File: | out/../deps/icu-small/source/i18n/decNumber.cpp |
Warning: | line 4622, column 16 The left operand of '==' is a garbage value |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | // © 2016 and later: Unicode, Inc. and others. | ||||
2 | // License & terms of use: http://www.unicode.org/copyright.html | ||||
3 | /* ------------------------------------------------------------------ */ | ||||
4 | /* Decimal Number arithmetic module */ | ||||
5 | /* ------------------------------------------------------------------ */ | ||||
6 | /* Copyright (c) IBM Corporation, 2000-2014. All rights reserved. */ | ||||
7 | /* */ | ||||
8 | /* This software is made available under the terms of the */ | ||||
9 | /* ICU License -- ICU 1.8.1 and later. */ | ||||
10 | /* */ | ||||
11 | /* The description and User's Guide ("The decNumber C Library") for */ | ||||
12 | /* this software is called decNumber.pdf. This document is */ | ||||
13 | /* available, together with arithmetic and format specifications, */ | ||||
14 | /* testcases, and Web links, on the General Decimal Arithmetic page. */ | ||||
15 | /* */ | ||||
16 | /* Please send comments, suggestions, and corrections to the author: */ | ||||
17 | /* mfc@uk.ibm.com */ | ||||
18 | /* Mike Cowlishaw, IBM Fellow */ | ||||
19 | /* IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK */ | ||||
20 | /* ------------------------------------------------------------------ */ | ||||
21 | |||||
22 | /* Modified version, for use from within ICU. | ||||
23 | * Renamed public functions, to avoid an unwanted export of the | ||||
24 | * standard names from the ICU library. | ||||
25 | * | ||||
26 | * Use ICU's uprv_malloc() and uprv_free() | ||||
27 | * | ||||
28 | * Revert comment syntax to plain C | ||||
29 | * | ||||
30 | * Remove a few compiler warnings. | ||||
31 | */ | ||||
32 | |||||
33 | /* This module comprises the routines for arbitrary-precision General */ | ||||
34 | /* Decimal Arithmetic as defined in the specification which may be */ | ||||
35 | /* found on the General Decimal Arithmetic pages. It implements both */ | ||||
36 | /* the full ('extended') arithmetic and the simpler ('subset') */ | ||||
37 | /* arithmetic. */ | ||||
38 | /* */ | ||||
39 | /* Usage notes: */ | ||||
40 | /* */ | ||||
41 | /* 1. This code is ANSI C89 except: */ | ||||
42 | /* */ | ||||
43 | /* a) C99 line comments (double forward slash) are used. (Most C */ | ||||
44 | /* compilers accept these. If yours does not, a simple script */ | ||||
45 | /* can be used to convert them to ANSI C comments.) */ | ||||
46 | /* */ | ||||
47 | /* b) Types from C99 stdint.h are used. If you do not have this */ | ||||
48 | /* header file, see the User's Guide section of the decNumber */ | ||||
49 | /* documentation; this lists the necessary definitions. */ | ||||
50 | /* */ | ||||
51 | /* c) If DECDPUN>4 or DECUSE64=1, the C99 64-bit int64_t and */ | ||||
52 | /* uint64_t types may be used. To avoid these, set DECUSE64=0 */ | ||||
53 | /* and DECDPUN<=4 (see documentation). */ | ||||
54 | /* */ | ||||
55 | /* The code also conforms to C99 restrictions; in particular, */ | ||||
56 | /* strict aliasing rules are observed. */ | ||||
57 | /* */ | ||||
58 | /* 2. The decNumber format which this library uses is optimized for */ | ||||
59 | /* efficient processing of relatively short numbers; in particular */ | ||||
60 | /* it allows the use of fixed sized structures and minimizes copy */ | ||||
61 | /* and move operations. It does, however, support arbitrary */ | ||||
62 | /* precision (up to 999,999,999 digits) and arbitrary exponent */ | ||||
63 | /* range (Emax in the range 0 through 999,999,999 and Emin in the */ | ||||
64 | /* range -999,999,999 through 0). Mathematical functions (for */ | ||||
65 | /* example decNumberExp) as identified below are restricted more */ | ||||
66 | /* tightly: digits, emax, and -emin in the context must be <= */ | ||||
67 | /* DEC_MAX_MATH (999999), and their operand(s) must be within */ | ||||
68 | /* these bounds. */ | ||||
69 | /* */ | ||||
70 | /* 3. Logical functions are further restricted; their operands must */ | ||||
71 | /* be finite, positive, have an exponent of zero, and all digits */ | ||||
72 | /* must be either 0 or 1. The result will only contain digits */ | ||||
73 | /* which are 0 or 1 (and will have exponent=0 and a sign of 0). */ | ||||
74 | /* */ | ||||
75 | /* 4. Operands to operator functions are never modified unless they */ | ||||
76 | /* are also specified to be the result number (which is always */ | ||||
77 | /* permitted). Other than that case, operands must not overlap. */ | ||||
78 | /* */ | ||||
79 | /* 5. Error handling: the type of the error is ORed into the status */ | ||||
80 | /* flags in the current context (decContext structure). The */ | ||||
81 | /* SIGFPE signal is then raised if the corresponding trap-enabler */ | ||||
82 | /* flag in the decContext is set (is 1). */ | ||||
83 | /* */ | ||||
84 | /* It is the responsibility of the caller to clear the status */ | ||||
85 | /* flags as required. */ | ||||
86 | /* */ | ||||
87 | /* The result of any routine which returns a number will always */ | ||||
88 | /* be a valid number (which may be a special value, such as an */ | ||||
89 | /* Infinity or NaN). */ | ||||
90 | /* */ | ||||
91 | /* 6. The decNumber format is not an exchangeable concrete */ | ||||
92 | /* representation as it comprises fields which may be machine- */ | ||||
93 | /* dependent (packed or unpacked, or special length, for example). */ | ||||
94 | /* Canonical conversions to and from strings are provided; other */ | ||||
95 | /* conversions are available in separate modules. */ | ||||
96 | /* */ | ||||
97 | /* 7. Normally, input operands are assumed to be valid. Set DECCHECK */ | ||||
98 | /* to 1 for extended operand checking (including NULL operands). */ | ||||
99 | /* Results are undefined if a badly-formed structure (or a NULL */ | ||||
100 | /* pointer to a structure) is provided, though with DECCHECK */ | ||||
101 | /* enabled the operator routines are protected against exceptions. */ | ||||
102 | /* (Except if the result pointer is NULL, which is unrecoverable.) */ | ||||
103 | /* */ | ||||
104 | /* However, the routines will never cause exceptions if they are */ | ||||
105 | /* given well-formed operands, even if the value of the operands */ | ||||
106 | /* is inappropriate for the operation and DECCHECK is not set. */ | ||||
107 | /* (Except for SIGFPE, as and where documented.) */ | ||||
108 | /* */ | ||||
109 | /* 8. Subset arithmetic is available only if DECSUBSET is set to 1. */ | ||||
110 | /* ------------------------------------------------------------------ */ | ||||
111 | /* Implementation notes for maintenance of this module: */ | ||||
112 | /* */ | ||||
113 | /* 1. Storage leak protection: Routines which use malloc are not */ | ||||
114 | /* permitted to use return for fastpath or error exits (i.e., */ | ||||
115 | /* they follow strict structured programming conventions). */ | ||||
116 | /* Instead they have a do{}while(0); construct surrounding the */ | ||||
117 | /* code which is protected -- break may be used to exit this. */ | ||||
118 | /* Other routines can safely use the return statement inline. */ | ||||
119 | /* */ | ||||
120 | /* Storage leak accounting can be enabled using DECALLOC. */ | ||||
121 | /* */ | ||||
122 | /* 2. All loops use the for(;;) construct. Any do construct does */ | ||||
123 | /* not loop; it is for allocation protection as just described. */ | ||||
124 | /* */ | ||||
125 | /* 3. Setting status in the context must always be the very last */ | ||||
126 | /* action in a routine, as non-0 status may raise a trap and hence */ | ||||
127 | /* the call to set status may not return (if the handler uses long */ | ||||
128 | /* jump). Therefore all cleanup must be done first. In general, */ | ||||
129 | /* to achieve this status is accumulated and is only applied just */ | ||||
130 | /* before return by calling decContextSetStatus (via decStatus). */ | ||||
131 | /* */ | ||||
132 | /* Routines which allocate storage cannot, in general, use the */ | ||||
133 | /* 'top level' routines which could cause a non-returning */ | ||||
134 | /* transfer of control. The decXxxxOp routines are safe (do not */ | ||||
135 | /* call decStatus even if traps are set in the context) and should */ | ||||
136 | /* be used instead (they are also a little faster). */ | ||||
137 | /* */ | ||||
138 | /* 4. Exponent checking is minimized by allowing the exponent to */ | ||||
139 | /* grow outside its limits during calculations, provided that */ | ||||
140 | /* the decFinalize function is called later. Multiplication and */ | ||||
141 | /* division, and intermediate calculations in exponentiation, */ | ||||
142 | /* require more careful checks because of the risk of 31-bit */ | ||||
143 | /* overflow (the most negative valid exponent is -1999999997, for */ | ||||
144 | /* a 999999999-digit number with adjusted exponent of -999999999). */ | ||||
145 | /* */ | ||||
146 | /* 5. Rounding is deferred until finalization of results, with any */ | ||||
147 | /* 'off to the right' data being represented as a single digit */ | ||||
148 | /* residue (in the range -1 through 9). This avoids any double- */ | ||||
149 | /* rounding when more than one shortening takes place (for */ | ||||
150 | /* example, when a result is subnormal). */ | ||||
151 | /* */ | ||||
152 | /* 6. The digits count is allowed to rise to a multiple of DECDPUN */ | ||||
153 | /* during many operations, so whole Units are handled and exact */ | ||||
154 | /* accounting of digits is not needed. The correct digits value */ | ||||
155 | /* is found by decGetDigits, which accounts for leading zeros. */ | ||||
156 | /* This must be called before any rounding if the number of digits */ | ||||
157 | /* is not known exactly. */ | ||||
158 | /* */ | ||||
159 | /* 7. The multiply-by-reciprocal 'trick' is used for partitioning */ | ||||
160 | /* numbers up to four digits, using appropriate constants. This */ | ||||
161 | /* is not useful for longer numbers because overflow of 32 bits */ | ||||
162 | /* would lead to 4 multiplies, which is almost as expensive as */ | ||||
163 | /* a divide (unless a floating-point or 64-bit multiply is */ | ||||
164 | /* assumed to be available). */ | ||||
165 | /* */ | ||||
166 | /* 8. Unusual abbreviations that may be used in the commentary: */ | ||||
167 | /* lhs -- left hand side (operand, of an operation) */ | ||||
168 | /* lsd -- least significant digit (of coefficient) */ | ||||
169 | /* lsu -- least significant Unit (of coefficient) */ | ||||
170 | /* msd -- most significant digit (of coefficient) */ | ||||
171 | /* msi -- most significant item (in an array) */ | ||||
172 | /* msu -- most significant Unit (of coefficient) */ | ||||
173 | /* rhs -- right hand side (operand, of an operation) */ | ||||
174 | /* +ve -- positive */ | ||||
175 | /* -ve -- negative */ | ||||
176 | /* ** -- raise to the power */ | ||||
177 | /* ------------------------------------------------------------------ */ | ||||
178 | |||||
179 | #include <stdlib.h> /* for malloc, free, etc. */ | ||||
180 | /* #include <stdio.h> */ /* for printf [if needed] */ | ||||
181 | #include <string.h> /* for strcpy */ | ||||
182 | #include <ctype.h> /* for lower */ | ||||
183 | #include "cmemory.h" /* for uprv_malloc, etc., in ICU */ | ||||
184 | #include "decNumber.h" /* base number library */ | ||||
185 | #include "decNumberLocal.h" /* decNumber local types, etc. */ | ||||
186 | #include "uassert.h" | ||||
187 | |||||
188 | /* Constants */ | ||||
189 | /* Public lookup table used by the D2U macro */ | ||||
190 | static const uByteuint8_t d2utable[DECMAXD2U49+1]=D2UTABLE{0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17, 18,19,20,21,22, 23,24,25,26,27,28,29,30,31,32, 33,34,35,36,37,38,39,40,41,42, 43,44,45,46,47, 48,49}; | ||||
191 | |||||
192 | #define DECVERB1 1 /* set to 1 for verbose DECCHECK */ | ||||
193 | #define powersDECPOWERS DECPOWERS /* old internal name */ | ||||
194 | |||||
195 | /* Local constants */ | ||||
196 | #define DIVIDE0x80 0x80 /* Divide operators */ | ||||
197 | #define REMAINDER0x40 0x40 /* .. */ | ||||
198 | #define DIVIDEINT0x20 0x20 /* .. */ | ||||
199 | #define REMNEAR0x10 0x10 /* .. */ | ||||
200 | #define COMPARE0x01 0x01 /* Compare operators */ | ||||
201 | #define COMPMAX0x02 0x02 /* .. */ | ||||
202 | #define COMPMIN0x03 0x03 /* .. */ | ||||
203 | #define COMPTOTAL0x04 0x04 /* .. */ | ||||
204 | #define COMPNAN0x05 0x05 /* .. [NaN processing] */ | ||||
205 | #define COMPSIG0x06 0x06 /* .. [signaling COMPARE] */ | ||||
206 | #define COMPMAXMAG0x07 0x07 /* .. */ | ||||
207 | #define COMPMINMAG0x08 0x08 /* .. */ | ||||
208 | |||||
209 | #define DEC_sNaN0x40000000 0x40000000 /* local status: sNaN signal */ | ||||
210 | #define BADINT(int32_t)0x80000000 (Intint32_t)0x80000000 /* most-negative Int; error indicator */ | ||||
211 | /* Next two indicate an integer >= 10**6, and its parity (bottom bit) */ | ||||
212 | #define BIGEVEN(int32_t)0x80000002 (Intint32_t)0x80000002 | ||||
213 | #define BIGODD(int32_t)0x80000003 (Intint32_t)0x80000003 | ||||
214 | |||||
215 | static const Unituint8_t uarrone[1]={1}; /* Unit array of 1, used for incrementing */ | ||||
216 | |||||
217 | /* ------------------------------------------------------------------ */ | ||||
218 | /* round-for-reround digits */ | ||||
219 | /* ------------------------------------------------------------------ */ | ||||
220 | #if 0 | ||||
221 | static const uByteuint8_t DECSTICKYTAB[10]={1,1,2,3,4,6,6,7,8,9}; /* used if sticky */ | ||||
222 | #endif | ||||
223 | |||||
224 | /* ------------------------------------------------------------------ */ | ||||
225 | /* Powers of ten (powers[n]==10**n, 0<=n<=9) */ | ||||
226 | /* ------------------------------------------------------------------ */ | ||||
227 | static const uIntuint32_t DECPOWERS[10]={1, 10, 100, 1000, 10000, 100000, 1000000, | ||||
228 | 10000000, 100000000, 1000000000}; | ||||
229 | |||||
230 | |||||
231 | /* Granularity-dependent code */ | ||||
232 | #if DECDPUN1<=4 | ||||
233 | #define eIntint32_t Intint32_t /* extended integer */ | ||||
234 | #define ueIntuint32_t uIntuint32_t /* unsigned extended integer */ | ||||
235 | /* Constant multipliers for divide-by-power-of five using reciprocal */ | ||||
236 | /* multiply, after removing powers of 2 by shifting, and final shift */ | ||||
237 | /* of 17 [we only need up to **4] */ | ||||
238 | static const uIntuint32_t multies[]={131073, 26215, 5243, 1049, 210}; | ||||
239 | /* QUOT10 -- macro to return the quotient of unit u divided by 10**n */ | ||||
240 | #define QUOT10(u, n)((((uint32_t)(u)>>(n))*multies[n])>>17) ((((uIntuint32_t)(u)>>(n))*multies[n])>>17) | ||||
241 | #else | ||||
242 | /* For DECDPUN>4 non-ANSI-89 64-bit types are needed. */ | ||||
243 | #if !DECUSE641 | ||||
244 | #error decNumber.c: DECUSE641 must be 1 when DECDPUN1>4 | ||||
245 | #endif | ||||
246 | #define eIntint32_t Longint64_t /* extended integer */ | ||||
247 | #define ueIntuint32_t uLonguint64_t /* unsigned extended integer */ | ||||
248 | #endif | ||||
249 | |||||
250 | /* Local routines */ | ||||
251 | static decNumber * decAddOp(decNumber *, const decNumber *, const decNumber *, | ||||
252 | decContext *, uByteuint8_t, uIntuint32_t *); | ||||
253 | static Flaguint8_t decBiStr(const char *, const char *, const char *); | ||||
254 | static uIntuint32_t decCheckMath(const decNumber *, decContext *, uIntuint32_t *); | ||||
255 | static void decApplyRound(decNumber *, decContext *, Intint32_t, uIntuint32_t *); | ||||
256 | static Intint32_t decCompare(const decNumber *lhs, const decNumber *rhs, Flaguint8_t); | ||||
257 | static decNumber * decCompareOp(decNumber *, const decNumber *, | ||||
258 | const decNumber *, decContext *, | ||||
259 | Flaguint8_t, uIntuint32_t *); | ||||
260 | static void decCopyFit(decNumber *, const decNumber *, decContext *, | ||||
261 | Intint32_t *, uIntuint32_t *); | ||||
262 | static decNumber * decDecap(decNumber *, Intint32_t); | ||||
263 | static decNumber * decDivideOp(decNumber *, const decNumber *, | ||||
264 | const decNumber *, decContext *, Flaguint8_t, uIntuint32_t *); | ||||
265 | static decNumber * decExpOp(decNumber *, const decNumber *, | ||||
266 | decContext *, uIntuint32_t *); | ||||
267 | static void decFinalize(decNumber *, decContext *, Intint32_t *, uIntuint32_t *); | ||||
268 | static Intint32_t decGetDigits(Unituint8_t *, Intint32_t); | ||||
269 | static Intint32_t decGetInt(const decNumber *); | ||||
270 | static decNumber * decLnOp(decNumber *, const decNumber *, | ||||
271 | decContext *, uIntuint32_t *); | ||||
272 | static decNumber * decMultiplyOp(decNumber *, const decNumber *, | ||||
273 | const decNumber *, decContext *, | ||||
274 | uIntuint32_t *); | ||||
275 | static decNumber * decNaNs(decNumber *, const decNumber *, | ||||
276 | const decNumber *, decContext *, uIntuint32_t *); | ||||
277 | static decNumber * decQuantizeOp(decNumber *, const decNumber *, | ||||
278 | const decNumber *, decContext *, Flaguint8_t, | ||||
279 | uIntuint32_t *); | ||||
280 | static void decReverse(Unituint8_t *, Unituint8_t *); | ||||
281 | static void decSetCoeff(decNumber *, decContext *, const Unituint8_t *, | ||||
282 | Intint32_t, Intint32_t *, uIntuint32_t *); | ||||
283 | static void decSetMaxValue(decNumber *, decContext *); | ||||
284 | static void decSetOverflow(decNumber *, decContext *, uIntuint32_t *); | ||||
285 | static void decSetSubnormal(decNumber *, decContext *, Intint32_t *, uIntuint32_t *); | ||||
286 | static Intint32_t decShiftToLeast(Unituint8_t *, Intint32_t, Intint32_t); | ||||
287 | static Intint32_t decShiftToMost(Unituint8_t *, Intint32_t, Intint32_t); | ||||
288 | static void decStatus(decNumber *, uIntuint32_t, decContext *); | ||||
289 | static void decToString(const decNumber *, char[], Flaguint8_t); | ||||
290 | static decNumber * decTrim(decNumber *, decContext *, Flaguint8_t, Flaguint8_t, Intint32_t *); | ||||
291 | static Intint32_t decUnitAddSub(const Unituint8_t *, Intint32_t, const Unituint8_t *, Intint32_t, Intint32_t, | ||||
292 | Unituint8_t *, Intint32_t); | ||||
293 | static Intint32_t decUnitCompare(const Unituint8_t *, Intint32_t, const Unituint8_t *, Intint32_t, Intint32_t); | ||||
294 | |||||
295 | #if !DECSUBSET0 | ||||
296 | /* decFinish == decFinalize when no subset arithmetic needed */ | ||||
297 | #define decFinish(a,b,c,d)decFinalize(a,b,c,d) decFinalize(a,b,c,d) | ||||
298 | #else | ||||
299 | static void decFinish(decNumber *, decContext *, Int *, uInt *)decFinalize(decNumber *,decContext *,int32_t *,uint32_t *); | ||||
300 | static decNumber * decRoundOperand(const decNumber *, decContext *, uIntuint32_t *); | ||||
301 | #endif | ||||
302 | |||||
303 | /* Local macros */ | ||||
304 | /* masked special-values bits */ | ||||
305 | #define SPECIALARG(rhs->bits & (0x40|0x20|0x10)) (rhs->bits & DECSPECIAL(0x40|0x20|0x10)) | ||||
306 | #define SPECIALARGS((lhs->bits | rhs->bits) & (0x40|0x20|0x10)) ((lhs->bits | rhs->bits) & DECSPECIAL(0x40|0x20|0x10)) | ||||
307 | |||||
308 | /* For use in ICU */ | ||||
309 | #define malloc(a)uprv_malloc_71(a) uprv_mallocuprv_malloc_71(a) | ||||
310 | #define free(a)uprv_free_71(a) uprv_freeuprv_free_71(a) | ||||
311 | |||||
312 | /* Diagnostic macros, etc. */ | ||||
313 | #if DECALLOC0 | ||||
314 | /* Handle malloc/free accounting. If enabled, our accountable routines */ | ||||
315 | /* are used; otherwise the code just goes straight to the system malloc */ | ||||
316 | /* and free routines. */ | ||||
317 | #define malloc(a)uprv_malloc_71(a) decMalloc(a) | ||||
318 | #define free(a)uprv_free_71(a) decFree(a) | ||||
319 | #define DECFENCE 0x5a /* corruption detector */ | ||||
320 | /* 'Our' malloc and free: */ | ||||
321 | static void *decMalloc(size_t); | ||||
322 | static void decFree(void *); | ||||
323 | uIntuint32_t decAllocBytes=0; /* count of bytes allocated */ | ||||
324 | /* Note that DECALLOC code only checks for storage buffer overflow. */ | ||||
325 | /* To check for memory leaks, the decAllocBytes variable must be */ | ||||
326 | /* checked to be 0 at appropriate times (e.g., after the test */ | ||||
327 | /* harness completes a set of tests). This checking may be unreliable */ | ||||
328 | /* if the testing is done in a multi-thread environment. */ | ||||
329 | #endif | ||||
330 | |||||
331 | #if DECCHECK0 | ||||
332 | /* Optional checking routines. Enabling these means that decNumber */ | ||||
333 | /* and decContext operands to operator routines are checked for */ | ||||
334 | /* correctness. This roughly doubles the execution time of the */ | ||||
335 | /* fastest routines (and adds 600+ bytes), so should not normally be */ | ||||
336 | /* used in 'production'. */ | ||||
337 | /* decCheckInexact is used to check that inexact results have a full */ | ||||
338 | /* complement of digits (where appropriate -- this is not the case */ | ||||
339 | /* for Quantize, for example) */ | ||||
