1710 typename std::pointer_traits<_Ptr>::element_type*
1711 _M_data_ptr(_Ptr __ptr) const
1712 { return empty() ? nullptr : std::__to_address(__ptr); }
1713#else
1714 template<typename _Up>
1715 _Up*
1716 _M_data_ptr(_Up* __ptr) _GLIBCXX_NOEXCEPTnoexcept
1717 { return __ptr; }
1718
1719 template<typename _Ptr>
1720 value_type*
1721 _M_data_ptr(_Ptr __ptr)
1722 { return empty() ? (value_type*)0 : __ptr.operator->(); }
1723
1724 template<typename _Ptr>
1725 const value_type*
1726 _M_data_ptr(_Ptr __ptr) const
1727 { return empty() ? (const value_type*)0 : __ptr.operator->(); }
1728#endif
1729 };
1730
1731#if __cpp_deduction_guides201703L >= 201606
1732 template<typename _InputIterator, typename _ValT
1733 = typename iterator_traits<_InputIterator>::value_type,
1734 typename _Allocator = allocator<_ValT>,
1735 typename = _RequireInputIter<_InputIterator>,
1736 typename = _RequireAllocator<_Allocator>>
1737 vector(_InputIterator, _InputIterator, _Allocator = _Allocator())
1738 -> vector<_ValT, _Allocator>;
1739#endif
1740
1741 /**
1742 * @brief Vector equality comparison.
1743 * @param __x A %vector.
1744 * @param __y A %vector of the same type as @a __x.
1745 * @return True iff the size and elements of the vectors are equal.
1746 *
1747 * This is an equivalence relation. It is linear in the size of the
1748 * vectors. Vectors are considered equivalent if their sizes are equal,
1749 * and if corresponding elements compare equal.
1750 */
1751 template<typename _Tp, typename _Alloc>
1752 inline bool
1753 operator==(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
1754 { return (__x.size() == __y.size()
1755 && std::equal(__x.begin(), __x.end(), __y.begin())); }
1756
1757 /**
1758 * @brief Vector ordering relation.
1759 * @param __x A %vector.
1760 * @param __y A %vector of the same type as @a __x.
1761 * @return True iff @a __x is lexicographically less than @a __y.
1762 *
1763 * This is a total ordering relation. It is linear in the size of the
1764 * vectors. The elements must be comparable with @c <.
1765 *
1766 * See std::lexicographical_compare() for how the determination is made.
1767 */
1768 template<typename _Tp, typename _Alloc>
1769 inline bool
1770 operator<(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
1771 { return std::lexicographical_compare(__x.begin(), __x.end(),
1772 __y.begin(), __y.end()); }
1773
1774 /// Based on operator==
1775 template<typename _Tp, typename _Alloc>
1776 inline bool
1777 operator!=(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
1778 { return !(__x == __y); }
1779
1780 /// Based on operator<
1781 template<typename _Tp, typename _Alloc>
1782 inline bool
1783 operator>(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
1784 { return __y < __x; }
1785
1786 /// Based on operator<
1787 template<typename _Tp, typename _Alloc>
1788 inline bool
1789 operator<=(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
1790 { return !(__y < __x); }
1791
1792 /// Based on operator<
1793 template<typename _Tp, typename _Alloc>
1794 inline bool
1795 operator>=(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
1796 { return !(__x < __y); }
1797
1798 /// See std::vector::swap().
1799 template<typename _Tp, typename _Alloc>
1800 inline void
1801 swap(vector<_Tp, _Alloc>& __x, vector<_Tp, _Alloc>& __y)
1802 _GLIBCXX_NOEXCEPT_IF(noexcept(__x.swap(__y)))noexcept(noexcept(__x.swap(__y)))
1803 { __x.swap(__y); }
1804
1805_GLIBCXX_END_NAMESPACE_CONTAINER
1806_GLIBCXX_END_NAMESPACE_VERSION
1807} // namespace std
1808
1809#endif /* _STL_VECTOR_H */