340 | #define DECUNRESU ((decNumber *)(void *)0xffffffff) | ||||
341 | #define DECUNUSED ((const decNumber *)(void *)0xffffffff) | ||||
342 | #define DECUNCONT ((decContext *)(void *)(0xffffffff)) | ||||
343 | static Flaguint8_t decCheckOperands(decNumber *, const decNumber *, | ||||
344 | const decNumber *, decContext *); | ||||
345 | static Flaguint8_t decCheckNumber(const decNumber *); | ||||
346 | static void decCheckInexact(const decNumber *, decContext *); | ||||
347 | #endif | ||||
348 | |||||
349 | #if DECTRACE0 || DECCHECK0 | ||||
350 | /* Optional trace/debugging routines (may or may not be used) */ | ||||
351 | void decNumberShow(const decNumber *); /* displays the components of a number */ | ||||
352 | static void decDumpAr(char, const Unituint8_t *, Intint32_t); | ||||
353 | #endif | ||||
354 | |||||
355 | /* ================================================================== */ | ||||
356 | /* Conversions */ | ||||
357 | /* ================================================================== */ | ||||
358 | |||||
359 | /* ------------------------------------------------------------------ */ | ||||
360 | /* from-int32 -- conversion from Int or uInt */ | ||||
361 | /* */ | ||||
362 | /* dn is the decNumber to receive the integer */ | ||||
363 | /* in or uin is the integer to be converted */ | ||||
364 | /* returns dn */ | ||||
365 | /* */ | ||||
366 | /* No error is possible. */ | ||||
367 | /* ------------------------------------------------------------------ */ | ||||
368 | U_CAPIextern "C" decNumber * U_EXPORT2 uprv_decNumberFromInt32uprv_decNumberFromInt32_71(decNumber *dn, Intint32_t in) { | ||||
369 | uIntuint32_t unsig; | ||||
370 | if (in>=0) unsig=in; | ||||
371 | else { /* negative (possibly BADINT) */ | ||||
372 | if (in==BADINT(int32_t)0x80000000) unsig=(uIntuint32_t)1073741824*2; /* special case */ | ||||
373 | else unsig=-in; /* invert */ | ||||
374 | } | ||||
375 | /* in is now positive */ | ||||
376 | uprv_decNumberFromUInt32uprv_decNumberFromUInt32_71(dn, unsig); | ||||
377 | if (in<0) dn->bits=DECNEG0x80; /* sign needed */ | ||||
378 | return dn; | ||||
379 | } /* decNumberFromInt32 */ | ||||
380 | |||||
381 | U_CAPIextern "C" decNumber * U_EXPORT2 uprv_decNumberFromUInt32uprv_decNumberFromUInt32_71(decNumber *dn, uIntuint32_t uin) { | ||||
382 | Unituint8_t *up; /* work pointer */ | ||||
383 | uprv_decNumberZerouprv_decNumberZero_71(dn); /* clean */ | ||||
384 | if (uin==0) return dn; /* [or decGetDigits bad call] */ | ||||
385 | for (up=dn->lsu; uin>0; up++) { | ||||
386 | *up=(Unituint8_t)(uin%(DECDPUNMAX9+1)); | ||||
387 | uin=uin/(DECDPUNMAX9+1); | ||||
388 | } | ||||
389 | dn->digits=decGetDigits(dn->lsu, static_cast<int32_t>(up - dn->lsu)); | ||||
390 | return dn; | ||||
391 | } /* decNumberFromUInt32 */ | ||||
392 | |||||
393 | /* ------------------------------------------------------------------ */ | ||||
394 | /* to-int32 -- conversion to Int or uInt */ | ||||
395 | /* */ | ||||
396 | /* dn is the decNumber to convert */ | ||||
397 | /* set is the context for reporting errors */ | ||||
398 | /* returns the converted decNumber, or 0 if Invalid is set */ | ||||
399 | /* */ | ||||
400 | /* Invalid is set if the decNumber does not have exponent==0 or if */ | ||||
401 | /* it is a NaN, Infinite, or out-of-range. */ | ||||
402 | /* ------------------------------------------------------------------ */ | ||||
403 | U_CAPIextern "C" Intint32_t U_EXPORT2 uprv_decNumberToInt32uprv_decNumberToInt32_71(const decNumber *dn, decContext *set) { | ||||
404 | #if DECCHECK0 | ||||
405 | if (decCheckOperands(DECUNRESU, DECUNUSED, dn, set)) return 0; | ||||
406 | #endif | ||||
407 | |||||
408 | /* special or too many digits, or bad exponent */ | ||||
409 | if (dn->bits&DECSPECIAL(0x40|0x20|0x10) || dn->digits>10 || dn->exponent!=0) ; /* bad */ | ||||
410 | else { /* is a finite integer with 10 or fewer digits */ | ||||
411 | Intint32_t d; /* work */ | ||||
412 | const Unituint8_t *up; /* .. */ | ||||
413 | uIntuint32_t hi=0, lo; /* .. */ | ||||
414 | up=dn->lsu; /* -> lsu */ | ||||
415 | lo=*up; /* get 1 to 9 digits */ | ||||
416 | #if DECDPUN1>1 /* split to higher */ | ||||
417 | hi=lo/10; | ||||
418 | lo=lo%10; | ||||
419 | #endif | ||||
420 | up++; | ||||
421 | /* collect remaining Units, if any, into hi */ | ||||
422 | for (d=DECDPUN1; d<dn->digits; up++, d+=DECDPUN1) hi+=*up*powersDECPOWERS[d-1]; | ||||
423 | /* now low has the lsd, hi the remainder */ | ||||
424 | if (hi>214748364 || (hi==214748364 && lo>7)) { /* out of range? */ | ||||
425 | /* most-negative is a reprieve */ | ||||
426 | if (dn->bits&DECNEG0x80 && hi==214748364 && lo==8) return 0x80000000; | ||||
427 | /* bad -- drop through */ | ||||
428 | } | ||||
429 | else { /* in-range always */ | ||||
430 | Intint32_t i=X10(hi)(((hi)<<1)+((hi)<<3))+lo; | ||||
431 | if (dn->bits&DECNEG0x80) return -i; | ||||
432 | return i; | ||||
433 | } | ||||
434 | } /* integer */ | ||||
435 | uprv_decContextSetStatusuprv_decContextSetStatus_71(set, DEC_Invalid_operation0x00000080); /* [may not return] */ | ||||
436 | return 0; | ||||
437 | } /* decNumberToInt32 */ | ||||
438 | |||||
439 | U_CAPIextern "C" uIntuint32_t U_EXPORT2 uprv_decNumberToUInt32uprv_decNumberToUInt32_71(const decNumber *dn, decContext *set) { | ||||
440 | #if DECCHECK0 | ||||
441 | if (decCheckOperands(DECUNRESU, DECUNUSED, dn, set)) return 0; | ||||
442 | #endif | ||||
443 | /* special or too many digits, or bad exponent, or negative (<0) */ | ||||
444 | if (dn->bits&DECSPECIAL(0x40|0x20|0x10) || dn->digits>10 || dn->exponent!=0 | ||||
445 | || (dn->bits&DECNEG0x80 && !ISZERO(dn)(*(dn)->lsu==0 && (dn)->digits==1 && (( (dn)->bits&(0x40|0x20|0x10))==0)))); /* bad */ | ||||
446 | else { /* is a finite integer with 10 or fewer digits */ | ||||
447 | Intint32_t d; /* work */ | ||||
448 | const Unituint8_t *up; /* .. */ | ||||
449 | uIntuint32_t hi=0, lo; /* .. */ | ||||
450 | up=dn->lsu; /* -> lsu */ | ||||
451 | lo=*up; /* get 1 to 9 digits */ | ||||
452 | #if DECDPUN1>1 /* split to higher */ | ||||
453 | hi=lo/10; | ||||
454 | lo=lo%10; | ||||
455 | #endif | ||||
456 | up++; | ||||
457 | /* collect remaining Units, if any, into hi */ | ||||
458 | for (d=DECDPUN1; d<dn->digits; up++, d+=DECDPUN1) hi+=*up*powersDECPOWERS[d-1]; | ||||
459 | |||||
460 | /* now low has the lsd, hi the remainder */ | ||||
461 | if (hi>429496729 || (hi==429496729 && lo>5)) ; /* no reprieve possible */ | ||||
462 | else return X10(hi)(((hi)<<1)+((hi)<<3))+lo; | ||||
463 | } /* integer */ | ||||
464 | uprv_decContextSetStatusuprv_decContextSetStatus_71(set, DEC_Invalid_operation0x00000080); /* [may not return] */ | ||||
465 | return 0; | ||||
466 | } /* decNumberToUInt32 */ | ||||
467 | |||||
468 | /* ------------------------------------------------------------------ */ | ||||
469 | /* to-scientific-string -- conversion to numeric string */ | ||||
470 | /* to-engineering-string -- conversion to numeric string */ | ||||
471 | /* */ | ||||
472 | /* decNumberToString(dn, string); */ | ||||
473 | /* decNumberToEngString(dn, string); */ | ||||
474 | /* */ | ||||
475 | /* dn is the decNumber to convert */ | ||||
476 | /* string is the string where the result will be laid out */ | ||||
477 | /* */ | ||||
478 | /* string must be at least dn->digits+14 characters long */ | ||||
479 | /* */ | ||||
480 | /* No error is possible, and no status can be set. */ | ||||
481 | /* ------------------------------------------------------------------ */ | ||||
482 | U_CAPIextern "C" char * U_EXPORT2 uprv_decNumberToStringuprv_decNumberToString_71(const decNumber *dn, char *string){ | ||||
483 | decToString(dn, string, 0); | ||||
484 | return string; | ||||
485 | } /* DecNumberToString */ | ||||
486 | |||||
487 | U_CAPIextern "C" char * U_EXPORT2 uprv_decNumberToEngStringuprv_decNumberToEngString_71(const decNumber *dn, char *string){ | ||||
488 | decToString(dn, string, 1); | ||||
489 | return string; | ||||
490 | } /* DecNumberToEngString */ | ||||
491 | |||||
492 | /* ------------------------------------------------------------------ */ | ||||
493 | /* to-number -- conversion from numeric string */ | ||||
494 | /* */ | ||||
495 | /* decNumberFromString -- convert string to decNumber */ | ||||
496 | /* dn -- the number structure to fill */ | ||||
497 | /* chars[] -- the string to convert ('\0' terminated) */ | ||||
498 | /* set -- the context used for processing any error, */ | ||||
499 | /* determining the maximum precision available */ | ||||
500 | /* (set.digits), determining the maximum and minimum */ | ||||
501 | /* exponent (set.emax and set.emin), determining if */ | ||||
502 | /* extended values are allowed, and checking the */ | ||||
503 | /* rounding mode if overflow occurs or rounding is */ | ||||
504 | /* needed. */ | ||||
505 | /* */ | ||||
506 | /* The length of the coefficient and the size of the exponent are */ | ||||
507 | /* checked by this routine, so the correct error (Underflow or */ | ||||
508 | /* Overflow) can be reported or rounding applied, as necessary. */ | ||||
509 | /* */ | ||||
510 | /* If bad syntax is detected, the result will be a quiet NaN. */ | ||||
511 | /* ------------------------------------------------------------------ */ | ||||
512 | U_CAPIextern "C" decNumber * U_EXPORT2 uprv_decNumberFromStringuprv_decNumberFromString_71(decNumber *dn, const char chars[], | ||||
513 | decContext *set) { | ||||
514 | Intint32_t exponent=0; /* working exponent [assume 0] */ | ||||
515 | uByteuint8_t bits=0; /* working flags [assume +ve] */ | ||||
516 | Unituint8_t *res; /* where result will be built */ | ||||
517 | Unituint8_t resbuff[SD2U(DECBUFFER+9)(((36 +9)+1 -1)/1)];/* local buffer in case need temporary */ | ||||
518 | /* [+9 allows for ln() constants] */ | ||||
519 | Unituint8_t *allocres=NULL__null; /* -> allocated result, iff allocated */ | ||||
520 | Intint32_t d=0; /* count of digits found in decimal part */ | ||||
521 | const char *dotchar=NULL__null; /* where dot was found */ | ||||
522 | const char *cfirst=chars; /* -> first character of decimal part */ | ||||
523 | const char *last=NULL__null; /* -> last digit of decimal part */ | ||||
524 | const char *c; /* work */ | ||||
525 | Unituint8_t *up; /* .. */ | ||||
526 | #if DECDPUN1>1 | ||||
527 | Intint32_t cut, out; /* .. */ | ||||
528 | #endif | ||||
529 | Intint32_t residue; /* rounding residue */ | ||||
530 | uIntuint32_t status=0; /* error code */ | ||||
531 | |||||
532 | #if DECCHECK0 | ||||
533 | if (decCheckOperands(DECUNRESU, DECUNUSED, DECUNUSED, set)) | ||||
534 | return uprv_decNumberZerouprv_decNumberZero_71(dn); | ||||
535 | #endif | ||||
536 | |||||
537 | do { /* status & malloc protection */ | ||||
538 | for (c=chars;; c++) { /* -> input character */ | ||||
539 | if (*c>='0' && *c<='9') { /* test for Arabic digit */ | ||||
540 | last=c; | ||||
541 | d++; /* count of real digits */ | ||||
542 | continue; /* still in decimal part */ | ||||
543 | } | ||||
544 | if (*c=='.' && dotchar==NULL__null) { /* first '.' */ | ||||
545 | dotchar=c; /* record offset into decimal part */ | ||||
546 | if (c==cfirst) cfirst++; /* first digit must follow */ | ||||
547 | continue;} | ||||
548 | if (c==chars) { /* first in string... */ | ||||
549 | if (*c=='-') { /* valid - sign */ | ||||
550 | cfirst++; | ||||
551 | bits=DECNEG0x80; | ||||
552 | continue;} | ||||
553 | if (*c=='+') { /* valid + sign */ | ||||
554 | cfirst++; | ||||
555 | continue;} | ||||
556 | } | ||||
557 | /* *c is not a digit, or a valid +, -, or '.' */ | ||||
558 | break; | ||||
559 | } /* c */ | ||||
560 | |||||
561 | if (last==NULL__null) { /* no digits yet */ | ||||
562 | status=DEC_Conversion_syntax0x00000001;/* assume the worst */ | ||||
563 | if (*c=='\0') break; /* and no more to come... */ | ||||
564 | #if DECSUBSET0 | ||||
565 | /* if subset then infinities and NaNs are not allowed */ | ||||
566 | if (!set->extended) break; /* hopeless */ | ||||
567 | #endif | ||||
568 | /* Infinities and NaNs are possible, here */ | ||||
569 | if (dotchar!=NULL__null) break; /* .. unless had a dot */ | ||||
570 | uprv_decNumberZerouprv_decNumberZero_71(dn); /* be optimistic */ | ||||
571 | if (decBiStr(c, "infinity", "INFINITY") | ||||
572 | || decBiStr(c, "inf", "INF")) { | ||||
573 | dn->bits=bits | DECINF0x40; | ||||
574 | status=0; /* is OK */ | ||||
575 | break; /* all done */ | ||||
576 | } | ||||
577 | /* a NaN expected */ | ||||
578 | /* 2003.09.10 NaNs are now permitted to have a sign */ | ||||
579 | dn->bits=bits | DECNAN0x20; /* assume simple NaN */ | ||||
580 | if (*c=='s' || *c=='S') { /* looks like an sNaN */ | ||||
581 | c++; | ||||
582 | dn->bits=bits | DECSNAN0x10; | ||||
583 | } | ||||
584 | if (*c!='n' && *c!='N') break; /* check caseless "NaN" */ | ||||
585 | c++; | ||||
586 | if (*c!='a' && *c!='A') break; /* .. */ | ||||
587 | c++; | ||||
588 | if (*c!='n' && *c!='N') break; /* .. */ | ||||
589 | c++; | ||||
590 | /* now either nothing, or nnnn payload, expected */ | ||||
591 | /* -> start of integer and skip leading 0s [including plain 0] */ | ||||
592 | for (cfirst=c; *cfirst=='0';) cfirst++; | ||||
593 | if (*cfirst=='\0') { /* "NaN" or "sNaN", maybe with all 0s */ | ||||
594 | status=0; /* it's good */ | ||||
595 | break; /* .. */ | ||||
596 | } | ||||
597 | /* something other than 0s; setup last and d as usual [no dots] */ | ||||
598 | for (c=cfirst;; c++, d++) { | ||||
599 | if (*c<'0' || *c>'9') break; /* test for Arabic digit */ | ||||
600 | last=c; | ||||
601 | } | ||||
602 | if (*c!='\0') break; /* not all digits */ | ||||
603 | if (d>set->digits-1) { | ||||
604 | /* [NB: payload in a decNumber can be full length unless */ | ||||
605 | /* clamped, in which case can only be digits-1] */ | ||||
606 | if (set->clamp) break; | ||||
607 | if (d>set->digits) break; | ||||
608 | } /* too many digits? */ | ||||
609 | /* good; drop through to convert the integer to coefficient */ | ||||
610 | status=0; /* syntax is OK */ | ||||
611 | bits=dn->bits; /* for copy-back */ | ||||
612 | } /* last==NULL */ | ||||
613 | |||||
614 | else if (*c!='\0') { /* more to process... */ | ||||
615 | /* had some digits; exponent is only valid sequence now */ | ||||
616 | Flaguint8_t nege; /* 1=negative exponent */ | ||||
617 | const char *firstexp; /* -> first significant exponent digit */ | ||||
618 | status=DEC_Conversion_syntax0x00000001;/* assume the worst */ | ||||
619 | if (*c!='e' && *c!='E') break; | ||||
620 | /* Found 'e' or 'E' -- now process explicit exponent */ | ||||
621 | /* 1998.07.11: sign no longer required */ | ||||
622 | nege=0; | ||||
623 | c++; /* to (possible) sign */ | ||||
624 | if (*c=='-') {nege=1; c++;} | ||||
625 | else if (*c=='+') c++; | ||||
626 | if (*c=='\0') break; | ||||
627 | |||||
628 | for (; *c=='0' && *(c+1)!='\0';) c++; /* strip insignificant zeros */ | ||||
629 | firstexp=c; /* save exponent digit place */ | ||||
630 | uIntuint32_t uexponent = 0; /* Avoid undefined behavior on signed int overflow */ | ||||
631 | for (; ;c++) { | ||||
632 | if (*c<'0' || *c>'9') break; /* not a digit */ | ||||
633 | uexponent=X10(uexponent)(((uexponent)<<1)+((uexponent)<<3))+(uIntuint32_t)*c-(uIntuint32_t)'0'; | ||||
634 | } /* c */ | ||||
635 | exponent = (Intint32_t)uexponent; | ||||
636 | /* if not now on a '\0', *c must not be a digit */ | ||||
637 | if (*c!='\0') break; | ||||
638 | |||||
639 | /* (this next test must be after the syntax checks) */ | ||||
640 | /* if it was too long the exponent may have wrapped, so check */ | ||||
641 | /* carefully and set it to a certain overflow if wrap possible */ | ||||
642 | if (c>=firstexp+9+1) { | ||||
643 | if (c>firstexp+9+1 || *firstexp>'1') exponent=DECNUMMAXE999999999*2; | ||||
644 | /* [up to 1999999999 is OK, for example 1E-1000000998] */ | ||||
645 | } | ||||
646 | if (nege) exponent=-exponent; /* was negative */ | ||||
647 | status=0; /* is OK */ | ||||
648 | } /* stuff after digits */ | ||||
649 | |||||
650 | /* Here when whole string has been inspected; syntax is good */ | ||||
651 | /* cfirst->first digit (never dot), last->last digit (ditto) */ | ||||
652 | |||||
653 | /* strip leading zeros/dot [leave final 0 if all 0's] */ | ||||
654 | if (*cfirst=='0') { /* [cfirst has stepped over .] */ | ||||
655 | for (c=cfirst; c<last; c++, cfirst++) { | ||||
656 | if (*c=='.') continue; /* ignore dots */ | ||||
657 | if (*c!='0') break; /* non-zero found */ | ||||
658 | d--; /* 0 stripped */ | ||||
659 | } /* c */ | ||||
660 | #if DECSUBSET0 | ||||
661 | /* make a rapid exit for easy zeros if !extended */ | ||||
662 | if (*cfirst=='0' && !set->extended) { | ||||
663 | uprv_decNumberZerouprv_decNumberZero_71(dn); /* clean result */ | ||||
664 | break; /* [could be return] */ | ||||
665 | } | ||||
666 | #endif | ||||
667 | } /* at least one leading 0 */ | ||||
668 | |||||
669 | /* Handle decimal point... */ | ||||
670 | if (dotchar!=NULL__null && dotchar<last) /* non-trailing '.' found? */ | ||||
671 | exponent -= static_cast<int32_t>(last-dotchar); /* adjust exponent */ | ||||
672 | /* [we can now ignore the .] */ | ||||
673 | |||||
674 | /* OK, the digits string is good. Assemble in the decNumber, or in */ | ||||
675 | /* a temporary units array if rounding is needed */ | ||||
676 | if (d<=set->digits) res=dn->lsu; /* fits into supplied decNumber */ | ||||
677 | else { /* rounding needed */ | ||||
678 | Intint32_t needbytes=D2U(d)((d)<=49?d2utable[d]:((d)+1 -1)/1)*sizeof(Unituint8_t);/* bytes needed */ | ||||
679 | res=resbuff; /* assume use local buffer */ | ||||
680 | if (needbytes>(Intint32_t)sizeof(resbuff)) { /* too big for local */ | ||||
681 | allocres=(Unituint8_t *)malloc(needbytes)uprv_malloc_71(needbytes); | ||||
682 | if (allocres==NULL__null) {status|=DEC_Insufficient_storage0x00000010; break;} | ||||
683 | res=allocres; | ||||
684 | } | ||||
685 | } | ||||
686 | /* res now -> number lsu, buffer, or allocated storage for Unit array */ | ||||
687 | |||||
688 | /* Place the coefficient into the selected Unit array */ | ||||
689 | /* [this is often 70% of the cost of this function when DECDPUN>1] */ | ||||
690 | #if DECDPUN1>1 | ||||
691 | out=0; /* accumulator */ | ||||
692 | up=res+D2U(d)((d)<=49?d2utable[d]:((d)+1 -1)/1)-1; /* -> msu */ | ||||
693 | cut=d-(up-res)*DECDPUN1; /* digits in top unit */ | ||||
694 | for (c=cfirst;; c++) { /* along the digits */ | ||||
695 | if (*c=='.') continue; /* ignore '.' [don't decrement cut] */ | ||||
696 | out=X10(out)(((out)<<1)+((out)<<3))+(Intint32_t)*c-(Intint32_t)'0'; | ||||
697 | if (c==last) break; /* done [never get to trailing '.'] */ | ||||
698 | cut--; | ||||
699 | if (cut>0) continue; /* more for this unit */ | ||||
700 | *up=(Unituint8_t)out; /* write unit */ | ||||
701 | up--; /* prepare for unit below.. */ | ||||
702 | cut=DECDPUN1; /* .. */ | ||||
703 | out=0; /* .. */ | ||||
704 | } /* c */ | ||||
705 | *up=(Unituint8_t)out; /* write lsu */ | ||||
706 | |||||
707 | #else | ||||
708 | /* DECDPUN==1 */ | ||||
709 | up=res; /* -> lsu */ | ||||
710 | for (c=last; c>=cfirst; c--) { /* over each character, from least */ | ||||
711 | if (*c=='.') continue; /* ignore . [don't step up] */ | ||||
712 | *up=(Unituint8_t)((Intint32_t)*c-(Intint32_t)'0'); | ||||
713 | up++; | ||||
714 | } /* c */ | ||||
715 | #endif | ||||
716 | |||||
717 | dn->bits=bits; | ||||
718 | dn->exponent=exponent; | ||||
719 | dn->digits=d; | ||||
720 | |||||
721 | /* if not in number (too long) shorten into the number */ | ||||
722 | if (d>set->digits) { | ||||
723 | residue=0; | ||||
724 | decSetCoeff(dn, set, res, d, &residue, &status); | ||||
725 | /* always check for overflow or subnormal and round as needed */ | ||||
726 | decFinalize(dn, set, &residue, &status); | ||||
727 | } | ||||
728 | else { /* no rounding, but may still have overflow or subnormal */ | ||||
729 | /* [these tests are just for performance; finalize repeats them] */ | ||||
730 | if ((dn->exponent-1<set->emin-dn->digits) | ||||
731 | || (dn->exponent-1>set->emax-set->digits)) { | ||||
732 | residue=0; | ||||
733 | decFinalize(dn, set, &residue, &status); | ||||
734 | } | ||||
735 | } | ||||
736 | /* decNumberShow(dn); */ | ||||
737 | } while(0); /* [for break] */ | ||||
738 | |||||
739 | if (allocres!=NULL__null) free(allocres)uprv_free_71(allocres); /* drop any storage used */ | ||||
740 | if (status!=0) decStatus(dn, status, set); | ||||
741 | return dn; | ||||
742 | } /* decNumberFromString */ | ||||
743 | |||||
744 | /* ================================================================== */ | ||||
745 | /* Operators */ | ||||
746 | /* ================================================================== */ | ||||
747 | |||||
748 | /* ------------------------------------------------------------------ */ | ||||
749 | /* decNumberAbs -- absolute value operator */ | ||||
750 | /* */ | ||||
751 | /* This computes C = abs(A) */ | ||||
752 | /* */ | ||||
753 | /* res is C, the result. C may be A */ | ||||
754 | /* rhs is A */ | ||||
755 | /* set is the context */ | ||||
756 | /* */ | ||||
757 | /* See also decNumberCopyAbs for a quiet bitwise version of this. */ | ||||
758 | /* C must have space for set->digits digits. */ | ||||
759 | /* ------------------------------------------------------------------ */ | ||||
760 | /* This has the same effect as decNumberPlus unless A is negative, */ | ||||
761 | /* in which case it has the same effect as decNumberMinus. */ | ||||
762 | /* ------------------------------------------------------------------ */ | ||||
763 | U_CAPIextern "C" decNumber * U_EXPORT2 uprv_decNumberAbsuprv_decNumberAbs_71(decNumber *res, const decNumber *rhs, | ||||
764 | decContext *set) { | ||||
765 | decNumber dzero; /* for 0 */ | ||||
766 | uIntuint32_t status=0; /* accumulator */ | ||||
767 | |||||
768 | #if DECCHECK0 | ||||
769 | if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; | ||||
770 | #endif | ||||
771 | |||||
772 | uprv_decNumberZerouprv_decNumberZero_71(&dzero); /* set 0 */ | ||||
773 | dzero.exponent=rhs->exponent; /* [no coefficient expansion] */ | ||||
774 | decAddOp(res, &dzero, rhs, set, (uByteuint8_t)(rhs->bits & DECNEG0x80), &status); | ||||
775 | if (status!=0) decStatus(res, status, set); | ||||
776 | #if DECCHECK0 | ||||
777 | decCheckInexact(res, set); | ||||
778 | #endif | ||||
779 | return res; | ||||
780 | } /* decNumberAbs */ | ||||
781 | |||||
782 | /* ------------------------------------------------------------------ */ | ||||
783 | /* decNumberAdd -- add two Numbers */ | ||||
784 | /* */ | ||||
785 | /* This computes C = A + B */ | ||||
786 | /* */ | ||||
787 | /* res is C, the result. C may be A and/or B (e.g., X=X+X) */ | ||||
788 | /* lhs is A */ | ||||
789 | /* rhs is B */ | ||||
790 | /* set is the context */ | ||||
791 | /* */ | ||||
792 | /* C must have space for set->digits digits. */ | ||||
793 | /* ------------------------------------------------------------------ */ | ||||
794 | /* This just calls the routine shared with Subtract */ | ||||
795 | U_CAPIextern "C" decNumber * U_EXPORT2 uprv_decNumberAdduprv_decNumberAdd_71(decNumber *res, const decNumber *lhs, | ||||
796 | const decNumber *rhs, decContext *set) { | ||||
797 | uIntuint32_t status=0; /* accumulator */ | ||||
798 | decAddOp(res, lhs, rhs, set, 0, &status); | ||||
799 | if (status!=0) decStatus(res, status, set); | ||||
800 | #if DECCHECK0 | ||||
801 | decCheckInexact(res, set); | ||||
802 | #endif | ||||
803 | return res; | ||||
804 | } /* decNumberAdd */ | ||||
805 | |||||
806 | /* ------------------------------------------------------------------ */ | ||||
807 | /* decNumberAnd -- AND two Numbers, digitwise */ | ||||
808 | /* */ | ||||
809 | /* This computes C = A & B */ | ||||
810 | /* */ | ||||
811 | /* res is C, the result. C may be A and/or B (e.g., X=X&X) */ | ||||
812 | /* lhs is A */ | ||||
813 | /* rhs is B */ | ||||
814 | /* set is the context (used for result length and error report) */ | ||||
815 | /* */ | ||||
816 | /* C must have space for set->digits digits. */ | ||||
817 | /* */ | ||||
818 | /* Logical function restrictions apply (see above); a NaN is */ | ||||
819 | /* returned with Invalid_operation if a restriction is violated. */ | ||||
820 | /* ------------------------------------------------------------------ */ | ||||
821 | U_CAPIextern "C" decNumber * U_EXPORT2 uprv_decNumberAnduprv_decNumberAnd_71(decNumber *res, const decNumber *lhs, | ||||
822 | const decNumber *rhs, decContext *set) { | ||||
823 | const Unituint8_t *ua, *ub; /* -> operands */ | ||||
824 | const Unituint8_t *msua, *msub; /* -> operand msus */ | ||||
825 | Unituint8_t *uc, *msuc; /* -> result and its msu */ | ||||
826 | Intint32_t msudigs; /* digits in res msu */ | ||||
827 | #if DECCHECK0 | ||||
828 | if (decCheckOperands(res, lhs, rhs, set)) return res; | ||||
829 | #endif | ||||
830 | |||||
831 | if (lhs->exponent!=0 || decNumberIsSpecial(lhs)(((lhs)->bits&(0x40|0x20|0x10))!=0) || decNumberIsNegative(lhs)(((lhs)->bits&0x80)!=0) | ||||
832 | || rhs->exponent!=0 || decNumberIsSpecial(rhs)(((rhs)->bits&(0x40|0x20|0x10))!=0) || decNumberIsNegative(rhs)(((rhs)->bits&0x80)!=0)) { | ||||
833 | decStatus(res, DEC_Invalid_operation0x00000080, set); | ||||
834 | return res; | ||||
835 | } | ||||
836 | |||||
837 | /* operands are valid */ | ||||
838 | ua=lhs->lsu; /* bottom-up */ | ||||
839 | ub=rhs->lsu; /* .. */ | ||||
840 | uc=res->lsu; /* .. */ | ||||
841 | msua=ua+D2U(lhs->digits)((lhs->digits)<=49?d2utable[lhs->digits]:((lhs->digits )+1 -1)/1)-1; /* -> msu of lhs */ | ||||
842 | msub=ub+D2U(rhs->digits)((rhs->digits)<=49?d2utable[rhs->digits]:((rhs->digits )+1 -1)/1)-1; /* -> msu of rhs */ | ||||
843 | msuc=uc+D2U(set->digits)((set->digits)<=49?d2utable[set->digits]:((set->digits )+1 -1)/1)-1; /* -> msu of result */ | ||||
844 | msudigs=MSUDIGITS(set->digits)((set->digits)-(((set->digits)<=49?d2utable[set-> digits]:((set->digits)+1 -1)/1)-1)*1); /* [faster than remainder] */ | ||||
845 | for (; uc<=msuc; ua++, ub++, uc++) { /* Unit loop */ | ||||
846 | Unituint8_t a, b; /* extract units */ | ||||
847 | if (ua>msua) a=0; | ||||
848 | else a=*ua; | ||||
849 | if (ub>msub) b=0; | ||||
850 | else b=*ub; | ||||
851 | *uc=0; /* can now write back */ | ||||
852 | if (a|b) { /* maybe 1 bits to examine */ | ||||
853 | Intint32_t i, j; | ||||
854 | *uc=0; /* can now write back */ | ||||
855 | /* This loop could be unrolled and/or use BIN2BCD tables */ | ||||
856 | for (i=0; i<DECDPUN1; i++) { | ||||
857 | if (a&b&1) *uc=*uc+(Unituint8_t)powersDECPOWERS[i]; /* effect AND */ | ||||
858 | j=a%10; | ||||
859 | a=a/10; | ||||
860 | j|=b%10; | ||||
861 | b=b/10; | ||||
862 | if (j>1) { | ||||
863 | decStatus(res, DEC_Invalid_operation0x00000080, set); | ||||
864 | return res; | ||||
865 | } | ||||
866 | if (uc==msuc && i==msudigs-1) break; /* just did final digit */ | ||||
867 | } /* each digit */ | ||||
868 | } /* both OK */ | ||||
869 | } /* each unit */ | ||||
870 | /* [here uc-1 is the msu of the result] */ | ||||
871 | res->digits=decGetDigits(res->lsu, static_cast<int32_t>(uc - res->lsu)); | ||||
872 | res->exponent=0; /* integer */ | ||||
873 | res->bits=0; /* sign=0 */ | ||||
874 | return res; /* [no status to set] */ | ||||
875 | } /* decNumberAnd */ | ||||
876 | |||||
877 | /* ------------------------------------------------------------------ */ | ||||
878 | /* decNumberCompare -- compare two Numbers */ | ||||
879 | /* */ | ||||
880 | /* This computes C = A ? B */ | ||||
881 | /* */ | ||||
882 | /* res is C, the result. C may be A and/or B (e.g., X=X?X) */ | ||||
883 | /* lhs is A */ | ||||
884 | /* rhs is B */ | ||||
885 | /* set is the context */ | ||||
886 | /* */ | ||||
887 | /* C must have space for one digit (or NaN). */ | ||||
888 | /* ------------------------------------------------------------------ */ | ||||
889 | U_CAPIextern "C" decNumber * U_EXPORT2 uprv_decNumberCompareuprv_decNumberCompare_71(decNumber *res, const decNumber *lhs, | ||||
890 | const decNumber *rhs, decContext *set) { | ||||
891 | uIntuint32_t status=0; /* accumulator */ | ||||
892 | decCompareOp(res, lhs, rhs, set, COMPARE0x01, &status); | ||||
893 | if (status!=0) decStatus(res, status, set); | ||||
894 | return res; | ||||
895 | } /* decNumberCompare */ | ||||
896 | |||||
897 | /* ------------------------------------------------------------------ */ | ||||
898 | /* decNumberCompareSignal -- compare, signalling on all NaNs */ | ||||
899 | /* */ | ||||
900 | /* This computes C = A ? B */ | ||||
901 | /* */ | ||||
902 | /* res is C, the result. C may be A and/or B (e.g., X=X?X) */ | ||||
903 | /* lhs is A */ | ||||
904 | /* rhs is B */ | ||||
905 | /* set is the context */ | ||||
906 | /* */ | ||||
907 | /* C must have space for one digit (or NaN). */ | ||||
908 | /* ------------------------------------------------------------------ */ | ||||
909 | U_CAPIextern "C" decNumber * U_EXPORT2 uprv_decNumberCompareSignaluprv_decNumberCompareSignal_71(decNumber *res, const decNumber *lhs, | ||||
910 | const decNumber *rhs, decContext *set) { | ||||
911 | uIntuint32_t status=0; /* accumulator */ | ||||
912 | decCompareOp(res, lhs, rhs, set, COMPSIG0x06, &status); | ||||
913 | if (status!=0) decStatus(res, status, set); | ||||
914 | return res; | ||||
915 | } /* decNumberCompareSignal */ | ||||
916 | |||||
917 | /* ------------------------------------------------------------------ */ | ||||
918 | /* decNumberCompareTotal -- compare two Numbers, using total ordering */ | ||||
919 | /* */ | ||||
920 | /* This computes C = A ? B, under total ordering */ | ||||
921 | /* */ | ||||
922 | /* res is C, the result. C may be A and/or B (e.g., X=X?X) */ | ||||
923 | /* lhs is A */ | ||||
924 | /* rhs is B */ | ||||
925 | /* set is the context */ | ||||
926 | /* */ | ||||
927 | /* C must have space for one digit; the result will always be one of */ | ||||
928 | /* -1, 0, or 1. */ | ||||
929 | /* ------------------------------------------------------------------ */ | ||||
930 | U_CAPIextern "C" decNumber * U_EXPORT2 uprv_decNumberCompareTotaluprv_decNumberCompareTotal_71(decNumber *res, const decNumber *lhs, | ||||
931 | const decNumber *rhs, decContext *set) { | ||||
932 | uIntuint32_t status=0; /* accumulator */ | ||||
933 | decCompareOp(res, lhs, rhs, set, COMPTOTAL0x04, &status); | ||||
934 | if (status!=0) decStatus(res, status, set); | ||||
935 | return res; | ||||
936 | } /* decNumberCompareTotal */ | ||||
937 | |||||
938 | /* ------------------------------------------------------------------ */ | ||||
939 | /* decNumberCompareTotalMag -- compare, total ordering of magnitudes */ | ||||
940 | /* */ | ||||
941 | /* This computes C = |A| ? |B|, under total ordering */ | ||||
942 | /* */ | ||||
943 | /* res is C, the result. C may be A and/or B (e.g., X=X?X) */ | ||||
944 | /* lhs is A */ | ||||
945 | /* rhs is B */ | ||||
946 | /* set is the context */ | ||||
947 | /* */ | ||||
948 | /* C must have space for one digit; the result will always be one of */ | ||||
949 | /* -1, 0, or 1. */ | ||||
950 | /* ------------------------------------------------------------------ */ | ||||
951 | U_CAPIextern "C" decNumber * U_EXPORT2 uprv_decNumberCompareTotalMaguprv_decNumberCompareTotalMag_71(decNumber *res, const decNumber *lhs, | ||||
952 | const decNumber *rhs, decContext *set) { | ||||
953 | uIntuint32_t status=0; /* accumulator */ | ||||
954 | uIntuint32_t needbytes; /* for space calculations */ | ||||
955 | decNumber bufa[D2N(DECBUFFER+1)(((((((36 +1)+1 -1)/1)-1)*sizeof(uint8_t))+sizeof(decNumber)* 2-1)/sizeof(decNumber))];/* +1 in case DECBUFFER=0 */ | ||||
956 | decNumber *allocbufa=NULL__null; /* -> allocated bufa, iff allocated */ | ||||
957 | decNumber bufb[D2N(DECBUFFER+1)(((((((36 +1)+1 -1)/1)-1)*sizeof(uint8_t))+sizeof(decNumber)* 2-1)/sizeof(decNumber))]; | ||||
958 | decNumber *allocbufb=NULL__null; /* -> allocated bufb, iff allocated */ | ||||
959 | decNumber *a, *b; /* temporary pointers */ | ||||
960 | |||||
961 | #if DECCHECK0 | ||||
962 | if (decCheckOperands(res, lhs, rhs, set)) return res; | ||||
963 | #endif | ||||
964 | |||||
965 | do { /* protect allocated storage */ | ||||
966 | /* if either is negative, take a copy and absolute */ | ||||
967 | if (decNumberIsNegative(lhs)(((lhs)->bits&0x80)!=0)) { /* lhs<0 */ | ||||
968 | a=bufa; | ||||
969 | needbytes=sizeof(decNumber)+(D2U(lhs->digits)((lhs->digits)<=49?d2utable[lhs->digits]:((lhs->digits )+1 -1)/1)-1)*sizeof(Unituint8_t); | ||||
970 | if (needbytes>sizeof(bufa)) { /* need malloc space */ | ||||
971 | allocbufa=(decNumber *)malloc(needbytes)uprv_malloc_71(needbytes); | ||||
972 | if (allocbufa==NULL__null) { /* hopeless -- abandon */ | ||||
973 | status|=DEC_Insufficient_storage0x00000010; | ||||
974 | break;} | ||||
975 | a=allocbufa; /* use the allocated space */ | ||||
976 | } | ||||
977 | uprv_decNumberCopyuprv_decNumberCopy_71(a, lhs); /* copy content */ | ||||
978 | a->bits&=~DECNEG0x80; /* .. and clear the sign */ | ||||
979 | lhs=a; /* use copy from here on */ | ||||
980 | } | ||||
981 | if (decNumberIsNegative(rhs)(((rhs)->bits&0x80)!=0)) { /* rhs<0 */ | ||||
982 | b=bufb; | ||||
983 | needbytes=sizeof(decNumber)+(D2U(rhs->digits)((rhs->digits)<=49?d2utable[rhs->digits]:((rhs->digits )+1 -1)/1)-1)*sizeof(Unituint8_t); | ||||
984 | if (needbytes>sizeof(bufb)) { /* need malloc space */ | ||||
985 | allocbufb=(decNumber *)malloc(needbytes)uprv_malloc_71(needbytes); | ||||
986 | if (allocbufb==NULL__null) { /* hopeless -- abandon */ | ||||
987 | status|=DEC_Insufficient_storage0x00000010; | ||||
988 | break;} | ||||
989 | b=allocbufb; /* use the allocated space */ | ||||
990 | } | ||||
991 | uprv_decNumberCopyuprv_decNumberCopy_71(b, rhs); /* copy content */ | ||||
992 | b->bits&=~DECNEG0x80; /* .. and clear the sign */ | ||||
993 | rhs=b; /* use copy from here on */ | ||||
994 | } | ||||
995 | decCompareOp(res, lhs, rhs, set, COMPTOTAL0x04, &status); | ||||
996 | } while(0); /* end protected */ | ||||
997 | |||||
998 | if (allocbufa!=NULL__null) free(allocbufa)uprv_free_71(allocbufa); /* drop any storage used */ | ||||
999 | if (allocbufb!=NULL__null) free(allocbufb)uprv_free_71(allocbufb); /* .. */ | ||||
1000 | if (status!=0) decStatus(res, status, set); | ||||
1001 | return res; | ||||
1002 | } /* decNumberCompareTotalMag */ | ||||
1003 | |||||
1004 | /* ------------------------------------------------------------------ */ | ||||
1005 | /* decNumberDivide -- divide one number by another */ | ||||
1006 | /* */ | ||||
1007 | /* This computes C = A / B */ | ||||
1008 | /* */ | ||||
1009 | /* res is C, the result. C may be A and/or B (e.g., X=X/X) */ | ||||
1010 | /* lhs is A */ | ||||
1011 | /* rhs is B */ | ||||
1012 | /* set is the context */ | ||||
1013 | /* */ | ||||
1014 | /* C must have space for set->digits digits. */ | ||||
1015 | /* ------------------------------------------------------------------ */ | ||||
1016 | U_CAPIextern "C" decNumber * U_EXPORT2 uprv_decNumberDivideuprv_decNumberDivide_71(decNumber *res, const decNumber *lhs, | ||||
1017 | const decNumber *rhs, decContext *set) { | ||||
1018 | uIntuint32_t status=0; /* accumulator */ | ||||
1019 | decDivideOp(res, lhs, rhs, set, DIVIDE0x80, &status); | ||||
1020 | if (status!=0) decStatus(res, status, set); | ||||
1021 | #if DECCHECK0 | ||||
1022 | decCheckInexact(res, set); | ||||
1023 | #endif | ||||
1024 | return res; | ||||
1025 | } /* decNumberDivide */ | ||||
1026 | |||||
1027 | /* ------------------------------------------------------------------ */ | ||||
1028 | /* decNumberDivideInteger -- divide and return integer quotient */ | ||||
1029 | /* */ | ||||
1030 | /* This computes C = A # B, where # is the integer divide operator */ | ||||
1031 | /* */ | ||||
1032 | /* res is C, the result. C may be A and/or B (e.g., X=X#X) */ | ||||
1033 | /* lhs is A */ | ||||
1034 | /* rhs is B */ | ||||
1035 | /* set is the context */ | ||||
1036 | /* */ | ||||
1037 | /* C must have space for set->digits digits. */ | ||||
1038 | /* ------------------------------------------------------------------ */ | ||||
1039 | U_CAPIextern "C" decNumber * U_EXPORT2 uprv_decNumberDivideIntegeruprv_decNumberDivideInteger_71(decNumber *res, const decNumber *lhs, | ||||
1040 | const decNumber *rhs, decContext *set) { | ||||
1041 | uIntuint32_t status=0; /* accumulator */ | ||||
1042 | decDivideOp(res, lhs, rhs, set, DIVIDEINT0x20, &status); | ||||
1043 | if (status!=0) decStatus(res, status, set); | ||||
1044 | return res; | ||||
1045 | } /* decNumberDivideInteger */ | ||||
1046 | |||||
1047 | /* ------------------------------------------------------------------ */ | ||||
1048 | /* decNumberExp -- exponentiation */ | ||||
1049 | /* */ | ||||
1050 | /* This computes C = exp(A) */ | ||||
1051 | /* */ | ||||
1052 | /* res is C, the result. C may be A */ | ||||
1053 | /* rhs is A */ | ||||
1054 | /* set is the context; note that rounding mode has no effect */ | ||||
1055 | /* */ | ||||
1056 | /* C must have space for set->digits digits. */ | ||||
1057 | /* */ | ||||
1058 | /* Mathematical function restrictions apply (see above); a NaN is */ | ||||
1059 | /* returned with Invalid_operation if a restriction is violated. */ | ||||
1060 | /* */ | ||||
1061 | /* Finite results will always be full precision and Inexact, except */ | ||||
1062 | /* when A is a zero or -Infinity (giving 1 or 0 respectively). */ | ||||
1063 | /* */ | ||||
1064 | /* An Inexact result is rounded using DEC_ROUND_HALF_EVEN; it will */ | ||||
1065 | /* almost always be correctly rounded, but may be up to 1 ulp in */ | ||||
1066 | /* error in rare cases. */ | ||||
1067 | /* ------------------------------------------------------------------ */ | ||||
1068 | /* This is a wrapper for decExpOp which can handle the slightly wider */ | ||||
1069 | /* (double) range needed by Ln (which has to be able to calculate */ | ||||
1070 | /* exp(-a) where a can be the tiniest number (Ntiny). */ | ||||
1071 | /* ------------------------------------------------------------------ */ | ||||
1072 | U_CAPIextern "C" decNumber * U_EXPORT2 uprv_decNumberExpuprv_decNumberExp_71(decNumber *res, const decNumber *rhs, | ||||
1073 | decContext *set) { | ||||
1074 | uIntuint32_t status=0; /* accumulator */ | ||||
1075 | #if DECSUBSET0 | ||||
1076 | decNumber *allocrhs=NULL__null; /* non-NULL if rounded rhs allocated */ | ||||
1077 | #endif | ||||
1078 | |||||
1079 | #if DECCHECK0 | ||||
1080 | if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; | ||||
1081 | #endif | ||||
1082 | |||||
1083 | /* Check restrictions; these restrictions ensure that if h=8 (see */ | ||||
1084 | /* decExpOp) then the result will either overflow or underflow to 0. */ | ||||
1085 | /* Other math functions restrict the input range, too, for inverses. */ | ||||
1086 | /* If not violated then carry out the operation. */ | ||||
1087 | if (!decCheckMath(rhs, set, &status)) do { /* protect allocation */ | ||||
1088 | #if DECSUBSET0 | ||||
1089 | if (!set->extended) { | ||||
1090 | /* reduce operand and set lostDigits status, as needed */ | ||||
1091 | if (rhs->digits>set->digits) { | ||||
1092 | allocrhs=decRoundOperand(rhs, set, &status); | ||||
1093 | if (allocrhs==NULL__null) break; | ||||
1094 | rhs=allocrhs; | ||||
1095 | } | ||||
1096 | } | ||||
1097 | #endif | ||||
1098 | decExpOp(res, rhs, set, &status); | ||||
1099 | } while(0); /* end protected */ | ||||
1100 | |||||
1101 | #if DECSUBSET0 | ||||
1102 | if (allocrhs !=NULL__null) free(allocrhs)uprv_free_71(allocrhs); /* drop any storage used */ | ||||
1103 | #endif | ||||
1104 | /* apply significant status */ | ||||
1105 | if (status!=0) decStatus(res, status, set); | ||||
1106 | #if DECCHECK0 | ||||
1107 | decCheckInexact(res, set); | ||||
1108 | #endif | ||||
1109 | return res; | ||||
1110 | } /* decNumberExp */ | ||||
1111 | |||||
1112 | /* ------------------------------------------------------------------ */ | ||||
1113 | /* decNumberFMA -- fused multiply add */ | ||||
1114 | /* */ | ||||
1115 | /* This computes D = (A * B) + C with only one rounding */ | ||||
1116 | /* */ | ||||
1117 | /* res is D, the result. D may be A or B or C (e.g., X=FMA(X,X,X)) */ | ||||
1118 | /* lhs is A */ | ||||
1119 | /* rhs is B */ | ||||
1120 | /* fhs is C [far hand side] */ | ||||
1121 | /* set is the context */ | ||||
1122 | /* */ | ||||
1123 | /* Mathematical function restrictions apply (see above); a NaN is */ | ||||
1124 | /* returned with Invalid_operation if a restriction is violated. */ | ||||
1125 | /* */ | ||||
1126 | /* C must have space for set->digits digits. */ | ||||
1127 | /* ------------------------------------------------------------------ */ | ||||
1128 | U_CAPIextern "C" decNumber * U_EXPORT2 uprv_decNumberFMAuprv_decNumberFMA_71(decNumber *res, const decNumber *lhs, | ||||
1129 | const decNumber *rhs, const decNumber *fhs, | ||||
1130 | decContext *set) { | ||||
1131 | uIntuint32_t status=0; /* accumulator */ | ||||
1132 | decContext dcmul; /* context for the multiplication */ | ||||
1133 | uIntuint32_t needbytes; /* for space calculations */ | ||||
1134 | decNumber bufa[D2N(DECBUFFER*2+1)(((((((36*2+1)+1 -1)/1)-1)*sizeof(uint8_t))+sizeof(decNumber) *2-1)/sizeof(decNumber))]; | ||||
1135 | decNumber *allocbufa=NULL__null; /* -> allocated bufa, iff allocated */ | ||||
1136 | decNumber *acc; /* accumulator pointer */ | ||||
1137 | decNumber dzero; /* work */ | ||||
1138 | |||||
1139 | #if DECCHECK0 | ||||
1140 | if (decCheckOperands(res, lhs, rhs, set)) return res; | ||||
1141 | if (decCheckOperands(res, fhs, DECUNUSED, set)) return res; | ||||
1142 | #endif | ||||
1143 | |||||
1144 | do { /* protect allocated storage */ | ||||
1145 | #if DECSUBSET0 | ||||
1146 | if (!set->extended) { /* [undefined if subset] */ | ||||
1147 | status|=DEC_Invalid_operation0x00000080; | ||||
1148 | break;} | ||||
1149 | #endif | ||||
1150 | /* Check math restrictions [these ensure no overflow or underflow] */ | ||||
1151 | if ((!decNumberIsSpecial(lhs)(((lhs)->bits&(0x40|0x20|0x10))!=0) && decCheckMath(lhs, set, &status)) | ||||
1152 | || (!decNumberIsSpecial(rhs)(((rhs)->bits&(0x40|0x20|0x10))!=0) && decCheckMath(rhs, set, &status)) | ||||
1153 | || (!decNumberIsSpecial(fhs)(((fhs)->bits&(0x40|0x20|0x10))!=0) && decCheckMath(fhs, set, &status))) break; | ||||
1154 | /* set up context for multiply */ | ||||
1155 | dcmul=*set; | ||||
1156 | dcmul.digits=lhs->digits+rhs->digits; /* just enough */ | ||||
1157 | /* [The above may be an over-estimate for subset arithmetic, but that's OK] */ | ||||
1158 | dcmul.emax=DEC_MAX_EMAX999999999; /* effectively unbounded .. */ | ||||
1159 | dcmul.emin=DEC_MIN_EMIN-999999999; /* [thanks to Math restrictions] */ | ||||
1160 | /* set up decNumber space to receive the result of the multiply */ | ||||
1161 | acc=bufa; /* may fit */ | ||||
1162 | needbytes=sizeof(decNumber)+(D2U(dcmul.digits)((dcmul.digits)<=49?d2utable[dcmul.digits]:((dcmul.digits) +1 -1)/1)-1)*sizeof(Unituint8_t); | ||||
1163 | if (needbytes>sizeof(bufa)) { /* need malloc space */ | ||||
1164 | allocbufa=(decNumber *)malloc(needbytes)uprv_malloc_71(needbytes); | ||||
1165 | if (allocbufa==NULL__null) { /* hopeless -- abandon */ | ||||
1166 | status|=DEC_Insufficient_storage0x00000010; | ||||
1167 | break;} | ||||
1168 | acc=allocbufa; /* use the allocated space */ | ||||
1169 | } | ||||
1170 | /* multiply with extended range and necessary precision */ | ||||
1171 | /*printf("emin=%ld\n", dcmul.emin); */ | ||||
1172 | decMultiplyOp(acc, lhs, rhs, &dcmul, &status); | ||||
1173 | /* Only Invalid operation (from sNaN or Inf * 0) is possible in */ | ||||
1174 | /* status; if either is seen than ignore fhs (in case it is */ | ||||
1175 | /* another sNaN) and set acc to NaN unless we had an sNaN */ | ||||
1176 | /* [decMultiplyOp leaves that to caller] */ | ||||
1177 | /* Note sNaN has to go through addOp to shorten payload if */ | ||||
1178 | /* necessary */ | ||||
1179 | if ((status&DEC_Invalid_operation0x00000080)!=0) { | ||||
1180 | if (!(status&DEC_sNaN0x40000000)) { /* but be true invalid */ | ||||
1181 | uprv_decNumberZerouprv_decNumberZero_71(res); /* acc not yet set */ | ||||
1182 | res->bits=DECNAN0x20; | ||||
1183 | break; | ||||
1184 | } | ||||
1185 | uprv_decNumberZerouprv_decNumberZero_71(&dzero); /* make 0 (any non-NaN would do) */ | ||||
1186 | fhs=&dzero; /* use that */ | ||||
1187 | } | ||||
1188 | #if DECCHECK0 | ||||
1189 | else { /* multiply was OK */ | ||||
1190 | if (status!=0) printf("Status=%08lx after FMA multiply\n", (LI)status); | ||||
1191 | } | ||||
1192 | #endif | ||||
1193 | /* add the third operand and result -> res, and all is done */ | ||||
1194 | decAddOp(res, acc, fhs, set, 0, &status); | ||||
1195 | } while(0); /* end protected */ | ||||
1196 | |||||
1197 | if (allocbufa!=NULL__null) free(allocbufa)uprv_free_71(allocbufa); /* drop any storage used */ | ||||
1198 | if (status!=0) decStatus(res, status, set); | ||||
1199 | #if DECCHECK0 | ||||
1200 | decCheckInexact(res, set); | ||||
1201 | #endif | ||||
1202 | return res; | ||||
1203 | } /* decNumberFMA */ | ||||
1204 | |||||
1205 | /* ------------------------------------------------------------------ */ | ||||
1206 | /* decNumberInvert -- invert a Number, digitwise */ | ||||
1207 | /* */ | ||||
1208 | /* This computes C = ~A */ | ||||
1209 | /* */ | ||||
1210 | /* res is C, the result. C may be A (e.g., X=~X) */ | ||||
1211 | /* rhs is A */ | ||||
1212 | /* set is the context (used for result length and error report) */ | ||||
1213 | /* */ | ||||
1214 | /* C must have space for set->digits digits. */ | ||||
1215 | /* */ | ||||
1216 | /* Logical function restrictions apply (see above); a NaN is */ | ||||
1217 | /* returned with Invalid_operation if a restriction is violated. */ | ||||
1218 | /* ------------------------------------------------------------------ */ | ||||
1219 | U_CAPIextern "C" decNumber * U_EXPORT2 uprv_decNumberInvertuprv_decNumberInvert_71(decNumber *res, const decNumber *rhs, | ||||
1220 | decContext *set) { | ||||
1221 | const Unituint8_t *ua, *msua; /* -> operand and its msu */ | ||||
1222 | Unituint8_t *uc, *msuc; /* -> result and its msu */ | ||||
1223 | Intint32_t msudigs; /* digits in res msu */ | ||||
1224 | #if DECCHECK0 | ||||
1225 | if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; | ||||
1226 | #endif | ||||
1227 | |||||
1228 | if (rhs->exponent!=0 || decNumberIsSpecial(rhs)(((rhs)->bits&(0x40|0x20|0x10))!=0) || decNumberIsNegative(rhs)(((rhs)->bits&0x80)!=0)) { | ||||
1229 | decStatus(res, DEC_Invalid_operation0x00000080, set); | ||||
1230 | return res; | ||||
1231 | } | ||||
1232 | /* operand is valid */ | ||||
1233 | ua=rhs->lsu; /* bottom-up */ | ||||
1234 | uc=res->lsu; /* .. */ | ||||
1235 | msua=ua+D2U(rhs->digits)((rhs->digits)<=49?d2utable[rhs->digits]:((rhs->digits )+1 -1)/1)-1; /* -> msu of rhs */ | ||||
1236 | msuc=uc+D2U(set->digits)((set->digits)<=49?d2utable[set->digits]:((set->digits )+1 -1)/1)-1; /* -> msu of result */ | ||||
1237 | msudigs=MSUDIGITS(set->digits)((set->digits)-(((set->digits)<=49?d2utable[set-> digits]:((set->digits)+1 -1)/1)-1)*1); /* [faster than remainder] */ | ||||
1238 | for (; uc<=msuc; ua++, uc++) { /* Unit loop */ | ||||
1239 | Unituint8_t a; /* extract unit */ | ||||
1240 | Intint32_t i, j; /* work */ | ||||
1241 | if (ua>msua) a=0; | ||||
1242 | else a=*ua; | ||||
1243 | *uc=0; /* can now write back */ | ||||
1244 | /* always need to examine all bits in rhs */ | ||||
1245 | /* This loop could be unrolled and/or use BIN2BCD tables */ | ||||
1246 | for (i=0; i<DECDPUN1; i++) { | ||||
1247 | if ((~a)&1) *uc=*uc+(Unituint8_t)powersDECPOWERS[i]; /* effect INVERT */ | ||||
1248 | j=a%10; | ||||
1249 | a=a/10; | ||||
1250 | if (j>1) { | ||||
1251 | decStatus(res, DEC_Invalid_operation0x00000080, set); | ||||
1252 | return res; | ||||
1253 | } | ||||
1254 | if (uc==msuc && i==msudigs-1) break; /* just did final digit */ | ||||
1255 | } /* each digit */ | ||||
1256 | } /* each unit */ | ||||
1257 | /* [here uc-1 is the msu of the result] */ | ||||
1258 | res->digits=decGetDigits(res->lsu, static_cast<int32_t>(uc - res->lsu)); | ||||
1259 | res->exponent=0; /* integer */ | ||||
1260 | res->bits=0; /* sign=0 */ | ||||
1261 | return res; /* [no status to set] */ | ||||
1262 | } /* decNumberInvert */ | ||||
1263 | |||||
1264 | /* ------------------------------------------------------------------ */ | ||||
1265 | /* decNumberLn -- natural logarithm */ | ||||
1266 | /* */ | ||||
1267 | /* This computes C = ln(A) */ | ||||
1268 | /* */ | ||||
1269 | /* res is C, the result. C may be A */ | ||||
1270 | /* rhs is A */ | ||||
1271 | /* set is the context; note that rounding mode has no effect */ | ||||
1272 | /* */ | ||||
1273 | /* C must have space for set->digits digits. */ | ||||
1274 | /* */ | ||||
1275 | /* Notable cases: */ | ||||
1276 | /* A<0 -> Invalid */ | ||||
1277 | /* A=0 -> -Infinity (Exact) */ | ||||
1278 | /* A=+Infinity -> +Infinity (Exact) */ | ||||
1279 | /* A=1 exactly -> 0 (Exact) */ | ||||
1280 | /* */ | ||||
1281 | /* Mathematical function restrictions apply (see above); a NaN is */ | ||||
1282 | /* returned with Invalid_operation if a restriction is violated. */ | ||||
1283 | /* */ | ||||
1284 | /* An Inexact result is rounded using DEC_ROUND_HALF_EVEN; it will */ | ||||
1285 | /* almost always be correctly rounded, but may be up to 1 ulp in */ | ||||
1286 | /* error in rare cases. */ | ||||
1287 | /* ------------------------------------------------------------------ */ | ||||
1288 | /* This is a wrapper for decLnOp which can handle the slightly wider */ | ||||
1289 | /* (+11) range needed by Ln, Log10, etc. (which may have to be able */ | ||||
1290 | /* to calculate at p+e+2). */ | ||||
1291 | /* ------------------------------------------------------------------ */ | ||||
1292 | U_CAPIextern "C" decNumber * U_EXPORT2 uprv_decNumberLnuprv_decNumberLn_71(decNumber *res, const decNumber *rhs, | ||||
1293 | decContext *set) { | ||||
1294 | uIntuint32_t status=0; /* accumulator */ | ||||
1295 | #if DECSUBSET0 | ||||
1296 | decNumber *allocrhs=NULL__null; /* non-NULL if rounded rhs allocated */ | ||||
1297 | #endif | ||||
1298 | |||||
1299 | #if DECCHECK0 | ||||
1300 | if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; | ||||
1301 | #endif | ||||
1302 | |||||
1303 | /* Check restrictions; this is a math function; if not violated */ | ||||
1304 | /* then carry out the operation. */ | ||||
1305 | if (!decCheckMath(rhs, set, &status)) do { /* protect allocation */ | ||||
1306 | #if DECSUBSET0 | ||||
1307 | if (!set->extended) { | ||||
1308 | /* reduce operand and set lostDigits status, as needed */ | ||||
1309 | if (rhs->digits>set->digits) { | ||||
1310 | allocrhs=decRoundOperand(rhs, set, &status); | ||||
1311 | if (allocrhs==NULL__null) break; | ||||
1312 | rhs=allocrhs; | ||||
1313 | } | ||||
1314 | /* special check in subset for rhs=0 */ | ||||
1315 | if (ISZERO(rhs)(*(rhs)->lsu==0 && (rhs)->digits==1 && ( ((rhs)->bits&(0x40|0x20|0x10))==0))) { /* +/- zeros -> error */ | ||||
1316 | status|=DEC_Invalid_operation0x00000080; | ||||
1317 | break;} | ||||
1318 | } /* extended=0 */ | ||||
1319 | #endif | ||||
1320 | decLnOp(res, rhs, set, &status); | ||||
1321 | } while(0); /* end protected */ | ||||
1322 | |||||
1323 | #if DECSUBSET0 | ||||
1324 | if (allocrhs !=NULL__null) free(allocrhs)uprv_free_71(allocrhs); /* drop any storage used */ | ||||
1325 | #endif | ||||
1326 | /* apply significant status */ | ||||
1327 | if (status!=0) decStatus(res, status, set); | ||||
1328 | #if DECCHECK0 | ||||
1329 | decCheckInexact(res, set); | ||||
1330 | #endif | ||||
1331 | return res; | ||||
1332 | } /* decNumberLn */ | ||||
1333 | |||||
1334 | /* ------------------------------------------------------------------ */ | ||||
1335 | /* decNumberLogB - get adjusted exponent, by 754 rules */ | ||||
1336 | /* */ | ||||
1337 | /* This computes C = adjustedexponent(A) */ | ||||
1338 | /* */ | ||||
1339 | /* res is C, the result. C may be A */ | ||||
1340 | /* rhs is A */ | ||||
1341 | /* set is the context, used only for digits and status */ | ||||
1342 | /* */ | ||||
1343 | /* C must have space for 10 digits (A might have 10**9 digits and */ | ||||
1344 | /* an exponent of +999999999, or one digit and an exponent of */ | ||||
1345 | /* -1999999999). */ | ||||
1346 | /* */ | ||||
1347 | /* This returns the adjusted exponent of A after (in theory) padding */ | ||||
1348 | /* with zeros on the right to set->digits digits while keeping the */ | ||||
1349 | /* same value. The exponent is not limited by emin/emax. */ | ||||
1350 | /* */ | ||||
1351 | /* Notable cases: */ | ||||
1352 | /* A<0 -> Use |A| */ | ||||
1353 | /* A=0 -> -Infinity (Division by zero) */ | ||||
1354 | /* A=Infinite -> +Infinity (Exact) */ | ||||
1355 | /* A=1 exactly -> 0 (Exact) */ | ||||
1356 | /* NaNs are propagated as usual */ | ||||
1357 | /* ------------------------------------------------------------------ */ | ||||
1358 | U_CAPIextern "C" decNumber * U_EXPORT2 uprv_decNumberLogBuprv_decNumberLogB_71(decNumber *res, const decNumber *rhs, | ||||
1359 | decContext *set) { | ||||
1360 | uIntuint32_t status=0; /* accumulator */ | ||||
1361 | |||||
1362 | #if DECCHECK0 | ||||
1363 | if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; | ||||
1364 | #endif | ||||
1365 | |||||
1366 | /* NaNs as usual; Infinities return +Infinity; 0->oops */ | ||||
1367 | if (decNumberIsNaN(rhs)(((rhs)->bits&(0x20|0x10))!=0)) decNaNs(res, rhs, NULL__null, set, &status); | ||||
1368 | else if (decNumberIsInfinite(rhs)(((rhs)->bits&0x40)!=0)) uprv_decNumberCopyAbsuprv_decNumberCopyAbs_71(res, rhs); | ||||
1369 | else if (decNumberIsZero(rhs)(*(rhs)->lsu==0 && (rhs)->digits==1 && ( ((rhs)->bits&(0x40|0x20|0x10))==0))) { | ||||
1370 | uprv_decNumberZerouprv_decNumberZero_71(res); /* prepare for Infinity */ | ||||
1371 | res->bits=DECNEG0x80|DECINF0x40; /* -Infinity */ | ||||
1372 | status|=DEC_Division_by_zero0x00000002; /* as per 754 */ | ||||
1373 | } | ||||
1374 | else { /* finite non-zero */ | ||||
1375 | Intint32_t ae=rhs->exponent+rhs->digits-1; /* adjusted exponent */ | ||||
1376 | uprv_decNumberFromInt32uprv_decNumberFromInt32_71(res, ae); /* lay it out */ | ||||
1377 | } | ||||
1378 | |||||
1379 | if (status!=0) decStatus(res, status, set); | ||||
1380 | return res; | ||||
1381 | } /* decNumberLogB */ | ||||
1382 | |||||
1383 | /* ------------------------------------------------------------------ */ | ||||
1384 | /* decNumberLog10 -- logarithm in base 10 */ | ||||
1385 | /* */ | ||||
1386 | /* This computes C = log10(A) */ | ||||
1387 | /* */ | ||||
1388 | /* res is C, the result. C may be A */ | ||||
1389 | /* rhs is A */ | ||||
1390 | /* set is the context; note that rounding mode has no effect */ | ||||
1391 | /* */ | ||||
1392 | /* C must have space for set->digits digits. */ | ||||
1393 | /* */ | ||||
1394 | /* Notable cases: */ | ||||
1395 | /* A<0 -> Invalid */ | ||||
1396 | /* A=0 -> -Infinity (Exact) */ | ||||
1397 | /* A=+Infinity -> +Infinity (Exact) */ | ||||
1398 | /* A=10**n (if n is an integer) -> n (Exact) */ | ||||
1399 | /* */ | ||||
1400 | /* Mathematical function restrictions apply (see above); a NaN is */ | ||||
1401 | /* returned with Invalid_operation if a restriction is violated. */ | ||||
1402 | /* */ | ||||
1403 | /* An Inexact result is rounded using DEC_ROUND_HALF_EVEN; it will */ | ||||
1404 | /* almost always be correctly rounded, but may be up to 1 ulp in */ | ||||
1405 | /* error in rare cases. */ | ||||
1406 | /* ------------------------------------------------------------------ */ | ||||
1407 | /* This calculates ln(A)/ln(10) using appropriate precision. For */ | ||||
1408 | /* ln(A) this is the max(p, rhs->digits + t) + 3, where p is the */ | ||||
1409 | /* requested digits and t is the number of digits in the exponent */ | ||||
1410 | /* (maximum 6). For ln(10) it is p + 3; this is often handled by the */ | ||||
1411 | /* fastpath in decLnOp. The final division is done to the requested */ | ||||
1412 | /* precision. */ | ||||
1413 | /* ------------------------------------------------------------------ */ | ||||
1414 | #if defined(__clang__1) || U_GCC_MAJOR_MINOR(4 * 100 + 2) >= 406 | ||||
1415 | #pragma GCC diagnostic push | ||||
1416 | #pragma GCC diagnostic ignored "-Warray-bounds" | ||||
1417 | #endif | ||||
1418 | U_CAPIextern "C" decNumber * U_EXPORT2 uprv_decNumberLog10uprv_decNumberLog10_71(decNumber *res, const decNumber *rhs, | ||||
1419 | decContext *set) { | ||||
1420 | uIntuint32_t status=0, ignore=0; /* status accumulators */ | ||||
1421 | uIntuint32_t needbytes; /* for space calculations */ | ||||
1422 | Intint32_t p; /* working precision */ | ||||
1423 | Intint32_t t; /* digits in exponent of A */ | ||||
1424 | |||||
1425 | /* buffers for a and b working decimals */ | ||||
1426 | /* (adjustment calculator, same size) */ | ||||
1427 | decNumber bufa[D2N(DECBUFFER+2)(((((((36 +2)+1 -1)/1)-1)*sizeof(uint8_t))+sizeof(decNumber)* 2-1)/sizeof(decNumber))]; | ||||
1428 | decNumber *allocbufa=NULL__null; /* -> allocated bufa, iff allocated */ | ||||
1429 | decNumber *a=bufa; /* temporary a */ | ||||
1430 | decNumber bufb[D2N(DECBUFFER+2)(((((((36 +2)+1 -1)/1)-1)*sizeof(uint8_t))+sizeof(decNumber)* 2-1)/sizeof(decNumber))]; | ||||
1431 | decNumber *allocbufb=NULL__null; /* -> allocated bufb, iff allocated */ | ||||
1432 | decNumber *b=bufb; /* temporary b */ | ||||
1433 | decNumber bufw[D2N(10)(((((((10)+1 -1)/1)-1)*sizeof(uint8_t))+sizeof(decNumber)*2-1 )/sizeof(decNumber))]; /* working 2-10 digit number */ | ||||
1434 | decNumber *w=bufw; /* .. */ | ||||
1435 | #if DECSUBSET0 | ||||
1436 | decNumber *allocrhs=NULL__null; /* non-NULL if rounded rhs allocated */ | ||||
1437 | #endif | ||||
1438 | |||||
1439 | decContext aset; /* working context */ | ||||
1440 | |||||
1441 | #if DECCHECK0 | ||||
1442 | if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; | ||||
1443 | #endif | ||||
1444 | |||||
1445 | /* Check restrictions; this is a math function; if not violated */ | ||||
1446 | /* then carry out the operation. */ | ||||
1447 | if (!decCheckMath(rhs, set, &status)) do { /* protect malloc */ | ||||
1448 | #if DECSUBSET0 | ||||
1449 | if (!set->extended) { | ||||
1450 | /* reduce operand and set lostDigits status, as needed */ | ||||
1451 | if (rhs->digits>set->digits) { | ||||
1452 | allocrhs=decRoundOperand(rhs, set, &status); | ||||
1453 | if (allocrhs==NULL__null) break; | ||||
1454 | rhs=allocrhs; | ||||
1455 | } | ||||
1456 | /* special check in subset for rhs=0 */ | ||||
1457 | if (ISZERO(rhs)(*(rhs)->lsu==0 && (rhs)->digits==1 && ( ((rhs)->bits&(0x40|0x20|0x10))==0))) { /* +/- zeros -> error */ | ||||
1458 | status|=DEC_Invalid_operation0x00000080; | ||||
1459 | break;} | ||||
1460 | } /* extended=0 */ | ||||
1461 | #endif | ||||
1462 | |||||
1463 | uprv_decContextDefaultuprv_decContextDefault_71(&aset, DEC_INIT_DECIMAL6464); /* clean context */ | ||||
1464 | |||||
1465 | /* handle exact powers of 10; only check if +ve finite */ | ||||
1466 | if (!(rhs->bits&(DECNEG0x80|DECSPECIAL(0x40|0x20|0x10))) && !ISZERO(rhs)(*(rhs)->lsu==0 && (rhs)->digits==1 && ( ((rhs)->bits&(0x40|0x20|0x10))==0))) { | ||||
1467 | Intint32_t residue=0; /* (no residue) */ | ||||
1468 | uIntuint32_t copystat=0; /* clean status */ | ||||
1469 | |||||
1470 | /* round to a single digit... */ | ||||
1471 | aset.digits=1; | ||||
1472 | decCopyFit(w, rhs, &aset, &residue, ©stat); /* copy & shorten */ | ||||
1473 | /* if exact and the digit is 1, rhs is a power of 10 */ | ||||
1474 | if (!(copystat&DEC_Inexact0x00000020) && w->lsu[0]==1) { | ||||
1475 | /* the exponent, conveniently, is the power of 10; making */ | ||||
1476 | /* this the result needs a little care as it might not fit, */ | ||||
1477 | /* so first convert it into the working number, and then move */ | ||||
1478 | /* to res */ | ||||
1479 | uprv_decNumberFromInt32uprv_decNumberFromInt32_71(w, w->exponent); | ||||
1480 | residue=0; | ||||
1481 | decCopyFit(res, w, set, &residue, &status); /* copy & round */ | ||||
1482 | decFinish(res, set, &residue, &status)decFinalize(res,set,&residue,&status); /* cleanup/set flags */ | ||||
1483 | break; | ||||
1484 | } /* not a power of 10 */ | ||||
1485 | } /* not a candidate for exact */ | ||||
1486 | |||||
1487 | /* simplify the information-content calculation to use 'total */ | ||||
1488 | /* number of digits in a, including exponent' as compared to the */ | ||||
1489 | /* requested digits, as increasing this will only rarely cost an */ | ||||
1490 | /* iteration in ln(a) anyway */ | ||||
1491 | t=6; /* it can never be >6 */ | ||||
1492 | |||||
1493 | /* allocate space when needed... */ | ||||
1494 | p=(rhs->digits+t>set->digits?rhs->digits+t:set->digits)+3; | ||||
1495 | needbytes=sizeof(decNumber)+(D2U(p)((p)<=49?d2utable[p]:((p)+1 -1)/1)-1)*sizeof(Unituint8_t); | ||||
1496 | if (needbytes>sizeof(bufa)) { /* need malloc space */ | ||||
1497 | allocbufa=(decNumber *)malloc(needbytes)uprv_malloc_71(needbytes); | ||||
1498 | if (allocbufa==NULL__null) { /* hopeless -- abandon */ | ||||
1499 | status|=DEC_Insufficient_storage0x00000010; | ||||
1500 | break;} | ||||
1501 | a=allocbufa; /* use the allocated space */ | ||||
1502 | } | ||||
1503 | aset.digits=p; /* as calculated */ | ||||
1504 | aset.emax=DEC_MAX_MATH999999; /* usual bounds */ | ||||
1505 | aset.emin=-DEC_MAX_MATH999999; /* .. */ | ||||
1506 | aset.clamp=0; /* and no concrete format */ | ||||
1507 | decLnOp(a, rhs, &aset, &status); /* a=ln(rhs) */ | ||||
1508 | |||||
1509 | /* skip the division if the result so far is infinite, NaN, or */ | ||||
1510 | /* zero, or there was an error; note NaN from sNaN needs copy */ | ||||
1511 | if (status&DEC_NaNs(0x00000001 | 0x00000004 | 0x00000008 | 0x00000010 | 0x00000040 | 0x00000080) && !(status&DEC_sNaN0x40000000)) break; | ||||
1512 | if (a->bits&DECSPECIAL(0x40|0x20|0x10) || ISZERO(a)(*(a)->lsu==0 && (a)->digits==1 && (((a )->bits&(0x40|0x20|0x10))==0))) { | ||||
1513 | uprv_decNumberCopyuprv_decNumberCopy_71(res, a); /* [will fit] */ | ||||
1514 | break;} | ||||
1515 | |||||
1516 | /* for ln(10) an extra 3 digits of precision are needed */ | ||||
1517 | p=set->digits+3; | ||||
1518 | needbytes=sizeof(decNumber)+(D2U(p)((p)<=49?d2utable[p]:((p)+1 -1)/1)-1)*sizeof(Unituint8_t); | ||||
1519 | if (needbytes>sizeof(bufb)) { /* need malloc space */ | ||||
1520 | allocbufb=(decNumber *)malloc(needbytes)uprv_malloc_71(needbytes); | ||||
1521 | if (allocbufb==NULL__null) { /* hopeless -- abandon */ | ||||
1522 | status|=DEC_Insufficient_storage0x00000010; | ||||
1523 | break;} | ||||
1524 | b=allocbufb; /* use the allocated space */ | ||||
1525 | } | ||||
1526 | uprv_decNumberZerouprv_decNumberZero_71(w); /* set up 10... */ | ||||
1527 | #if DECDPUN1==1 | ||||
1528 | w->lsu[1]=1; w->lsu[0]=0; /* .. */ | ||||
1529 | #else | ||||
1530 | w->lsu[0]=10; /* .. */ | ||||
1531 | #endif | ||||
1532 | w->digits=2; /* .. */ | ||||
1533 | |||||
1534 | aset.digits=p; | ||||
1535 | decLnOp(b, w, &aset, &ignore); /* b=ln(10) */ | ||||
1536 | |||||
1537 | aset.digits=set->digits; /* for final divide */ | ||||
1538 | decDivideOp(res, a, b, &aset, DIVIDE0x80, &status); /* into result */ | ||||
1539 | } while(0); /* [for break] */ | ||||
1540 | |||||
1541 | if (allocbufa!=NULL__null) free(allocbufa)uprv_free_71(allocbufa); /* drop any storage used */ | ||||
1542 | if (allocbufb!=NULL__null) free(allocbufb)uprv_free_71(allocbufb); /* .. */ | ||||
1543 | #if DECSUBSET0 | ||||
1544 | if (allocrhs !=NULL__null) free(allocrhs)uprv_free_71(allocrhs); /* .. */ | ||||
1545 | #endif | ||||
1546 | /* apply significant status */ | ||||
1547 | if (status!=0) decStatus(res, status, set); | ||||
1548 | #if DECCHECK0 | ||||
1549 | decCheckInexact(res, set); | ||||
1550 | #endif | ||||
1551 | return res; | ||||
1552 | } /* decNumberLog10 */ | ||||
1553 | #if defined(__clang__1) || U_GCC_MAJOR_MINOR(4 * 100 + 2) >= 406 | ||||
1554 | #pragma GCC diagnostic pop | ||||
1555 | #endif | ||||
1556 | |||||
1557 | /* ------------------------------------------------------------------ */ | ||||
1558 | /* decNumberMax -- compare two Numbers and return the maximum */ | ||||
1559 | /* */ | ||||
1560 | /* This computes C = A ? B, returning the maximum by 754 rules */ | ||||
1561 | /* */ | ||||
1562 | /* res is C, the result. C may be A and/or B (e.g., X=X?X) */ | ||||
1563 | /* lhs is A */ | ||||
1564 | /* rhs is B */ | ||||
1565 | /* set is the context */ | ||||
1566 | /* */ | ||||
1567 | /* C must have space for set->digits digits. */ | ||||
1568 | /* ------------------------------------------------------------------ */ | ||||
1569 | U_CAPIextern "C" decNumber * U_EXPORT2 uprv_decNumberMaxuprv_decNumberMax_71(decNumber *res, const decNumber *lhs, | ||||
1570 | const decNumber *rhs, decContext *set) { | ||||
1571 | uIntuint32_t status=0; /* accumulator */ | ||||
1572 | decCompareOp(res, lhs, rhs, set, COMPMAX0x02, &status); | ||||
1573 | if (status!=0) decStatus(res, status, set); | ||||
1574 | #if DECCHECK0 | ||||
1575 | decCheckInexact(res, set); | ||||
1576 | #endif | ||||
1577 | return res; | ||||
1578 | } /* decNumberMax */ | ||||
1579 | |||||
1580 | /* ------------------------------------------------------------------ */ | ||||
1581 | /* decNumberMaxMag -- compare and return the maximum by magnitude */ | ||||
1582 | /* */ | ||||
1583 | /* This computes C = A ? B, returning the maximum by 754 rules */ | ||||
1584 | /* */ | ||||
1585 | /* res is C, the result. C may be A and/or B (e.g., X=X?X) */ | ||||
1586 | /* lhs is A */ | ||||
1587 | /* rhs is B */ | ||||
1588 | /* set is the context */ | ||||
1589 | /* */ | ||||
1590 | /* C must have space for set->digits digits. */ | ||||
1591 | /* ------------------------------------------------------------------ */ | ||||
1592 | U_CAPIextern "C" decNumber * U_EXPORT2 uprv_decNumberMaxMaguprv_decNumberMaxMag_71(decNumber *res, const decNumber *lhs, | ||||
1593 | const decNumber *rhs, decContext *set) { | ||||
1594 | uIntuint32_t status=0; /* accumulator */ | ||||
1595 | decCompareOp(res, lhs, rhs, set, COMPMAXMAG0x07, &status); | ||||
1596 | if (status!=0) decStatus(res, status, set); | ||||
1597 | #if DECCHECK0 | ||||
1598 | decCheckInexact(res, set); | ||||
1599 | #endif | ||||
1600 | return res; | ||||
1601 | } /* decNumberMaxMag */ | ||||
1602 | |||||
1603 | /* ------------------------------------------------------------------ */ | ||||
1604 | /* decNumberMin -- compare two Numbers and return the minimum */ | ||||
1605 | /* */ | ||||
1606 | /* This computes C = A ? B, returning the minimum by 754 rules */ | ||||
1607 | /* */ | ||||
1608 | /* res is C, the result. C may be A and/or B (e.g., X=X?X) */ | ||||
1609 | /* lhs is A */ | ||||
1610 | /* rhs is B */ | ||||
1611 | /* set is the context */ | ||||
1612 | /* */ | ||||
1613 | /* C must have space for set->digits digits. */ | ||||
1614 | /* ------------------------------------------------------------------ */ | ||||
1615 | U_CAPIextern "C" decNumber * U_EXPORT2 uprv_decNumberMinuprv_decNumberMin_71(decNumber *res, const decNumber *lhs, | ||||
1616 | const decNumber *rhs, decContext *set) { | ||||
1617 | uIntuint32_t status=0; /* accumulator */ | ||||
1618 | decCompareOp(res, lhs, rhs, set, COMPMIN0x03, &status); | ||||
1619 | if (status!=0) decStatus(res, status, set); | ||||
1620 | #if DECCHECK0 | ||||
1621 | decCheckInexact(res, set); | ||||
1622 | #endif | ||||
1623 | return res; | ||||
1624 | } /* decNumberMin */ | ||||
1625 | |||||
1626 | /* ------------------------------------------------------------------ */ | ||||
1627 | /* decNumberMinMag -- compare and return the minimum by magnitude */ | ||||
1628 | /* */ | ||||
1629 | /* This computes C = A ? B, returning the minimum by 754 rules */ | ||||
1630 | /* */ | ||||
1631 | /* res is C, the result. C may be A and/or B (e.g., X=X?X) */ | ||||
1632 | /* lhs is A */ | ||||
1633 | /* rhs is B */ | ||||
1634 | /* set is the context */ | ||||
1635 | /* */ | ||||
1636 | /* C must have space for set->digits digits. */ | ||||
1637 | /* ------------------------------------------------------------------ */ | ||||
1638 | U_CAPIextern "C" decNumber * U_EXPORT2 uprv_decNumberMinMaguprv_decNumberMinMag_71(decNumber *res, const decNumber *lhs, | ||||
1639 | const decNumber *rhs, decContext *set) { | ||||
1640 | uIntuint32_t status=0; /* accumulator */ | ||||
1641 | decCompareOp(res, lhs, rhs, set, COMPMINMAG0x08, &status); | ||||
1642 | if (status!=0) decStatus(res, status, set); | ||||
1643 | #if DECCHECK0 | ||||
1644 | decCheckInexact(res, set); | ||||
1645 | #endif | ||||
1646 | return res; | ||||
1647 | } /* decNumberMinMag */ | ||||
1648 | |||||
1649 | /* ------------------------------------------------------------------ */ | ||||
1650 | /* decNumberMinus -- prefix minus operator */ | ||||
1651 | /* */ | ||||
1652 | /* This computes C = 0 - A */ | ||||
1653 | /* */ | ||||
1654 | /* res is C, the result. C may be A */ | ||||
1655 | /* rhs is A */ | ||||
1656 | /* set is the context */ | ||||
1657 | /* */ | ||||
1658 | /* See also decNumberCopyNegate for a quiet bitwise version of this. */ | ||||
1659 | /* C must have space for set->digits digits. */ | ||||
1660 | /* ------------------------------------------------------------------ */ | ||||
1661 | /* Simply use AddOp for the subtract, which will do the necessary. */ | ||||
1662 | /* ------------------------------------------------------------------ */ | ||||
1663 | U_CAPIextern "C" decNumber * U_EXPORT2 uprv_decNumberMinusuprv_decNumberMinus_71(decNumber *res, const decNumber *rhs, | ||||
1664 | decContext *set) { | ||||
1665 | decNumber dzero; | ||||
1666 | uIntuint32_t status=0; /* accumulator */ | ||||
1667 | |||||
1668 | #if DECCHECK0 | ||||
1669 | if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; | ||||
1670 | #endif | ||||
1671 | |||||
1672 | uprv_decNumberZerouprv_decNumberZero_71(&dzero); /* make 0 */ | ||||
1673 | dzero.exponent=rhs->exponent; /* [no coefficient expansion] */ | ||||
1674 | decAddOp(res, &dzero, rhs, set, DECNEG0x80, &status); | ||||
1675 | if (status!=0) decStatus(res, status, set); | ||||
1676 | #if DECCHECK0 | ||||
1677 | decCheckInexact(res, set); | ||||
1678 | #endif | ||||
1679 | return res; | ||||
1680 | } /* decNumberMinus */ | ||||
1681 | |||||
1682 | /* ------------------------------------------------------------------ */ | ||||
1683 | /* decNumberNextMinus -- next towards -Infinity */ | ||||
1684 | /* */ | ||||
1685 | /* This computes C = A - infinitesimal, rounded towards -Infinity */ | ||||
1686 | /* */ | ||||
1687 | /* res is C, the result. C may be A */ | ||||
1688 | /* rhs is A */ | ||||
1689 | /* set is the context */ | ||||
1690 | /* */ | ||||
1691 | /* This is a generalization of 754 NextDown. */ | ||||
1692 | /* ------------------------------------------------------------------ */ | ||||
1693 | U_CAPIextern "C" decNumber * U_EXPORT2 uprv_decNumberNextMinusuprv_decNumberNextMinus_71(decNumber *res, const decNumber *rhs, | ||||
1694 | decContext *set) { | ||||
1695 | decNumber dtiny; /* constant */ | ||||
1696 | decContext workset=*set; /* work */ | ||||
1697 | uIntuint32_t status=0; /* accumulator */ | ||||
1698 | #if DECCHECK0 | ||||
1699 | if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; | ||||
1700 | #endif | ||||
1701 | |||||
1702 | /* +Infinity is the special case */ | ||||
1703 | if ((rhs->bits&(DECINF0x40|DECNEG0x80))==DECINF0x40) { | ||||
1704 | decSetMaxValue(res, set); /* is +ve */ | ||||
1705 | /* there is no status to set */ | ||||
1706 | return res; | ||||
1707 | } | ||||
1708 | uprv_decNumberZerouprv_decNumberZero_71(&dtiny); /* start with 0 */ | ||||
1709 | dtiny.lsu[0]=1; /* make number that is .. */ | ||||
1710 | dtiny.exponent=DEC_MIN_EMIN-999999999-1; /* .. smaller than tiniest */ | ||||
1711 | workset.round=DEC_ROUND_FLOOR; | ||||
1712 | decAddOp(res, rhs, &dtiny, &workset, DECNEG0x80, &status); | ||||
1713 | status&=DEC_Invalid_operation0x00000080|DEC_sNaN0x40000000; /* only sNaN Invalid please */ | ||||
1714 | if (status!=0) decStatus(res, status, set); | ||||
1715 | return res; | ||||
1716 | } /* decNumberNextMinus */ | ||||
1717 | |||||
1718 | /* ------------------------------------------------------------------ */ | ||||
1719 | /* decNumberNextPlus -- next towards +Infinity */ | ||||
1720 | /* */ | ||||
1721 | /* This computes C = A + infinitesimal, rounded towards +Infinity */ | ||||
1722 | /* */ | ||||
1723 | /* res is C, the result. C may be A */ | ||||
1724 | /* rhs is A */ | ||||
1725 | /* set is the context */ | ||||
1726 | /* */ | ||||
1727 | /* This is a generalization of 754 NextUp. */ | ||||
1728 | /* ------------------------------------------------------------------ */ | ||||
1729 | U_CAPIextern "C" decNumber * U_EXPORT2 uprv_decNumberNextPlusuprv_decNumberNextPlus_71(decNumber *res, const decNumber *rhs, | ||||
1730 | decContext *set) { | ||||
1731 | decNumber dtiny; /* constant */ | ||||
1732 | decContext workset=*set; /* work */ | ||||
1733 | uIntuint32_t status=0; /* accumulator */ | ||||
1734 | #if DECCHECK0 | ||||
1735 | if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; | ||||
1736 | #endif | ||||
1737 | |||||
1738 | /* -Infinity is the special case */ | ||||
1739 | if ((rhs->bits&(DECINF0x40|DECNEG0x80))==(DECINF0x40|DECNEG0x80)) { | ||||
1740 | decSetMaxValue(res, set); | ||||
1741 | res->bits=DECNEG0x80; /* negative */ | ||||
1742 | /* there is no status to set */ | ||||
1743 | return res; | ||||
1744 | } | ||||
1745 | uprv_decNumberZerouprv_decNumberZero_71(&dtiny); /* start with 0 */ | ||||
1746 | dtiny.lsu[0]=1; /* make number that is .. */ | ||||
1747 | dtiny.exponent=DEC_MIN_EMIN-999999999-1; /* .. smaller than tiniest */ | ||||
1748 | workset.round=DEC_ROUND_CEILING; | ||||
1749 | decAddOp(res, rhs, &dtiny, &workset, 0, &status); | ||||
1750 | status&=DEC_Invalid_operation0x00000080|DEC_sNaN0x40000000; /* only sNaN Invalid please */ | ||||
1751 | if (status!=0) decStatus(res, status, set); | ||||
1752 | return res; | ||||
1753 | } /* decNumberNextPlus */ | ||||
1754 | |||||
1755 | /* ------------------------------------------------------------------ */ | ||||
1756 | /* decNumberNextToward -- next towards rhs */ | ||||
1757 | /* */ | ||||
1758 | /* This computes C = A +/- infinitesimal, rounded towards */ | ||||
1759 | /* +/-Infinity in the direction of B, as per 754-1985 nextafter */ | ||||
1760 | /* modified during revision but dropped from 754-2008. */ | ||||
1761 | /* */ | ||||
1762 | /* res is C, the result. C may be A or B. */ | ||||
1763 | /* lhs is A */ | ||||
1764 | /* rhs is B */ | ||||
1765 | /* set is the context */ | ||||
1766 | /* */ | ||||
1767 | /* This is a generalization of 754-1985 NextAfter. */ | ||||
1768 | /* ------------------------------------------------------------------ */ | ||||
1769 | U_CAPIextern "C" decNumber * U_EXPORT2 uprv_decNumberNextTowarduprv_decNumberNextToward_71(decNumber *res, const decNumber *lhs, | ||||
1770 | const decNumber *rhs, decContext *set) { | ||||
1771 | decNumber dtiny; /* constant */ | ||||
1772 | decContext workset=*set; /* work */ | ||||
1773 | Intint32_t result; /* .. */ | ||||
1774 | uIntuint32_t status=0; /* accumulator */ | ||||
1775 | #if DECCHECK0 | ||||
1776 | if (decCheckOperands(res, lhs, rhs, set)) return res; | ||||
1777 | #endif | ||||
1778 | |||||
1779 | if (decNumberIsNaN(lhs)(((lhs)->bits&(0x20|0x10))!=0) || decNumberIsNaN(rhs)(((rhs)->bits&(0x20|0x10))!=0)) { | ||||
1780 | decNaNs(res, lhs, rhs, set, &status); | ||||
1781 | } | ||||
1782 | else { /* Is numeric, so no chance of sNaN Invalid, etc. */ | ||||
1783 | result=decCompare(lhs, rhs, 0); /* sign matters */ | ||||
1784 | if (result==BADINT(int32_t)0x80000000) status|=DEC_Insufficient_storage0x00000010; /* rare */ | ||||
1785 | else { /* valid compare */ | ||||
1786 | if (result==0) uprv_decNumberCopySignuprv_decNumberCopySign_71(res, lhs, rhs); /* easy */ | ||||
1787 | else { /* differ: need NextPlus or NextMinus */ | ||||
1788 | uByteuint8_t sub; /* add or subtract */ | ||||
1789 | if (result<0) { /* lhs<rhs, do nextplus */ | ||||
1790 | /* -Infinity is the special case */ | ||||
1791 | if ((lhs->bits&(DECINF0x40|DECNEG0x80))==(DECINF0x40|DECNEG0x80)) { | ||||
1792 | decSetMaxValue(res, set); | ||||
1793 | res->bits=DECNEG0x80; /* negative */ | ||||
1794 | return res; /* there is no status to set */ | ||||
1795 | } | ||||
1796 | workset.round=DEC_ROUND_CEILING; | ||||
1797 | sub=0; /* add, please */ | ||||
1798 | } /* plus */ | ||||
1799 | else { /* lhs>rhs, do nextminus */ | ||||
1800 | /* +Infinity is the special case */ | ||||
1801 | if ((lhs->bits&(DECINF0x40|DECNEG0x80))==DECINF0x40) { | ||||
1802 | decSetMaxValue(res, set); | ||||
1803 | return res; /* there is no status to set */ | ||||
1804 | } | ||||
1805 | workset.round=DEC_ROUND_FLOOR; | ||||
1806 | sub=DECNEG0x80; /* subtract, please */ | ||||
1807 | } /* minus */ | ||||
1808 | uprv_decNumberZerouprv_decNumberZero_71(&dtiny); /* start with 0 */ | ||||
1809 | dtiny.lsu[0]=1; /* make number that is .. */ | ||||
1810 | dtiny.exponent=DEC_MIN_EMIN-999999999-1; /* .. smaller than tiniest */ | ||||
1811 | decAddOp(res, lhs, &dtiny, &workset, sub, &status); /* + or - */ | ||||
1812 | /* turn off exceptions if the result is a normal number */ | ||||
1813 | /* (including Nmin), otherwise let all status through */ | ||||
1814 | if (uprv_decNumberIsNormaluprv_decNumberIsNormal_71(res, set)) status=0; | ||||
1815 | } /* unequal */ | ||||
1816 | } /* compare OK */ | ||||
1817 | } /* numeric */ | ||||
1818 | if (status!=0) decStatus(res, status, set); | ||||
1819 | return res; | ||||
1820 | } /* decNumberNextToward */ | ||||
1821 | |||||
1822 | /* ------------------------------------------------------------------ */ | ||||
1823 | /* decNumberOr -- OR two Numbers, digitwise */ | ||||
1824 | /* */ | ||||
1825 | /* This computes C = A | B */ | ||||
1826 | /* */ | ||||
1827 | /* res is C, the result. C may be A and/or B (e.g., X=X|X) */ | ||||
1828 | /* lhs is A */ | ||||
1829 | /* rhs is B */ | ||||
1830 | /* set is the context (used for result length and error report) */ | ||||
1831 | /* */ | ||||
1832 | /* C must have space for set->digits digits. */ | ||||
1833 | /* */ | ||||
1834 | /* Logical function restrictions apply (see above); a NaN is */ | ||||
1835 | /* returned with Invalid_operation if a restriction is violated. */ | ||||
1836 | /* ------------------------------------------------------------------ */ | ||||
1837 | U_CAPIextern "C" decNumber * U_EXPORT2 uprv_decNumberOruprv_decNumberOr_71(decNumber *res, const decNumber *lhs, | ||||
1838 | const decNumber *rhs, decContext *set) { | ||||
1839 | const Unituint8_t *ua, *ub; /* -> operands */ | ||||
1840 | const Unituint8_t *msua, *msub; /* -> operand msus */ | ||||
1841 | Unituint8_t *uc, *msuc; /* -> result and its msu */ | ||||
1842 | Intint32_t msudigs; /* digits in res msu */ | ||||
1843 | #if DECCHECK0 | ||||
1844 | if (decCheckOperands(res, lhs, rhs, set)) return res; | ||||
1845 | #endif | ||||
1846 | |||||
1847 | if (lhs->exponent!=0 || decNumberIsSpecial(lhs)(((lhs)->bits&(0x40|0x20|0x10))!=0) || decNumberIsNegative(lhs)(((lhs)->bits&0x80)!=0) | ||||
1848 | || rhs->exponent!=0 || decNumberIsSpecial(rhs)(((rhs)->bits&(0x40|0x20|0x10))!=0) || decNumberIsNegative(rhs)(((rhs)->bits&0x80)!=0)) { | ||||
1849 | decStatus(res, DEC_Invalid_operation0x00000080, set); | ||||
1850 | return res; | ||||
1851 | } | ||||
1852 | /* operands are valid */ | ||||
1853 | ua=lhs->lsu; /* bottom-up */ | ||||
1854 | ub=rhs->lsu; /* .. */ | ||||
1855 | uc=res->lsu; /* .. */ | ||||
1856 | msua=ua+D2U(lhs->digits)((lhs->digits)<=49?d2utable[lhs->digits]:((lhs->digits )+1 -1)/1)-1; /* -> msu of lhs */ | ||||
1857 | msub=ub+D2U(rhs->digits)((rhs->digits)<=49?d2utable[rhs->digits]:((rhs->digits )+1 -1)/1)-1; /* -> msu of rhs */ | ||||
1858 | msuc=uc+D2U(set->digits)((set->digits)<=49?d2utable[set->digits]:((set->digits )+1 -1)/1)-1; /* -> msu of result */ | ||||
1859 | msudigs=MSUDIGITS(set->digits)((set->digits)-(((set->digits)<=49?d2utable[set-> digits]:((set->digits)+1 -1)/1)-1)*1); /* [faster than remainder] */ | ||||
1860 | for (; uc<=msuc; ua++, ub++, uc++) { /* Unit loop */ | ||||
1861 | Unituint8_t a, b; /* extract units */ | ||||
1862 | if (ua>msua) a=0; | ||||
1863 | else a=*ua; | ||||
1864 | if (ub>msub) b=0; | ||||
1865 | else b=*ub; | ||||
1866 | *uc=0; /* can now write back */ | ||||
1867 | if (a|b) { /* maybe 1 bits to examine */ | ||||
1868 | Intint32_t i, j; | ||||
1869 | /* This loop could be unrolled and/or use BIN2BCD tables */ | ||||
1870 | for (i=0; i<DECDPUN1; i++) { | ||||
1871 | if ((a|b)&1) *uc=*uc+(Unituint8_t)powersDECPOWERS[i]; /* effect OR */ | ||||
1872 | j=a%10; | ||||
1873 | a=a/10; | ||||
1874 | j|=b%10; | ||||
1875 | b=b/10; | ||||
1876 | if (j>1) { | ||||
1877 | decStatus(res, DEC_Invalid_operation0x00000080, set); | ||||
1878 | return res; | ||||
1879 | } | ||||
1880 | if (uc==msuc && i==msudigs-1) break; /* just did final digit */ | ||||
1881 | } /* each digit */ | ||||
1882 | } /* non-zero */ | ||||
1883 | } /* each unit */ | ||||
1884 | /* [here uc-1 is the msu of the result] */ | ||||
1885 | res->digits=decGetDigits(res->lsu, static_cast<int32_t>(uc-res->lsu)); | ||||
1886 | res->exponent=0; /* integer */ | ||||
1887 | res->bits=0; /* sign=0 */ | ||||
1888 | return res; /* [no status to set] */ | ||||
1889 | } /* decNumberOr */ | ||||
1890 | |||||
1891 | /* ------------------------------------------------------------------ */ | ||||
1892 | /* decNumberPlus -- prefix plus operator */ | ||||
1893 | /* */ | ||||
1894 | /* This computes C = 0 + A */ | ||||
1895 | /* */ | ||||
1896 | /* res is C, the result. C may be A */ | ||||
1897 | /* rhs is A */ | ||||
1898 | /* set is the context */ | ||||
1899 | /* */ | ||||
1900 | /* See also decNumberCopy for a quiet bitwise version of this. */ | ||||
1901 | /* C must have space for set->digits digits. */ | ||||
1902 | /* ------------------------------------------------------------------ */ | ||||
1903 | /* This simply uses AddOp; Add will take fast path after preparing A. */ | ||||
1904 | /* Performance is a concern here, as this routine is often used to */ | ||||
1905 | /* check operands and apply rounding and overflow/underflow testing. */ | ||||
1906 | /* ------------------------------------------------------------------ */ | ||||
1907 | U_CAPIextern "C" decNumber * U_EXPORT2 uprv_decNumberPlusuprv_decNumberPlus_71(decNumber *res, const decNumber *rhs, | ||||
1908 | decContext *set) { | ||||
1909 | decNumber dzero; | ||||
1910 | uIntuint32_t status=0; /* accumulator */ | ||||
1911 | #if DECCHECK0 | ||||
1912 | if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; | ||||
1913 | #endif | ||||
1914 | |||||
1915 | uprv_decNumberZerouprv_decNumberZero_71(&dzero); /* make 0 */ | ||||
1916 | dzero.exponent=rhs->exponent; /* [no coefficient expansion] */ | ||||
1917 | decAddOp(res, &dzero, rhs, set, 0, &status); | ||||
1918 | if (status!=0) decStatus(res, status, set); | ||||
1919 | #if DECCHECK0 | ||||
1920 | decCheckInexact(res, set); | ||||
1921 | #endif | ||||
1922 | return res; | ||||
1923 | } /* decNumberPlus */ | ||||
1924 | |||||
1925 | /* ------------------------------------------------------------------ */ | ||||
1926 | /* decNumberMultiply -- multiply two Numbers */ | ||||
1927 | /* */ | ||||
1928 | /* This computes C = A x B */ | ||||
1929 | /* */ | ||||
1930 | /* res is C, the result. C may be A and/or B (e.g., X=X+X) */ | ||||
1931 | /* lhs is A */ | ||||
1932 | /* rhs is B */ | ||||
1933 | /* set is the context */ | ||||
1934 | /* */ | ||||
1935 | /* C must have space for set->digits digits. */ | ||||
1936 | /* ------------------------------------------------------------------ */ | ||||
1937 | U_CAPIextern "C" decNumber * U_EXPORT2 uprv_decNumberMultiplyuprv_decNumberMultiply_71(decNumber *res, const decNumber *lhs, | ||||
1938 | const decNumber *rhs, decContext *set) { | ||||
1939 | uIntuint32_t status=0; /* accumulator */ | ||||
1940 | decMultiplyOp(res, lhs, rhs, set, &status); | ||||
1941 | if (status!=0) decStatus(res, status, set); | ||||
1942 | #if DECCHECK0 | ||||
1943 | decCheckInexact(res, set); | ||||
1944 | #endif | ||||
1945 | return res; | ||||
1946 | } /* decNumberMultiply */ | ||||
1947 | |||||
1948 | /* ------------------------------------------------------------------ */ | ||||
1949 | /* decNumberPower -- raise a number to a power */ | ||||
1950 | /* */ | ||||
1951 | /* This computes C = A ** B */ | ||||
1952 | /* */ | ||||
1953 | /* res is C, the result. C may be A and/or B (e.g., X=X**X) */ | ||||
1954 | /* lhs is A */ | ||||
1955 | /* rhs is B */ | ||||
1956 | /* set is the context */ | ||||
1957 | /* */ | ||||
1958 | /* C must have space for set->digits digits. */ | ||||
1959 | /* */ | ||||
1960 | /* Mathematical function restrictions apply (see above); a NaN is */ | ||||
1961 | /* returned with Invalid_operation if a restriction is violated. */ | ||||
1962 | /* */ | ||||
1963 | /* However, if 1999999997<=B<=999999999 and B is an integer then the */ | ||||
1964 | /* restrictions on A and the context are relaxed to the usual bounds, */ | ||||
1965 | /* for compatibility with the earlier (integer power only) version */ | ||||
1966 | /* of this function. */ | ||||
1967 | /* */ | ||||
1968 | /* When B is an integer, the result may be exact, even if rounded. */ | ||||
1969 | /* */ | ||||
1970 | /* The final result is rounded according to the context; it will */ | ||||
1971 | /* almost always be correctly rounded, but may be up to 1 ulp in */ | ||||
1972 | /* error in rare cases. */ | ||||
1973 | /* ------------------------------------------------------------------ */ | ||||
1974 | U_CAPIextern "C" decNumber * U_EXPORT2 uprv_decNumberPoweruprv_decNumberPower_71(decNumber *res, const decNumber *lhs, | ||||
1975 | const decNumber *rhs, decContext *set) { | ||||
1976 | #if DECSUBSET0 | ||||
1977 | decNumber *alloclhs=NULL__null; /* non-NULL if rounded lhs allocated */ | ||||
1978 | decNumber *allocrhs=NULL__null; /* .., rhs */ | ||||
1979 | #endif | ||||
1980 | decNumber *allocdac=NULL__null; /* -> allocated acc buffer, iff used */ | ||||
1981 | decNumber *allocinv=NULL__null; /* -> allocated 1/x buffer, iff used */ | ||||
1982 | Intint32_t reqdigits=set->digits; /* requested DIGITS */ | ||||
1983 | Intint32_t n; /* rhs in binary */ | ||||
1984 | Flaguint8_t rhsint=0; /* 1 if rhs is an integer */ | ||||
1985 | Flaguint8_t useint=0; /* 1 if can use integer calculation */ | ||||
1986 | Flaguint8_t isoddint=0; /* 1 if rhs is an integer and odd */ | ||||
1987 | Intint32_t i; /* work */ | ||||
1988 | #if DECSUBSET0 | ||||
1989 | Intint32_t dropped; /* .. */ | ||||
1990 | #endif | ||||
1991 | uIntuint32_t needbytes; /* buffer size needed */ | ||||
1992 | Flaguint8_t seenbit; /* seen a bit while powering */ | ||||
1993 | Intint32_t residue=0; /* rounding residue */ | ||||
1994 | uIntuint32_t status=0; /* accumulators */ | ||||
1995 | uByteuint8_t bits=0; /* result sign if errors */ | ||||
1996 | decContext aset; /* working context */ | ||||
1997 | decNumber dnOne; /* work value 1... */ | ||||
1998 | /* local accumulator buffer [a decNumber, with digits+elength+1 digits] */ | ||||
1999 | decNumber dacbuff[D2N(DECBUFFER+9)(((((((36 +9)+1 -1)/1)-1)*sizeof(uint8_t))+sizeof(decNumber)* 2-1)/sizeof(decNumber))]; | ||||
2000 | decNumber *dac=dacbuff; /* -> result accumulator */ | ||||
2001 | /* same again for possible 1/lhs calculation */ | ||||
2002 | decNumber invbuff[D2N(DECBUFFER+9)(((((((36 +9)+1 -1)/1)-1)*sizeof(uint8_t))+sizeof(decNumber)* 2-1)/sizeof(decNumber))]; | ||||
2003 | |||||
2004 | #if DECCHECK0 | ||||
2005 | if (decCheckOperands(res, lhs, rhs, set)) return res; | ||||
2006 | #endif | ||||
2007 | |||||
2008 | do { /* protect allocated storage */ | ||||
2009 | #if DECSUBSET0 | ||||
2010 | if (!set->extended) { /* reduce operands and set status, as needed */ | ||||
2011 | if (lhs->digits>reqdigits) { | ||||
2012 | alloclhs=decRoundOperand(lhs, set, &status); | ||||
2013 | if (alloclhs==NULL__null) break; | ||||
2014 | lhs=alloclhs; | ||||
2015 | } | ||||
2016 | if (rhs->digits>reqdigits) { | ||||
2017 | allocrhs=decRoundOperand(rhs, set, &status); | ||||
2018 | if (allocrhs==NULL__null) break; | ||||
2019 | rhs=allocrhs; | ||||
2020 | } | ||||
2021 | } | ||||
2022 | #endif | ||||
2023 | /* [following code does not require input rounding] */ | ||||
2024 | |||||
2025 | /* handle NaNs and rhs Infinity (lhs infinity is harder) */ | ||||
2026 | if (SPECIALARGS((lhs->bits | rhs->bits) & (0x40|0x20|0x10))) { | ||||
2027 | if (decNumberIsNaN(lhs)(((lhs)->bits&(0x20|0x10))!=0) || decNumberIsNaN(rhs)(((rhs)->bits&(0x20|0x10))!=0)) { /* NaNs */ | ||||
2028 | decNaNs(res, lhs, rhs, set, &status); | ||||
2029 | break;} | ||||
2030 | if (decNumberIsInfinite(rhs)(((rhs)->bits&0x40)!=0)) { /* rhs Infinity */ | ||||
2031 | Flaguint8_t rhsneg=rhs->bits&DECNEG0x80; /* save rhs sign */ | ||||
2032 | if (decNumberIsNegative(lhs)(((lhs)->bits&0x80)!=0) /* lhs<0 */ | ||||
2033 | && !decNumberIsZero(lhs)(*(lhs)->lsu==0 && (lhs)->digits==1 && ( ((lhs)->bits&(0x40|0x20|0x10))==0))) /* .. */ | ||||
2034 | status|=DEC_Invalid_operation0x00000080; | ||||
2035 | else { /* lhs >=0 */ | ||||
2036 | uprv_decNumberZerouprv_decNumberZero_71(&dnOne); /* set up 1 */ | ||||
2037 | dnOne.lsu[0]=1; | ||||
2038 | uprv_decNumberCompareuprv_decNumberCompare_71(dac, lhs, &dnOne, set); /* lhs ? 1 */ | ||||
2039 | uprv_decNumberZerouprv_decNumberZero_71(res); /* prepare for 0/1/Infinity */ | ||||
2040 | if (decNumberIsNegative(dac)(((dac)->bits&0x80)!=0)) { /* lhs<1 */ | ||||
2041 | if (rhsneg) res->bits|=DECINF0x40; /* +Infinity [else is +0] */ | ||||
2042 | } | ||||
2043 | else if (dac->lsu[0]==0) { /* lhs=1 */ | ||||
2044 | /* 1**Infinity is inexact, so return fully-padded 1.0000 */ | ||||
2045 | Intint32_t shift=set->digits-1; | ||||
2046 | *res->lsu=1; /* was 0, make int 1 */ | ||||
2047 | res->digits=decShiftToMost(res->lsu, 1, shift); | ||||
2048 | res->exponent=-shift; /* make 1.0000... */ | ||||
2049 | status|=DEC_Inexact0x00000020|DEC_Rounded0x00000800; /* deemed inexact */ | ||||
2050 | } | ||||
2051 | else { /* lhs>1 */ | ||||
2052 | if (!rhsneg) res->bits|=DECINF0x40; /* +Infinity [else is +0] */ | ||||
2053 | } | ||||
2054 | } /* lhs>=0 */ | ||||
2055 | break;} | ||||
2056 | /* [lhs infinity drops through] */ | ||||
2057 | } /* specials */ | ||||
2058 | |||||
2059 | /* Original rhs may be an integer that fits and is in range */ | ||||
2060 | n=decGetInt(rhs); | ||||
2061 | if (n!=BADINT(int32_t)0x80000000) { /* it is an integer */ | ||||
2062 | rhsint=1; /* record the fact for 1**n */ | ||||
2063 | isoddint=(Flaguint8_t)n&1; /* [works even if big] */ | ||||
2064 | if (n!=BIGEVEN(int32_t)0x80000002 && n!=BIGODD(int32_t)0x80000003) /* can use integer path? */ | ||||
2065 | useint=1; /* looks good */ | ||||
2066 | } | ||||
2067 | |||||
2068 | if (decNumberIsNegative(lhs)(((lhs)->bits&0x80)!=0) /* -x .. */ | ||||
2069 | && isoddint) bits=DECNEG0x80; /* .. to an odd power */ | ||||
2070 | |||||
2071 | /* handle LHS infinity */ | ||||
2072 | if (decNumberIsInfinite(lhs)(((lhs)->bits&0x40)!=0)) { /* [NaNs already handled] */ | ||||
2073 | uByteuint8_t rbits=rhs->bits; /* save */ | ||||
2074 | uprv_decNumberZerouprv_decNumberZero_71(res); /* prepare */ | ||||
2075 | if (n==0) *res->lsu=1; /* [-]Inf**0 => 1 */ | ||||
2076 | else { | ||||
2077 | /* -Inf**nonint -> error */ | ||||
2078 | if (!rhsint && decNumberIsNegative(lhs)(((lhs)->bits&0x80)!=0)) { | ||||
2079 | status|=DEC_Invalid_operation0x00000080; /* -Inf**nonint is error */ | ||||
2080 | break;} | ||||
2081 | if (!(rbits & DECNEG0x80)) bits|=DECINF0x40; /* was not a **-n */ | ||||
2082 | /* [otherwise will be 0 or -0] */ | ||||
2083 | res->bits=bits; | ||||
2084 | } | ||||
2085 | break;} | ||||
2086 | |||||
2087 | /* similarly handle LHS zero */ | ||||
2088 | if (decNumberIsZero(lhs)(*(lhs)->lsu==0 && (lhs)->digits==1 && ( ((lhs)->bits&(0x40|0x20|0x10))==0))) { | ||||
2089 | if (n==0) { /* 0**0 => Error */ | ||||
2090 | #if DECSUBSET0 | ||||
2091 | if (!set->extended) { /* [unless subset] */ | ||||
2092 | uprv_decNumberZerouprv_decNumberZero_71(res); | ||||
2093 | *res->lsu=1; /* return 1 */ | ||||
2094 | break;} | ||||
2095 | #endif | ||||
2096 | status|=DEC_Invalid_operation0x00000080; | ||||
2097 | } | ||||
2098 | else { /* 0**x */ | ||||
2099 | uByteuint8_t rbits=rhs->bits; /* save */ | ||||
2100 | if (rbits & DECNEG0x80) { /* was a 0**(-n) */ | ||||
2101 | #if DECSUBSET0 | ||||
2102 | if (!set->extended) { /* [bad if subset] */ | ||||
2103 | status|=DEC_Invalid_operation0x00000080; | ||||
2104 | break;} | ||||
2105 | #endif | ||||
2106 | bits|=DECINF0x40; | ||||
2107 | } | ||||
2108 | uprv_decNumberZerouprv_decNumberZero_71(res); /* prepare */ | ||||
2109 | /* [otherwise will be 0 or -0] */ | ||||
2110 | res->bits=bits; | ||||
2111 | } | ||||
2112 | break;} | ||||
2113 | |||||
2114 | /* here both lhs and rhs are finite; rhs==0 is handled in the */ | ||||
2115 | /* integer path. Next handle the non-integer cases */ | ||||
2116 | if (!useint) { /* non-integral rhs */ | ||||
2117 | /* any -ve lhs is bad, as is either operand or context out of */ | ||||
2118 | /* bounds */ | ||||
2119 | if (decNumberIsNegative(lhs)(((lhs)->bits&0x80)!=0)) { | ||||
2120 | status|=DEC_Invalid_operation0x00000080; | ||||
2121 | break;} | ||||
2122 | if (decCheckMath(lhs, set, &status) | ||||
2123 | || decCheckMath(rhs, set, &status)) break; /* variable status */ | ||||
2124 | |||||
2125 | uprv_decContextDefaultuprv_decContextDefault_71(&aset, DEC_INIT_DECIMAL6464); /* clean context */ | ||||
2126 | aset.emax=DEC_MAX_MATH999999; /* usual bounds */ | ||||
2127 | aset.emin=-DEC_MAX_MATH999999; /* .. */ | ||||
2128 | aset.clamp=0; /* and no concrete format */ | ||||
2129 | |||||
2130 | /* calculate the result using exp(ln(lhs)*rhs), which can */ | ||||
2131 | /* all be done into the accumulator, dac. The precision needed */ | ||||
2132 | /* is enough to contain the full information in the lhs (which */ | ||||
2133 | /* is the total digits, including exponent), or the requested */ | ||||
2134 | /* precision, if larger, + 4; 6 is used for the exponent */ | ||||
2135 | /* maximum length, and this is also used when it is shorter */ | ||||
2136 | /* than the requested digits as it greatly reduces the >0.5 ulp */ | ||||
2137 | /* cases at little cost (because Ln doubles digits each */ | ||||
2138 | /* iteration so a few extra digits rarely causes an extra */ | ||||
2139 | /* iteration) */ | ||||
2140 | aset.digits=MAXI(lhs->digits, set->digits)((lhs->digits)<(set->digits)?(set->digits):(lhs-> digits))+6+4; | ||||
2141 | } /* non-integer rhs */ | ||||
2142 | |||||
2143 | else { /* rhs is in-range integer */ | ||||
2144 | if (n==0) { /* x**0 = 1 */ | ||||
2145 | /* (0**0 was handled above) */ | ||||
2146 | uprv_decNumberZerouprv_decNumberZero_71(res); /* result=1 */ | ||||
2147 | *res->lsu=1; /* .. */ | ||||
2148 | break;} | ||||
2149 | /* rhs is a non-zero integer */ | ||||
2150 | if (n<0) n=-n; /* use abs(n) */ | ||||
2151 | |||||
2152 | aset=*set; /* clone the context */ | ||||
2153 | aset.round=DEC_ROUND_HALF_EVEN; /* internally use balanced */ | ||||
2154 | /* calculate the working DIGITS */ | ||||
2155 | aset.digits=reqdigits+(rhs->digits+rhs->exponent)+2; | ||||
2156 | #if DECSUBSET0 | ||||
2157 | if (!set->extended) aset.digits--; /* use classic precision */ | ||||
2158 | #endif | ||||
2159 | /* it's an error if this is more than can be handled */ | ||||
2160 | if (aset.digits>DECNUMMAXP999999999) {status|=DEC_Invalid_operation0x00000080; break;} | ||||
2161 | } /* integer path */ | ||||
2162 | |||||
2163 | /* aset.digits is the count of digits for the accumulator needed */ | ||||
2164 | /* if accumulator is too long for local storage, then allocate */ | ||||
2165 | needbytes=sizeof(decNumber)+(D2U(aset.digits)((aset.digits)<=49?d2utable[aset.digits]:((aset.digits)+1 - 1)/1)-1)*sizeof(Unituint8_t); | ||||
2166 | /* [needbytes also used below if 1/lhs needed] */ | ||||
2167 | if (needbytes>sizeof(dacbuff)) { | ||||
2168 | allocdac=(decNumber *)malloc(needbytes)uprv_malloc_71(needbytes); | ||||
2169 | if (allocdac==NULL__null) { /* hopeless -- abandon */ | ||||
2170 | status|=DEC_Insufficient_storage0x00000010; | ||||
2171 | break;} | ||||
2172 | dac=allocdac; /* use the allocated space */ | ||||
2173 | } | ||||
2174 | /* here, aset is set up and accumulator is ready for use */ | ||||
2175 | |||||
2176 | if (!useint) { /* non-integral rhs */ | ||||
2177 | /* x ** y; special-case x=1 here as it will otherwise always */ | ||||
2178 | /* reduce to integer 1; decLnOp has a fastpath which detects */ | ||||
2179 | /* the case of x=1 */ | ||||
2180 | decLnOp(dac, lhs, &aset, &status); /* dac=ln(lhs) */ | ||||
2181 | /* [no error possible, as lhs 0 already handled] */ | ||||
2182 | if (ISZERO(dac)(*(dac)->lsu==0 && (dac)->digits==1 && ( ((dac)->bits&(0x40|0x20|0x10))==0))) { /* x==1, 1.0, etc. */ | ||||
2183 | /* need to return fully-padded 1.0000 etc., but rhsint->1 */ | ||||
2184 | *dac->lsu=1; /* was 0, make int 1 */ | ||||
2185 | if (!rhsint) { /* add padding */ | ||||
2186 | Intint32_t shift=set->digits-1; | ||||
2187 | dac->digits=decShiftToMost(dac->lsu, 1, shift); | ||||
2188 | dac->exponent=-shift; /* make 1.0000... */ | ||||
2189 | status|=DEC_Inexact0x00000020|DEC_Rounded0x00000800; /* deemed inexact */ | ||||
2190 | } | ||||
2191 | } | ||||
2192 | else { | ||||
2193 | decMultiplyOp(dac, dac, rhs, &aset, &status); /* dac=dac*rhs */ | ||||
2194 | decExpOp(dac, dac, &aset, &status); /* dac=exp(dac) */ | ||||
2195 | } | ||||
2196 | /* and drop through for final rounding */ | ||||
2197 | } /* non-integer rhs */ | ||||
2198 | |||||
2199 | else { /* carry on with integer */ | ||||
2200 | uprv_decNumberZerouprv_decNumberZero_71(dac); /* acc=1 */ | ||||
2201 | *dac->lsu=1; /* .. */ | ||||
2202 | |||||
2203 | /* if a negative power the constant 1 is needed, and if not subset */ | ||||
2204 | /* invert the lhs now rather than inverting the result later */ | ||||
2205 | if (decNumberIsNegative(rhs)(((rhs)->bits&0x80)!=0)) { /* was a **-n [hence digits>0] */ | ||||
2206 | decNumber *inv=invbuff; /* assume use fixed buffer */ | ||||
2207 | uprv_decNumberCopyuprv_decNumberCopy_71(&dnOne, dac); /* dnOne=1; [needed now or later] */ | ||||
2208 | #if DECSUBSET0 | ||||
2209 | if (set->extended) { /* need to calculate 1/lhs */ | ||||
2210 | #endif | ||||
2211 | /* divide lhs into 1, putting result in dac [dac=1/dac] */ | ||||
2212 | decDivideOp(dac, &dnOne, lhs, &aset, DIVIDE0x80, &status); | ||||
2213 | /* now locate or allocate space for the inverted lhs */ | ||||
2214 | if (needbytes>sizeof(invbuff)) { | ||||
2215 | allocinv=(decNumber *)malloc(needbytes)uprv_malloc_71(needbytes); | ||||
2216 | if (allocinv==NULL__null) { /* hopeless -- abandon */ | ||||
2217 | status|=DEC_Insufficient_storage0x00000010; | ||||
2218 | break;} | ||||
2219 | inv=allocinv; /* use the allocated space */ | ||||
2220 | } | ||||
2221 | /* [inv now points to big-enough buffer or allocated storage] */ | ||||
2222 | uprv_decNumberCopyuprv_decNumberCopy_71(inv, dac); /* copy the 1/lhs */ | ||||
2223 | uprv_decNumberCopyuprv_decNumberCopy_71(dac, &dnOne); /* restore acc=1 */ | ||||
2224 | lhs=inv; /* .. and go forward with new lhs */ | ||||
2225 | #if DECSUBSET0 | ||||
2226 | } | ||||
2227 | #endif | ||||
2228 | } | ||||
2229 | |||||
2230 | /* Raise-to-the-power loop... */ | ||||
2231 | seenbit=0; /* set once a 1-bit is encountered */ | ||||
2232 | for (i=1;;i++){ /* for each bit [top bit ignored] */ | ||||
2233 | /* abandon if had overflow or terminal underflow */ | ||||
2234 | if (status & (DEC_Overflow0x00000200|DEC_Underflow0x00002000)) { /* interesting? */ | ||||
2235 | if (status&DEC_Overflow0x00000200 || ISZERO(dac)(*(dac)->lsu==0 && (dac)->digits==1 && ( ((dac)->bits&(0x40|0x20|0x10))==0))) break; | ||||
2236 | } | ||||
2237 | /* [the following two lines revealed an optimizer bug in a C++ */ | ||||
2238 | /* compiler, with symptom: 5**3 -> 25, when n=n+n was used] */ | ||||
2239 | n=n<<1; /* move next bit to testable position */ | ||||
2240 | if (n<0) { /* top bit is set */ | ||||
2241 | seenbit=1; /* OK, significant bit seen */ | ||||
2242 | decMultiplyOp(dac, dac, lhs, &aset, &status); /* dac=dac*x */ | ||||
2243 | } | ||||
2244 | if (i==31) break; /* that was the last bit */ | ||||
2245 | if (!seenbit) continue; /* no need to square 1 */ | ||||
2246 | decMultiplyOp(dac, dac, dac, &aset, &status); /* dac=dac*dac [square] */ | ||||
2247 | } /*i*/ /* 32 bits */ | ||||
2248 | |||||
2249 | /* complete internal overflow or underflow processing */ | ||||
2250 | if (status & (DEC_Overflow0x00000200|DEC_Underflow0x00002000)) { | ||||
2251 | #if DECSUBSET0 | ||||
2252 | /* If subset, and power was negative, reverse the kind of -erflow */ | ||||
2253 | /* [1/x not yet done] */ | ||||
2254 | if (!set->extended && decNumberIsNegative(rhs)(((rhs)->bits&0x80)!=0)) { | ||||
2255 | if (status & DEC_Overflow0x00000200) | ||||
2256 | status^=DEC_Overflow0x00000200 | DEC_Underflow0x00002000 | DEC_Subnormal0x00001000; | ||||
2257 | else { /* trickier -- Underflow may or may not be set */ | ||||
2258 | status&=~(DEC_Underflow0x00002000 | DEC_Subnormal0x00001000); /* [one or both] */ | ||||
2259 | status|=DEC_Overflow0x00000200; | ||||
2260 | } | ||||
2261 | } | ||||
2262 | #endif | ||||
2263 | dac->bits=(dac->bits & ~DECNEG0x80) | bits; /* force correct sign */ | ||||
2264 | /* round subnormals [to set.digits rather than aset.digits] */ | ||||
2265 | /* or set overflow result similarly as required */ | ||||
2266 | decFinalize(dac, set, &residue, &status); | ||||
2267 | uprv_decNumberCopyuprv_decNumberCopy_71(res, dac); /* copy to result (is now OK length) */ | ||||
2268 | break; | ||||
2269 | } | ||||
2270 | |||||
2271 | #if DECSUBSET0 | ||||
2272 | if (!set->extended && /* subset math */ | ||||
2273 | decNumberIsNegative(rhs)(((rhs)->bits&0x80)!=0)) { /* was a **-n [hence digits>0] */ | ||||
2274 | /* so divide result into 1 [dac=1/dac] */ | ||||
2275 | decDivideOp(dac, &dnOne, dac, &aset, DIVIDE0x80, &status); | ||||
2276 | } | ||||
2277 | #endif | ||||
2278 | } /* rhs integer path */ | ||||
2279 | |||||
2280 | /* reduce result to the requested length and copy to result */ | ||||
2281 | decCopyFit(res, dac, set, &residue, &status); | ||||
2282 | decFinish(res, set, &residue, &status)decFinalize(res,set,&residue,&status); /* final cleanup */ | ||||
2283 | #if DECSUBSET0 | ||||
2284 | if (!set->extended) decTrim(res, set, 0, 1, &dropped); /* trailing zeros */ | ||||
2285 | #endif | ||||
2286 | } while(0); /* end protected */ | ||||
2287 | |||||
2288 | if (allocdac!=NULL__null) free(allocdac)uprv_free_71(allocdac); /* drop any storage used */ | ||||
2289 | if (allocinv!=NULL__null) free(allocinv)uprv_free_71(allocinv); /* .. */ | ||||
2290 | #if DECSUBSET0 | ||||
2291 | if (alloclhs!=NULL__null) free(alloclhs)uprv_free_71(alloclhs); /* .. */ | ||||
2292 | if (allocrhs!=NULL__null) free(allocrhs)uprv_free_71(allocrhs); /* .. */ | ||||
2293 | #endif | ||||
2294 | if (status!=0) decStatus(res, status, set); | ||||
2295 | #if DECCHECK0 | ||||
2296 | decCheckInexact(res, set); | ||||
2297 | #endif | ||||
2298 | return res; | ||||
2299 | } /* decNumberPower */ | ||||
2300 | |||||
2301 | /* ------------------------------------------------------------------ */ | ||||
2302 | /* decNumberQuantize -- force exponent to requested value */ | ||||
2303 | /* */ | ||||
2304 | /* This computes C = op(A, B), where op adjusts the coefficient */ | ||||
2305 | /* of C (by rounding or shifting) such that the exponent (-scale) */ | ||||
2306 | /* of C has exponent of B. The numerical value of C will equal A, */ | ||||
2307 | /* except for the effects of any rounding that occurred. */ | ||||
2308 | /* */ | ||||
2309 | /* res is C, the result. C may be A or B */ | ||||
2310 | /* lhs is A, the number to adjust */ | ||||
2311 | /* rhs is B, the number with exponent to match */ | ||||
2312 | /* set is the context */ | ||||
2313 | /* */ | ||||
2314 | /* C must have space for set->digits digits. */ | ||||
2315 | /* */ | ||||
2316 | /* Unless there is an error or the result is infinite, the exponent */ | ||||
2317 | /* after the operation is guaranteed to be equal to that of B. */ | ||||
2318 | /* ------------------------------------------------------------------ */ | ||||
2319 | U_CAPIextern "C" decNumber * U_EXPORT2 uprv_decNumberQuantizeuprv_decNumberQuantize_71(decNumber *res, const decNumber *lhs, | ||||
2320 | const decNumber *rhs, decContext *set) { | ||||
2321 | uIntuint32_t status=0; /* accumulator */ | ||||
2322 | decQuantizeOp(res, lhs, rhs, set, 1, &status); | ||||
2323 | if (status!=0) decStatus(res, status, set); | ||||
2324 | return res; | ||||
2325 | } /* decNumberQuantize */ | ||||
2326 | |||||
2327 | /* ------------------------------------------------------------------ */ | ||||
2328 | /* decNumberReduce -- remove trailing zeros */ | ||||
2329 | /* */ | ||||
2330 | /* This computes C = 0 + A, and normalizes the result */ | ||||
2331 | /* */ | ||||
2332 | /* res is C, the result. C may be A */ | ||||
2333 | /* rhs is A */ | ||||
2334 | /* set is the context */ | ||||
2335 | /* */ | ||||
2336 | /* C must have space for set->digits digits. */ | ||||
2337 | /* ------------------------------------------------------------------ */ | ||||
2338 | /* Previously known as Normalize */ | ||||
2339 | U_CAPIextern "C" decNumber * U_EXPORT2 uprv_decNumberNormalizeuprv_decNumberNormalize_71(decNumber *res, const decNumber *rhs, | ||||
2340 | decContext *set) { | ||||
2341 | return uprv_decNumberReduceuprv_decNumberReduce_71(res, rhs, set); | ||||
2342 | } /* decNumberNormalize */ | ||||
2343 | |||||
2344 | U_CAPIextern "C" decNumber * U_EXPORT2 uprv_decNumberReduceuprv_decNumberReduce_71(decNumber *res, const decNumber *rhs, | ||||
2345 | decContext *set) { | ||||
2346 | #if DECSUBSET0 | ||||
2347 | decNumber *allocrhs=NULL__null; /* non-NULL if rounded rhs allocated */ | ||||
2348 | #endif | ||||
2349 | uIntuint32_t status=0; /* as usual */ | ||||
2350 | Intint32_t residue=0; /* as usual */ | ||||
2351 | Intint32_t dropped; /* work */ | ||||
2352 | |||||
2353 | #if DECCHECK0 | ||||
2354 | if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; | ||||
2355 | #endif | ||||
2356 | |||||
2357 | do { /* protect allocated storage */ | ||||
2358 | #if DECSUBSET0 | ||||
2359 | if (!set->extended) { | ||||
2360 | /* reduce operand and set lostDigits status, as needed */ | ||||
2361 | if (rhs->digits>set->digits) { | ||||
2362 | allocrhs=decRoundOperand(rhs, set, &status); | ||||
2363 | if (allocrhs==NULL__null) break; | ||||
2364 | rhs=allocrhs; | ||||
2365 | } | ||||
2366 | } | ||||
2367 | #endif | ||||
2368 | /* [following code does not require input rounding] */ | ||||
2369 | |||||
2370 | /* Infinities copy through; NaNs need usual treatment */ | ||||
2371 | if (decNumberIsNaN(rhs)(((rhs)->bits&(0x20|0x10))!=0)) { | ||||
2372 | decNaNs(res, rhs, NULL__null, set, &status); | ||||
2373 | break; | ||||
2374 | } | ||||
2375 | |||||
2376 | /* reduce result to the requested length and copy to result */ | ||||
2377 | decCopyFit(res, rhs, set, &residue, &status); /* copy & round */ | ||||
2378 | decFinish(res, set, &residue, &status)decFinalize(res,set,&residue,&status); /* cleanup/set flags */ | ||||
2379 | decTrim(res, set, 1, 0, &dropped); /* normalize in place */ | ||||
2380 | /* [may clamp] */ | ||||
2381 | } while(0); /* end protected */ | ||||
2382 | |||||
2383 | #if DECSUBSET0 | ||||
2384 | if (allocrhs !=NULL__null) free(allocrhs)uprv_free_71(allocrhs); /* .. */ | ||||
2385 | #endif | ||||
2386 | if (status!=0) decStatus(res, status, set);/* then report status */ | ||||
2387 | return res; | ||||
2388 | } /* decNumberReduce */ | ||||
2389 | |||||
2390 | /* ------------------------------------------------------------------ */ | ||||
2391 | /* decNumberRescale -- force exponent to requested value */ | ||||
2392 | /* */ | ||||
2393 | /* This computes C = op(A, B), where op adjusts the coefficient */ | ||||
2394 | /* of C (by rounding or shifting) such that the exponent (-scale) */ | ||||
2395 | /* of C has the value B. The numerical value of C will equal A, */ | ||||
2396 | /* except for the effects of any rounding that occurred. */ | ||||
2397 | /* */ | ||||
2398 | /* res is C, the result. C may be A or B */ | ||||
2399 | /* lhs is A, the number to adjust */ | ||||
2400 | /* rhs is B, the requested exponent */ | ||||
2401 | /* set is the context */ | ||||
2402 | /* */ | ||||
2403 | /* C must have space for set->digits digits. */ | ||||
2404 | /* */ | ||||
2405 | /* Unless there is an error or the result is infinite, the exponent */ | ||||
2406 | /* after the operation is guaranteed to be equal to B. */ | ||||
2407 | /* ------------------------------------------------------------------ */ | ||||
2408 | U_CAPIextern "C" decNumber * U_EXPORT2 uprv_decNumberRescaleuprv_decNumberRescale_71(decNumber *res, const decNumber *lhs, | ||||
2409 | const decNumber *rhs, decContext *set) { | ||||
2410 | uIntuint32_t status=0; /* accumulator */ | ||||
2411 | decQuantizeOp(res, lhs, rhs, set, 0, &status); | ||||
2412 | if (status!=0) decStatus(res, status, set); | ||||
2413 | return res; | ||||
2414 | } /* decNumberRescale */ | ||||
2415 | |||||
2416 | /* ------------------------------------------------------------------ */ | ||||
2417 | /* decNumberRemainder -- divide and return remainder */ | ||||
2418 | /* */ | ||||
2419 | /* This computes C = A % B */ | ||||
2420 | /* */ | ||||
2421 | /* res is C, the result. C may be A and/or B (e.g., X=X%X) */ | ||||
2422 | /* lhs is A */ | ||||
2423 | /* rhs is B */ | ||||
2424 | /* set is the context */ | ||||
2425 | /* */ | ||||
2426 | /* C must have space for set->digits digits. */ | ||||
2427 | /* ------------------------------------------------------------------ */ | ||||
2428 | U_CAPIextern "C" decNumber * U_EXPORT2 uprv_decNumberRemainderuprv_decNumberRemainder_71(decNumber *res, const decNumber *lhs, | ||||
2429 | const decNumber *rhs, decContext *set) { | ||||
2430 | uIntuint32_t status=0; /* accumulator */ | ||||
2431 | decDivideOp(res, lhs, rhs, set, REMAINDER0x40, &status); | ||||
2432 | if (status!=0) decStatus(res, status, set); | ||||
2433 | #if DECCHECK0 | ||||
2434 | decCheckInexact(res, set); | ||||
2435 | #endif | ||||
2436 | return res; | ||||
2437 | } /* decNumberRemainder */ | ||||
2438 | |||||
2439 | /* ------------------------------------------------------------------ */ | ||||
2440 | /* decNumberRemainderNear -- divide and return remainder from nearest */ | ||||
2441 | /* */ | ||||
2442 | /* This computes C = A % B, where % is the IEEE remainder operator */ | ||||
2443 | /* */ | ||||
2444 | /* res is C, the result. C may be A and/or B (e.g., X=X%X) */ | ||||
2445 | /* lhs is A */ | ||||
2446 | /* rhs is B */ | ||||
2447 | /* set is the context */ | ||||
2448 | /* */ | ||||
2449 | /* C must have space for set->digits digits. */ | ||||
2450 | /* ------------------------------------------------------------------ */ | ||||
2451 | U_CAPIextern "C" decNumber * U_EXPORT2 uprv_decNumberRemainderNearuprv_decNumberRemainderNear_71(decNumber *res, const decNumber *lhs, | ||||
2452 | const decNumber *rhs, decContext *set) { | ||||
2453 | uIntuint32_t status=0; /* accumulator */ | ||||
2454 | decDivideOp(res, lhs, rhs, set, REMNEAR0x10, &status); | ||||
2455 | if (status!=0) decStatus(res, status, set); | ||||
2456 | #if DECCHECK0 | ||||
2457 | decCheckInexact(res, set); | ||||
2458 | #endif | ||||
2459 | return res; | ||||
2460 | } /* decNumberRemainderNear */ | ||||
2461 | |||||
2462 | /* ------------------------------------------------------------------ */ | ||||
2463 | /* decNumberRotate -- rotate the coefficient of a Number left/right */ | ||||
2464 | /* */ | ||||
2465 | /* This computes C = A rot B (in base ten and rotating set->digits */ | ||||
2466 | /* digits). */ | ||||
2467 | /* */ | ||||
2468 | /* res is C, the result. C may be A and/or B (e.g., X=XrotX) */ | ||||
2469 | /* lhs is A */ | ||||
2470 | /* rhs is B, the number of digits to rotate (-ve to right) */ | ||||
2471 | /* set is the context */ | ||||
2472 | /* */ | ||||
2473 | /* The digits of the coefficient of A are rotated to the left (if B */ | ||||
2474 | /* is positive) or to the right (if B is negative) without adjusting */ | ||||
2475 | /* the exponent or the sign of A. If lhs->digits is less than */ | ||||
2476 | /* set->digits the coefficient is padded with zeros on the left */ | ||||
2477 | /* before the rotate. Any leading zeros in the result are removed */ | ||||
2478 | /* as usual. */ | ||||
2479 | /* */ | ||||
2480 | /* B must be an integer (q=0) and in the range -set->digits through */ | ||||
2481 | /* +set->digits. */ | ||||
2482 | /* C must have space for set->digits digits. */ | ||||
2483 | /* NaNs are propagated as usual. Infinities are unaffected (but */ | ||||
2484 | /* B must be valid). No status is set unless B is invalid or an */ | ||||
2485 | /* operand is an sNaN. */ | ||||
2486 | /* ------------------------------------------------------------------ */ | ||||
2487 | U_CAPIextern "C" decNumber * U_EXPORT2 uprv_decNumberRotateuprv_decNumberRotate_71(decNumber *res, const decNumber *lhs, | ||||
2488 | const decNumber *rhs, decContext *set) { | ||||
2489 | uIntuint32_t status=0; /* accumulator */ | ||||
2490 | Intint32_t rotate; /* rhs as an Int */ | ||||
2491 | |||||
2492 | #if DECCHECK0 | ||||
2493 | if (decCheckOperands(res, lhs, rhs, set)) return res; | ||||
2494 | #endif | ||||
2495 | |||||
2496 | /* NaNs propagate as normal */ | ||||
2497 | if (decNumberIsNaN(lhs)(((lhs)->bits&(0x20|0x10))!=0) || decNumberIsNaN(rhs)(((rhs)->bits&(0x20|0x10))!=0)) | ||||
2498 | decNaNs(res, lhs, rhs, set, &status); | ||||
2499 | /* rhs must be an integer */ | ||||
2500 | else if (decNumberIsInfinite(rhs)(((rhs)->bits&0x40)!=0) || rhs->exponent!=0) | ||||
2501 | status=DEC_Invalid_operation0x00000080; | ||||
2502 | else { /* both numeric, rhs is an integer */ | ||||
2503 | rotate=decGetInt(rhs); /* [cannot fail] */ | ||||
2504 | if (rotate==BADINT(int32_t)0x80000000 /* something bad .. */ | ||||
2505 | || rotate==BIGODD(int32_t)0x80000003 || rotate==BIGEVEN(int32_t)0x80000002 /* .. very big .. */ | ||||
2506 | || abs(rotate)>set->digits) /* .. or out of range */ | ||||
2507 | status=DEC_Invalid_operation0x00000080; | ||||
2508 | else { /* rhs is OK */ | ||||
2509 | uprv_decNumberCopyuprv_decNumberCopy_71(res, lhs); | ||||
2510 | /* convert -ve rotate to equivalent positive rotation */ | ||||
2511 | if (rotate<0) rotate=set->digits+rotate; | ||||
2512 | if (rotate!=0 && rotate!=set->digits /* zero or full rotation */ | ||||
2513 | && !decNumberIsInfinite(res)(((res)->bits&0x40)!=0)) { /* lhs was infinite */ | ||||
2514 | /* left-rotate to do; 0 < rotate < set->digits */ | ||||
2515 | uIntuint32_t units, shift; /* work */ | ||||
2516 | uIntuint32_t msudigits; /* digits in result msu */ | ||||
2517 | Unituint8_t *msu=res->lsu+D2U(res->digits)((res->digits)<=49?d2utable[res->digits]:((res->digits )+1 -1)/1)-1; /* current msu */ | ||||
2518 | Unituint8_t *msumax=res->lsu+D2U(set->digits)((set->digits)<=49?d2utable[set->digits]:((set->digits )+1 -1)/1)-1; /* rotation msu */ | ||||
2519 | for (msu++; msu<=msumax; msu++) *msu=0; /* ensure high units=0 */ | ||||
2520 | res->digits=set->digits; /* now full-length */ | ||||
2521 | msudigits=MSUDIGITS(res->digits)((res->digits)-(((res->digits)<=49?d2utable[res-> digits]:((res->digits)+1 -1)/1)-1)*1); /* actual digits in msu */ | ||||
2522 | |||||
2523 | /* rotation here is done in-place, in three steps */ | ||||
2524 | /* 1. shift all to least up to one unit to unit-align final */ | ||||
2525 | /* lsd [any digits shifted out are rotated to the left, */ | ||||
2526 | /* abutted to the original msd (which may require split)] */ | ||||
2527 | /* */ | ||||
2528 | /* [if there are no whole units left to rotate, the */ | ||||
2529 | /* rotation is now complete] */ | ||||
2530 | /* */ | ||||
2531 | /* 2. shift to least, from below the split point only, so that */ | ||||
2532 | /* the final msd is in the right place in its Unit [any */ | ||||
2533 | /* digits shifted out will fit exactly in the current msu, */ | ||||
2534 | /* left aligned, no split required] */ | ||||
2535 | /* */ | ||||
2536 | /* 3. rotate all the units by reversing left part, right */ | ||||
2537 | /* part, and then whole */ | ||||
2538 | /* */ | ||||
2539 | /* example: rotate right 8 digits (2 units + 2), DECDPUN=3. */ | ||||
2540 | /* */ | ||||
2541 | /* start: 00a bcd efg hij klm npq */ | ||||
2542 | /* */ | ||||
2543 | /* 1a 000 0ab cde fgh|ijk lmn [pq saved] */ | ||||
2544 | /* 1b 00p qab cde fgh|ijk lmn */ | ||||
2545 | /* */ | ||||
2546 | /* 2a 00p qab cde fgh|00i jkl [mn saved] */ | ||||
2547 | /* 2b mnp qab cde fgh|00i jkl */ | ||||
2548 | /* */ | ||||
2549 | /* 3a fgh cde qab mnp|00i jkl */ | ||||
2550 | /* 3b fgh cde qab mnp|jkl 00i */ | ||||
2551 | /* 3c 00i jkl mnp qab cde fgh */ | ||||
2552 | |||||
2553 | /* Step 1: amount to shift is the partial right-rotate count */ | ||||
2554 | rotate=set->digits-rotate; /* make it right-rotate */ | ||||
2555 | units=rotate/DECDPUN1; /* whole units to rotate */ | ||||
2556 | shift=rotate%DECDPUN1; /* left-over digits count */ | ||||
2557 | if (shift>0) { /* not an exact number of units */ | ||||
2558 | uIntuint32_t save=res->lsu[0]%powersDECPOWERS[shift]; /* save low digit(s) */ | ||||
2559 | decShiftToLeast(res->lsu, D2U(res->digits)((res->digits)<=49?d2utable[res->digits]:((res->digits )+1 -1)/1), shift); | ||||
2560 | if (shift>msudigits) { /* msumax-1 needs >0 digits */ | ||||
2561 | uIntuint32_t rem=save%powersDECPOWERS[shift-msudigits];/* split save */ | ||||
2562 | *msumax=(Unituint8_t)(save/powersDECPOWERS[shift-msudigits]); /* and insert */ | ||||
2563 | *(msumax-1)=*(msumax-1) | ||||
2564 | +(Unituint8_t)(rem*powersDECPOWERS[DECDPUN1-(shift-msudigits)]); /* .. */ | ||||
2565 | } | ||||
2566 | else { /* all fits in msumax */ | ||||
2567 | *msumax=*msumax+(Unituint8_t)(save*powersDECPOWERS[msudigits-shift]); /* [maybe *1] */ | ||||
2568 | } | ||||
2569 | } /* digits shift needed */ | ||||
2570 | |||||
2571 | /* If whole units to rotate... */ | ||||
2572 | if (units>0) { /* some to do */ | ||||
2573 | /* Step 2: the units to touch are the whole ones in rotate, */ | ||||
2574 | /* if any, and the shift is DECDPUN-msudigits (which may be */ | ||||
2575 | /* 0, again) */ | ||||
2576 | shift=DECDPUN1-msudigits; | ||||
2577 | if (shift>0) { /* not an exact number of units */ | ||||
2578 | uIntuint32_t save=res->lsu[0]%powersDECPOWERS[shift]; /* save low digit(s) */ | ||||
2579 | decShiftToLeast(res->lsu, units, shift); | ||||
2580 | *msumax=*msumax+(Unituint8_t)(save*powersDECPOWERS[msudigits]); | ||||
2581 | } /* partial shift needed */ | ||||
2582 | |||||
2583 | /* Step 3: rotate the units array using triple reverse */ | ||||
2584 | /* (reversing is easy and fast) */ | ||||
2585 | decReverse(res->lsu+units, msumax); /* left part */ | ||||
2586 | decReverse(res->lsu, res->lsu+units-1); /* right part */ | ||||
2587 | decReverse(res->lsu, msumax); /* whole */ | ||||
2588 | } /* whole units to rotate */ | ||||
2589 | /* the rotation may have left an undetermined number of zeros */ | ||||
2590 | /* on the left, so true length needs to be calculated */ | ||||
2591 | res->digits=decGetDigits(res->lsu, static_cast<int32_t>(msumax-res->lsu+1)); | ||||
2592 | } /* rotate needed */ | ||||
2593 | } /* rhs OK */ | ||||
2594 | } /* numerics */ | ||||
2595 | if (status!=0) decStatus(res, status, set); | ||||
2596 | return res; | ||||
2597 | } /* decNumberRotate */ | ||||
2598 | |||||
2599 | /* ------------------------------------------------------------------ */ | ||||
2600 | /* decNumberSameQuantum -- test for equal exponents */ | ||||
2601 | /* */ | ||||
2602 | /* res is the result number, which will contain either 0 or 1 */ | ||||
2603 | /* lhs is a number to test */ | ||||
2604 | /* rhs is the second (usually a pattern) */ | ||||
2605 | /* */ | ||||
2606 | /* No errors are possible and no context is needed. */ | ||||
2607 | /* ------------------------------------------------------------------ */ | ||||
2608 | U_CAPIextern "C" decNumber * U_EXPORT2 uprv_decNumberSameQuantumuprv_decNumberSameQuantum_71(decNumber *res, const decNumber *lhs, | ||||
2609 | const decNumber *rhs) { | ||||
2610 | Unituint8_t ret=0; /* return value */ | ||||
2611 | |||||
2612 | #if DECCHECK0 | ||||
2613 | if (decCheckOperands(res, lhs, rhs, DECUNCONT)) return res; | ||||
2614 | #endif | ||||
2615 | |||||
2616 | if (SPECIALARGS((lhs->bits | rhs->bits) & (0x40|0x20|0x10))) { | ||||
2617 | if (decNumberIsNaN(lhs)(((lhs)->bits&(0x20|0x10))!=0) && decNumberIsNaN(rhs)(((rhs)->bits&(0x20|0x10))!=0)) ret=1; | ||||
2618 | else if (decNumberIsInfinite(lhs)(((lhs)->bits&0x40)!=0) && decNumberIsInfinite(rhs)(((rhs)->bits&0x40)!=0)) ret=1; | ||||
2619 | /* [anything else with a special gives 0] */ | ||||
2620 | } | ||||
2621 | else if (lhs->exponent==rhs->exponent) ret=1; | ||||
2622 | |||||
2623 | uprv_decNumberZerouprv_decNumberZero_71(res); /* OK to overwrite an operand now */ | ||||
2624 | *res->lsu=ret; | ||||
2625 | return res; | ||||
2626 | } /* decNumberSameQuantum */ | ||||
2627 | |||||
2628 | /* ------------------------------------------------------------------ */ | ||||
2629 | /* decNumberScaleB -- multiply by a power of 10 */ | ||||
2630 | /* */ | ||||
2631 | /* This computes C = A x 10**B where B is an integer (q=0) with */ | ||||
2632 | /* maximum magnitude 2*(emax+digits) */ | ||||
2633 | /* */ | ||||
2634 | /* res is C, the result. C may be A or B */ | ||||
2635 | /* lhs is A, the number to adjust */ | ||||
2636 | /* rhs is B, the requested power of ten to use */ | ||||
2637 | /* set is the context */ | ||||
2638 | /* */ | ||||
2639 | /* C must have space for set->digits digits. */ | ||||
2640 | /* */ | ||||
2641 | /* The result may underflow or overflow. */ | ||||
2642 | /* ------------------------------------------------------------------ */ | ||||
2643 | U_CAPIextern "C" decNumber * U_EXPORT2 uprv_decNumberScaleBuprv_decNumberScaleB_71(decNumber *res, const decNumber *lhs, | ||||
2644 | const decNumber *rhs, decContext *set) { | ||||
2645 | Intint32_t reqexp; /* requested exponent change [B] */ | ||||
2646 | uIntuint32_t status=0; /* accumulator */ | ||||
2647 | Intint32_t residue; /* work */ | ||||
2648 | |||||
2649 | #if DECCHECK0 | ||||
2650 | if (decCheckOperands(res, lhs, rhs, set)) return res; | ||||
2651 | #endif | ||||
2652 | |||||
2653 | /* Handle special values except lhs infinite */ | ||||
2654 | if (decNumberIsNaN(lhs)(((lhs)->bits&(0x20|0x10))!=0) || decNumberIsNaN(rhs)(((rhs)->bits&(0x20|0x10))!=0)) | ||||
2655 | decNaNs(res, lhs, rhs, set, &status); | ||||
2656 | /* rhs must be an integer */ | ||||
2657 | else if (decNumberIsInfinite(rhs)(((rhs)->bits&0x40)!=0) || rhs->exponent!=0) | ||||
2658 | status=DEC_Invalid_operation0x00000080; | ||||
2659 | else { | ||||
2660 | /* lhs is a number; rhs is a finite with q==0 */ | ||||
2661 | reqexp=decGetInt(rhs); /* [cannot fail] */ | ||||
2662 | if (reqexp==BADINT(int32_t)0x80000000 /* something bad .. */ | ||||
2663 | || reqexp==BIGODD(int32_t)0x80000003 || reqexp==BIGEVEN(int32_t)0x80000002 /* .. very big .. */ | ||||
2664 | || abs(reqexp)>(2*(set->digits+set->emax))) /* .. or out of range */ | ||||
2665 | status=DEC_Invalid_operation0x00000080; | ||||
2666 | else { /* rhs is OK */ | ||||
2667 | uprv_decNumberCopyuprv_decNumberCopy_71(res, lhs); /* all done if infinite lhs */ | ||||
2668 | if (!decNumberIsInfinite(res)(((res)->bits&0x40)!=0)) { /* prepare to scale */ | ||||
2669 | res->exponent+=reqexp; /* adjust the exponent */ | ||||
2670 | residue=0; | ||||
2671 | decFinalize(res, set, &residue, &status); /* .. and check */ | ||||
2672 | } /* finite LHS */ | ||||
2673 | } /* rhs OK */ | ||||
2674 | } /* rhs finite */ | ||||
2675 | if (status!=0) decStatus(res, status, set); | ||||
2676 | return res; | ||||
2677 | } /* decNumberScaleB */ | ||||
2678 | |||||
2679 | /* ------------------------------------------------------------------ */ | ||||
2680 | /* decNumberShift -- shift the coefficient of a Number left or right */ | ||||
2681 | /* */ | ||||
2682 | /* This computes C = A << B or C = A >> -B (in base ten). */ | ||||
2683 | /* */ | ||||
2684 | /* res is C, the result. C may be A and/or B (e.g., X=X<<X) */ | ||||
2685 | /* lhs is A */ | ||||
2686 | /* rhs is B, the number of digits to shift (-ve to right) */ | ||||
2687 | /* set is the context */ | ||||
2688 | /* */ | ||||
2689 | /* The digits of the coefficient of A are shifted to the left (if B */ | ||||
2690 | /* is positive) or to the right (if B is negative) without adjusting */ | ||||
2691 | /* the exponent or the sign of A. */ | ||||
2692 | /* */ | ||||
2693 | /* B must be an integer (q=0) and in the range -set->digits through */ | ||||
2694 | /* +set->digits. */ | ||||
2695 | /* C must have space for set->digits digits. */ | ||||
2696 | /* NaNs are propagated as usual. Infinities are unaffected (but */ | ||||
2697 | /* B must be valid). No status is set unless B is invalid or an */ | ||||
2698 | /* operand is an sNaN. */ | ||||
2699 | /* ------------------------------------------------------------------ */ | ||||
2700 | U_CAPIextern "C" decNumber * U_EXPORT2 uprv_decNumberShiftuprv_decNumberShift_71(decNumber *res, const decNumber *lhs, | ||||
2701 | const decNumber *rhs, decContext *set) { | ||||
2702 | uIntuint32_t status=0; /* accumulator */ | ||||
2703 | Intint32_t shift; /* rhs as an Int */ | ||||
2704 | |||||
2705 | #if DECCHECK0 | ||||
2706 | if (decCheckOperands(res, lhs, rhs, set)) return res; | ||||
2707 | #endif | ||||
2708 | |||||
2709 | /* NaNs propagate as normal */ | ||||
2710 | if (decNumberIsNaN(lhs)(((lhs)->bits&(0x20|0x10))!=0) || decNumberIsNaN(rhs)(((rhs)->bits&(0x20|0x10))!=0)) | ||||
2711 | decNaNs(res, lhs, rhs, set, &status); | ||||
2712 | /* rhs must be an integer */ | ||||
2713 | else if (decNumberIsInfinite(rhs)(((rhs)->bits&0x40)!=0) || rhs->exponent!=0) | ||||
2714 | status=DEC_Invalid_operation0x00000080; | ||||
2715 | else { /* both numeric, rhs is an integer */ | ||||
2716 | shift=decGetInt(rhs); /* [cannot fail] */ | ||||
2717 | if (shift==BADINT(int32_t)0x80000000 /* something bad .. */ | ||||
2718 | || shift==BIGODD(int32_t)0x80000003 || shift==BIGEVEN(int32_t)0x80000002 /* .. very big .. */ | ||||
2719 | || abs(shift)>set->digits) /* .. or out of range */ | ||||
2720 | status=DEC_Invalid_operation0x00000080; | ||||
2721 | else { /* rhs is OK */ | ||||
2722 | uprv_decNumberCopyuprv_decNumberCopy_71(res, lhs); | ||||
2723 | if (shift!=0 && !decNumberIsInfinite(res)(((res)->bits&0x40)!=0)) { /* something to do */ | ||||
2724 | if (shift>0) { /* to left */ | ||||
2725 | if (shift==set->digits) { /* removing all */ | ||||
2726 | *res->lsu=0; /* so place 0 */ | ||||
2727 | res->digits=1; /* .. */ | ||||
2728 | } | ||||
2729 | else { /* */ | ||||
2730 | /* first remove leading digits if necessary */ | ||||
2731 | if (res->digits+shift>set->digits) { | ||||
2732 | decDecap(res, res->digits+shift-set->digits); | ||||
2733 | /* that updated res->digits; may have gone to 1 (for a */ | ||||
2734 | /* single digit or for zero */ | ||||
2735 | } | ||||
2736 | if (res->digits>1 || *res->lsu) /* if non-zero.. */ | ||||
2737 | res->digits=decShiftToMost(res->lsu, res->digits, shift); | ||||
2738 | } /* partial left */ | ||||
2739 | } /* left */ | ||||
2740 | else { /* to right */ | ||||
2741 | if (-shift>=res->digits) { /* discarding all */ | ||||
2742 | *res->lsu=0; /* so place 0 */ | ||||
2743 | res->digits=1; /* .. */ | ||||
2744 | } | ||||
2745 | else { | ||||
2746 | decShiftToLeast(res->lsu, D2U(res->digits)((res->digits)<=49?d2utable[res->digits]:((res->digits )+1 -1)/1), -shift); | ||||
2747 | res->digits-=(-shift); | ||||
2748 | } | ||||
2749 | } /* to right */ | ||||
2750 | } /* non-0 non-Inf shift */ | ||||
2751 | } /* rhs OK */ | ||||
2752 | } /* numerics */ | ||||
2753 | if (status!=0) decStatus(res, status, set); | ||||
2754 | return res; | ||||
2755 | } /* decNumberShift */ | ||||
2756 | |||||
2757 | /* ------------------------------------------------------------------ */ | ||||
2758 | /* decNumberSquareRoot -- square root operator */ | ||||
2759 | /* */ | ||||
2760 | /* This computes C = squareroot(A) */ | ||||
2761 | /* */ | ||||
2762 | /* res is C, the result. C may be A */ | ||||
2763 | /* rhs is A */ | ||||
2764 | /* set is the context; note that rounding mode has no effect */ | ||||
2765 | /* */ | ||||
2766 | /* C must have space for set->digits digits. */ | ||||
2767 | /* ------------------------------------------------------------------ */ | ||||
2768 | /* This uses the following varying-precision algorithm in: */ | ||||
2769 | /* */ | ||||
2770 | /* Properly Rounded Variable Precision Square Root, T. E. Hull and */ | ||||
2771 | /* A. Abrham, ACM Transactions on Mathematical Software, Vol 11 #3, */ | ||||
2772 | /* pp229-237, ACM, September 1985. */ | ||||
2773 | /* */ | ||||
2774 | /* The square-root is calculated using Newton's method, after which */ | ||||
2775 | /* a check is made to ensure the result is correctly rounded. */ | ||||
2776 | /* */ | ||||
2777 | /* % [Reformatted original Numerical Turing source code follows.] */ | ||||
2778 | /* function sqrt(x : real) : real */ | ||||
2779 | /* % sqrt(x) returns the properly rounded approximation to the square */ | ||||
2780 | /* % root of x, in the precision of the calling environment, or it */ | ||||
2781 | /* % fails if x < 0. */ | ||||
2782 | /* % t e hull and a abrham, august, 1984 */ | ||||
2783 | /* if x <= 0 then */ | ||||
2784 | /* if x < 0 then */ | ||||
2785 | /* assert false */ | ||||
2786 | /* else */ | ||||
2787 | /* result 0 */ | ||||
2788 | /* end if */ | ||||
2789 | /* end if */ | ||||
2790 | /* var f := setexp(x, 0) % fraction part of x [0.1 <= x < 1] */ | ||||
2791 | /* var e := getexp(x) % exponent part of x */ | ||||
2792 | /* var approx : real */ | ||||
2793 | /* if e mod 2 = 0 then */ | ||||
2794 | /* approx := .259 + .819 * f % approx to root of f */ | ||||
2795 | /* else */ | ||||
2796 | /* f := f/l0 % adjustments */ | ||||
2797 | /* e := e + 1 % for odd */ | ||||
2798 | /* approx := .0819 + 2.59 * f % exponent */ | ||||
2799 | /* end if */ | ||||
2800 | /* */ | ||||
2801 | /* var p:= 3 */ | ||||
2802 | /* const maxp := currentprecision + 2 */ | ||||
2803 | /* loop */ | ||||
2804 | /* p := min(2*p - 2, maxp) % p = 4,6,10, . . . , maxp */ | ||||
2805 | /* precision p */ | ||||
2806 | /* approx := .5 * (approx + f/approx) */ | ||||
2807 | /* exit when p = maxp */ | ||||
2808 | /* end loop */ | ||||
2809 | /* */ | ||||
2810 | /* % approx is now within 1 ulp of the properly rounded square root */ | ||||
2811 | /* % of f; to ensure proper rounding, compare squares of (approx - */ | ||||
2812 | /* % l/2 ulp) and (approx + l/2 ulp) with f. */ | ||||
2813 | /* p := currentprecision */ | ||||
2814 | /* begin */ | ||||
2815 | /* precision p + 2 */ | ||||
2816 | /* const approxsubhalf := approx - setexp(.5, -p) */ | ||||
2817 | /* if mulru(approxsubhalf, approxsubhalf) > f then */ | ||||
2818 | /* approx := approx - setexp(.l, -p + 1) */ | ||||
2819 | /* else */ | ||||
2820 | /* const approxaddhalf := approx + setexp(.5, -p) */ | ||||
2821 | /* if mulrd(approxaddhalf, approxaddhalf) < f then */ | ||||
2822 | /* approx := approx + setexp(.l, -p + 1) */ | ||||
2823 | /* end if */ | ||||
2824 | /* end if */ | ||||
2825 | /* end */ | ||||
2826 | /* result setexp(approx, e div 2) % fix exponent */ | ||||
2827 | /* end sqrt */ | ||||
2828 | /* ------------------------------------------------------------------ */ | ||||
2829 | #if defined(__clang__1) || U_GCC_MAJOR_MINOR(4 * 100 + 2) >= 406 | ||||
2830 | #pragma GCC diagnostic push | ||||
2831 | #pragma GCC diagnostic ignored "-Warray-bounds" | ||||
2832 | #endif | ||||
2833 | U_CAPIextern "C" decNumber * U_EXPORT2 uprv_decNumberSquareRootuprv_decNumberSquareRoot_71(decNumber *res, const decNumber *rhs, | ||||
2834 | decContext *set) { | ||||
2835 | decContext workset, approxset; /* work contexts */ | ||||
2836 | decNumber dzero; /* used for constant zero */ | ||||
2837 | Intint32_t maxp; /* largest working precision */ | ||||
2838 | Intint32_t workp; /* working precision */ | ||||
2839 | Intint32_t residue=0; /* rounding residue */ | ||||
2840 | uIntuint32_t status=0, ignore=0; /* status accumulators */ | ||||
2841 | uIntuint32_t rstatus; /* .. */ | ||||
2842 | Intint32_t exp; /* working exponent */ | ||||
2843 | Intint32_t ideal; /* ideal (preferred) exponent */ | ||||
2844 | Intint32_t needbytes; /* work */ | ||||
2845 | Intint32_t dropped; /* .. */ | ||||
2846 | |||||
2847 | #if DECSUBSET0 | ||||
2848 | decNumber *allocrhs=NULL__null; /* non-NULL if rounded rhs allocated */ | ||||
2849 | #endif | ||||
2850 | /* buffer for f [needs +1 in case DECBUFFER 0] */ | ||||
2851 | decNumber buff[D2N(DECBUFFER+1)(((((((36 +1)+1 -1)/1)-1)*sizeof(uint8_t))+sizeof(decNumber)* 2-1)/sizeof(decNumber))]; | ||||
2852 | /* buffer for a [needs +2 to match likely maxp] */ | ||||
2853 | decNumber bufa[D2N(DECBUFFER+2)(((((((36 +2)+1 -1)/1)-1)*sizeof(uint8_t))+sizeof(decNumber)* 2-1)/sizeof(decNumber))]; | ||||
2854 | /* buffer for temporary, b [must be same size as a] */ | ||||
2855 | decNumber bufb[D2N(DECBUFFER+2)(((((((36 +2)+1 -1)/1)-1)*sizeof(uint8_t))+sizeof(decNumber)* 2-1)/sizeof(decNumber))]; | ||||
2856 | decNumber *allocbuff=NULL__null; /* -> allocated buff, iff allocated */ | ||||
2857 | decNumber *allocbufa=NULL__null; /* -> allocated bufa, iff allocated */ | ||||
2858 | decNumber *allocbufb=NULL__null; /* -> allocated bufb, iff allocated */ | ||||
2859 | decNumber *f=buff; /* reduced fraction */ | ||||
2860 | decNumber *a=bufa; /* approximation to result */ | ||||
2861 | decNumber *b=bufb; /* intermediate result */ | ||||
2862 | /* buffer for temporary variable, up to 3 digits */ | ||||
2863 | decNumber buft[D2N(3)(((((((3)+1 -1)/1)-1)*sizeof(uint8_t))+sizeof(decNumber)*2-1) /sizeof(decNumber))]; | ||||
2864 | decNumber *t=buft; /* up-to-3-digit constant or work */ | ||||
2865 | |||||
2866 | #if DECCHECK0 | ||||
2867 | if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; | ||||
2868 | #endif | ||||
2869 | |||||
2870 | do { /* protect allocated storage */ | ||||
2871 | #if DECSUBSET0 | ||||
2872 | if (!set->extended) { | ||||
2873 | /* reduce operand and set lostDigits status, as needed */ | ||||
2874 | if (rhs->digits>set->digits) { | ||||
2875 | allocrhs=decRoundOperand(rhs, set, &status); | ||||
2876 | if (allocrhs==NULL__null) break; | ||||
2877 | /* [Note: 'f' allocation below could reuse this buffer if */ | ||||
2878 | /* used, but as this is rare they are kept separate for clarity.] */ | ||||
2879 | rhs=allocrhs; | ||||
2880 | } | ||||
2881 | } | ||||
2882 | #endif | ||||
2883 | /* [following code does not require input rounding] */ | ||||
2884 | |||||
2885 | /* handle infinities and NaNs */ | ||||
2886 | if (SPECIALARG(rhs->bits & (0x40|0x20|0x10))) { | ||||
2887 | if (decNumberIsInfinite(rhs)(((rhs)->bits&0x40)!=0)) { /* an infinity */ | ||||
2888 | if (decNumberIsNegative(rhs)(((rhs)->bits&0x80)!=0)) status|=DEC_Invalid_operation0x00000080; | ||||
2889 | else uprv_decNumberCopyuprv_decNumberCopy_71(res, rhs); /* +Infinity */ | ||||
2890 | } | ||||
2891 | else decNaNs(res, rhs, NULL__null, set, &status); /* a NaN */ | ||||
2892 | break; | ||||
2893 | } | ||||
2894 | |||||
2895 | /* calculate the ideal (preferred) exponent [floor(exp/2)] */ | ||||
2896 | /* [It would be nicer to write: ideal=rhs->exponent>>1, but this */ | ||||
2897 | /* generates a compiler warning. Generated code is the same.] */ | ||||
2898 | ideal=(rhs->exponent&~1)/2; /* target */ | ||||
2899 | |||||
2900 | /* handle zeros */ | ||||
2901 | if (ISZERO(rhs)(*(rhs)->lsu==0 && (rhs)->digits==1 && ( ((rhs)->bits&(0x40|0x20|0x10))==0))) { | ||||
2902 | uprv_decNumberCopyuprv_decNumberCopy_71(res, rhs); /* could be 0 or -0 */ | ||||
2903 | res->exponent=ideal; /* use the ideal [safe] */ | ||||
2904 | /* use decFinish to clamp any out-of-range exponent, etc. */ | ||||
2905 | decFinish(res, set, &residue, &status)decFinalize(res,set,&residue,&status); | ||||
2906 | break; | ||||
2907 | } | ||||
2908 | |||||
2909 | /* any other -x is an oops */ | ||||
2910 | if (decNumberIsNegative(rhs)(((rhs)->bits&0x80)!=0)) { | ||||
2911 | status|=DEC_Invalid_operation0x00000080; | ||||
2912 | break; | ||||
2913 | } | ||||
2914 | |||||
2915 | /* space is needed for three working variables */ | ||||
2916 | /* f -- the same precision as the RHS, reduced to 0.01->0.99... */ | ||||
2917 | /* a -- Hull's approximation -- precision, when assigned, is */ | ||||
2918 | /* currentprecision+1 or the input argument precision, */ | ||||
2919 | /* whichever is larger (+2 for use as temporary) */ | ||||
2920 | /* b -- intermediate temporary result (same size as a) */ | ||||
2921 | /* if any is too long for local storage, then allocate */ | ||||
2922 | workp=MAXI(set->digits+1, rhs->digits)((set->digits+1)<(rhs->digits)?(rhs->digits):(set ->digits+1)); /* actual rounding precision */ | ||||
2923 | workp=MAXI(workp, 7)((workp)<(7)?(7):(workp)); /* at least 7 for low cases */ | ||||
2924 | maxp=workp+2; /* largest working precision */ | ||||
2925 | |||||
2926 | needbytes=sizeof(decNumber)+(D2U(rhs->digits)((rhs->digits)<=49?d2utable[rhs->digits]:((rhs->digits )+1 -1)/1)-1)*sizeof(Unituint8_t); | ||||
2927 | if (needbytes>(Intint32_t)sizeof(buff)) { | ||||
2928 | allocbuff=(decNumber *)malloc(needbytes)uprv_malloc_71(needbytes); | ||||
2929 | if (allocbuff==NULL__null) { /* hopeless -- abandon */ | ||||
2930 | status|=DEC_Insufficient_storage0x00000010; | ||||
2931 | break;} | ||||
2932 | f=allocbuff; /* use the allocated space */ | ||||
2933 | } | ||||
2934 | /* a and b both need to be able to hold a maxp-length number */ | ||||
2935 | needbytes=sizeof(decNumber)+(D2U(maxp)((maxp)<=49?d2utable[maxp]:((maxp)+1 -1)/1)-1)*sizeof(Unituint8_t); | ||||
2936 | if (needbytes>(Intint32_t)sizeof(bufa)) { /* [same applies to b] */ | ||||
2937 | allocbufa=(decNumber *)malloc(needbytes)uprv_malloc_71(needbytes); | ||||
2938 | allocbufb=(decNumber *)malloc(needbytes)uprv_malloc_71(needbytes); | ||||
2939 | if (allocbufa==NULL__null || allocbufb==NULL__null) { /* hopeless */ | ||||
2940 | status|=DEC_Insufficient_storage0x00000010; | ||||
2941 | break;} | ||||
2942 | a=allocbufa; /* use the allocated spaces */ | ||||
2943 | b=allocbufb; /* .. */ | ||||
2944 | } | ||||
2945 | |||||
2946 | /* copy rhs -> f, save exponent, and reduce so 0.1 <= f < 1 */ | ||||
2947 | uprv_decNumberCopyuprv_decNumberCopy_71(f, rhs); | ||||
2948 | exp=f->exponent+f->digits; /* adjusted to Hull rules */ | ||||
2949 | f->exponent=-(f->digits); /* to range */ | ||||
2950 | |||||
2951 | /* set up working context */ | ||||
2952 | uprv_decContextDefaultuprv_decContextDefault_71(&workset, DEC_INIT_DECIMAL6464); | ||||
2953 | workset.emax=DEC_MAX_EMAX999999999; | ||||
2954 | workset.emin=DEC_MIN_EMIN-999999999; | ||||
2955 | |||||
2956 | /* [Until further notice, no error is possible and status bits */ | ||||
2957 | /* (Rounded, etc.) should be ignored, not accumulated.] */ | ||||
2958 | |||||
2959 | /* Calculate initial approximation, and allow for odd exponent */ | ||||
2960 | workset.digits=workp; /* p for initial calculation */ | ||||
2961 | t->bits=0; t->digits=3; | ||||
2962 | a->bits=0; a->digits=3; | ||||
2963 | if ((exp & 1)==0) { /* even exponent */ | ||||
2964 | /* Set t=0.259, a=0.819 */ | ||||
2965 | t->exponent=-3; | ||||
2966 | a->exponent=-3; | ||||
2967 | #if DECDPUN1>=3 | ||||
2968 | t->lsu[0]=259; | ||||
2969 | a->lsu[0]=819; | ||||
2970 | #elif DECDPUN1==2 | ||||
2971 | t->lsu[0]=59; t->lsu[1]=2; | ||||
2972 | a->lsu[0]=19; a->lsu[1]=8; | ||||
2973 | #else | ||||
2974 | t->lsu[0]=9; t->lsu[1]=5; t->lsu[2]=2; | ||||
2975 | a->lsu[0]=9; a->lsu[1]=1; a->lsu[2]=8; | ||||
2976 | #endif | ||||
2977 | } | ||||
2978 | else { /* odd exponent */ | ||||
2979 | /* Set t=0.0819, a=2.59 */ | ||||
2980 | f->exponent--; /* f=f/10 */ | ||||
2981 | exp++; /* e=e+1 */ | ||||
2982 | t->exponent=-4; | ||||
2983 | a->exponent=-2; | ||||
2984 | #if DECDPUN1>=3 | ||||
2985 | t->lsu[0]=819; | ||||
2986 | a->lsu[0]=259; | ||||
2987 | #elif DECDPUN1==2 | ||||
2988 | t->lsu[0]=19; t->lsu[1]=8; | ||||
2989 | a->lsu[0]=59; a->lsu[1]=2; | ||||
2990 | #else | ||||
2991 | t->lsu[0]=9; t->lsu[1]=1; t->lsu[2]=8; | ||||
2992 | a->lsu[0]=9; a->lsu[1]=5; a->lsu[2]=2; | ||||
2993 | #endif | ||||
2994 | } | ||||
2995 | |||||
2996 | decMultiplyOp(a, a, f, &workset, &ignore); /* a=a*f */ | ||||
2997 | decAddOp(a, a, t, &workset, 0, &ignore); /* ..+t */ | ||||
2998 | /* [a is now the initial approximation for sqrt(f), calculated with */ | ||||
2999 | /* currentprecision, which is also a's precision.] */ | ||||
3000 | |||||
3001 | /* the main calculation loop */ | ||||
3002 | uprv_decNumberZerouprv_decNumberZero_71(&dzero); /* make 0 */ | ||||
3003 | uprv_decNumberZerouprv_decNumberZero_71(t); /* set t = 0.5 */ | ||||
3004 | t->lsu[0]=5; /* .. */ | ||||
3005 | t->exponent=-1; /* .. */ | ||||
3006 | workset.digits=3; /* initial p */ | ||||
3007 | for (; workset.digits<maxp;) { | ||||
3008 | /* set p to min(2*p - 2, maxp) [hence 3; or: 4, 6, 10, ... , maxp] */ | ||||
3009 | workset.digits=MINI(workset.digits*2-2, maxp)((workset.digits*2-2)>(maxp)?(maxp):(workset.digits*2-2)); | ||||
3010 | /* a = 0.5 * (a + f/a) */ | ||||
3011 | /* [calculated at p then rounded to currentprecision] */ | ||||
3012 | decDivideOp(b, f, a, &workset, DIVIDE0x80, &ignore); /* b=f/a */ | ||||
3013 | decAddOp(b, b, a, &workset, 0, &ignore); /* b=b+a */ | ||||
3014 | decMultiplyOp(a, b, t, &workset, &ignore); /* a=b*0.5 */ | ||||
3015 | } /* loop */ | ||||
3016 | |||||
3017 | /* Here, 0.1 <= a < 1 [Hull], and a has maxp digits */ | ||||
3018 | /* now reduce to length, etc.; this needs to be done with a */ | ||||
3019 | /* having the correct exponent so as to handle subnormals */ | ||||
3020 | /* correctly */ | ||||
3021 | approxset=*set; /* get emin, emax, etc. */ | ||||
3022 | approxset.round=DEC_ROUND_HALF_EVEN; | ||||
3023 | a->exponent+=exp/2; /* set correct exponent */ | ||||
3024 | rstatus=0; /* clear status */ | ||||
3025 | residue=0; /* .. and accumulator */ | ||||
3026 | decCopyFit(a, a, &approxset, &residue, &rstatus); /* reduce (if needed) */ | ||||
3027 | decFinish(a, &approxset, &residue, &rstatus)decFinalize(a,&approxset,&residue,&rstatus); /* clean and finalize */ | ||||
3028 | |||||
3029 | /* Overflow was possible if the input exponent was out-of-range, */ | ||||
3030 | /* in which case quit */ | ||||
3031 | if (rstatus&DEC_Overflow0x00000200) { | ||||
3032 | status=rstatus; /* use the status as-is */ | ||||
3033 | uprv_decNumberCopyuprv_decNumberCopy_71(res, a); /* copy to result */ | ||||
3034 | break; | ||||
3035 | } | ||||
3036 | |||||
3037 | /* Preserve status except Inexact/Rounded */ | ||||
3038 | status|=(rstatus & ~(DEC_Rounded0x00000800|DEC_Inexact0x00000020)); | ||||
3039 | |||||
3040 | /* Carry out the Hull correction */ | ||||
3041 | a->exponent-=exp/2; /* back to 0.1->1 */ | ||||
3042 | |||||
3043 | /* a is now at final precision and within 1 ulp of the properly */ | ||||
3044 | /* rounded square root of f; to ensure proper rounding, compare */ | ||||
3045 | /* squares of (a - l/2 ulp) and (a + l/2 ulp) with f. */ | ||||
3046 | /* Here workset.digits=maxp and t=0.5, and a->digits determines */ | ||||
3047 | /* the ulp */ | ||||
3048 | workset.digits--; /* maxp-1 is OK now */ | ||||
3049 | t->exponent=-a->digits-1; /* make 0.5 ulp */ | ||||
3050 | decAddOp(b, a, t, &workset, DECNEG0x80, &ignore); /* b = a - 0.5 ulp */ | ||||
3051 | workset.round=DEC_ROUND_UP; | ||||
3052 | decMultiplyOp(b, b, b, &workset, &ignore); /* b = mulru(b, b) */ | ||||
3053 | decCompareOp(b, f, b, &workset, COMPARE0x01, &ignore); /* b ? f, reversed */ | ||||
3054 | if (decNumberIsNegative(b)(((b)->bits&0x80)!=0)) { /* f < b [i.e., b > f] */ | ||||
3055 | /* this is the more common adjustment, though both are rare */ | ||||
3056 | t->exponent++; /* make 1.0 ulp */ | ||||
3057 | t->lsu[0]=1; /* .. */ | ||||
3058 | decAddOp(a, a, t, &workset, DECNEG0x80, &ignore); /* a = a - 1 ulp */ | ||||
3059 | /* assign to approx [round to length] */ | ||||
3060 | approxset.emin-=exp/2; /* adjust to match a */ | ||||
3061 | approxset.emax-=exp/2; | ||||
3062 | decAddOp(a, &dzero, a, &approxset, 0, &ignore); | ||||
3063 | } | ||||
3064 | else { | ||||
3065 | decAddOp(b, a, t, &workset, 0, &ignore); /* b = a + 0.5 ulp */ | ||||
3066 | workset.round=DEC_ROUND_DOWN; | ||||
3067 | decMultiplyOp(b, b, b, &workset, &ignore); /* b = mulrd(b, b) */ | ||||
3068 | decCompareOp(b, b, f, &workset, COMPARE0x01, &ignore); /* b ? f */ | ||||
3069 | if (decNumberIsNegative(b)(((b)->bits&0x80)!=0)) { /* b < f */ | ||||
3070 | t->exponent++; /* make 1.0 ulp */ | ||||
3071 | t->lsu[0]=1; /* .. */ | ||||
3072 | decAddOp(a, a, t, &workset, 0, &ignore); /* a = a + 1 ulp */ | ||||
3073 | /* assign to approx [round to length] */ | ||||
3074 | approxset.emin-=exp/2; /* adjust to match a */ | ||||
3075 | approxset.emax-=exp/2; | ||||
3076 | decAddOp(a, &dzero, a, &approxset, 0, &ignore); | ||||
3077 | } | ||||
3078 | } | ||||
3079 | /* [no errors are possible in the above, and rounding/inexact during */ | ||||
3080 | /* estimation are irrelevant, so status was not accumulated] */ | ||||
3081 | |||||
3082 | /* Here, 0.1 <= a < 1 (still), so adjust back */ | ||||
3083 | a->exponent+=exp/2; /* set correct exponent */ | ||||
3084 | |||||
3085 | /* count droppable zeros [after any subnormal rounding] by */ | ||||
3086 | /* trimming a copy */ | ||||
3087 | uprv_decNumberCopyuprv_decNumberCopy_71(b, a); | ||||
3088 | decTrim(b, set, 1, 1, &dropped); /* [drops trailing zeros] */ | ||||
3089 | |||||
3090 | /* Set Inexact and Rounded. The answer can only be exact if */ | ||||
3091 | /* it is short enough so that squaring it could fit in workp */ | ||||
3092 | /* digits, so this is the only (relatively rare) condition that */ | ||||
3093 | /* a careful check is needed */ | ||||
3094 | if (b->digits*2-1 > workp) { /* cannot fit */ | ||||
3095 | status|=DEC_Inexact0x00000020|DEC_Rounded0x00000800; | ||||
3096 | } | ||||
3097 | else { /* could be exact/unrounded */ | ||||
3098 | uIntuint32_t mstatus=0; /* local status */ | ||||
3099 | decMultiplyOp(b, b, b, &workset, &mstatus); /* try the multiply */ | ||||
3100 | if (mstatus&DEC_Overflow0x00000200) { /* result just won't fit */ | ||||
3101 | status|=DEC_Inexact0x00000020|DEC_Rounded0x00000800; | ||||
3102 | } | ||||
3103 | else { /* plausible */ | ||||
3104 | decCompareOp(t, b, rhs, &workset, COMPARE0x01, &mstatus); /* b ? rhs */ | ||||
3105 | if (!ISZERO(t)(*(t)->lsu==0 && (t)->digits==1 && (((t )->bits&(0x40|0x20|0x10))==0))) status|=DEC_Inexact0x00000020|DEC_Rounded0x00000800; /* not equal */ | ||||
3106 | else { /* is Exact */ | ||||
3107 | /* here, dropped is the count of trailing zeros in 'a' */ | ||||
3108 | /* use closest exponent to ideal... */ | ||||
3109 | Intint32_t todrop=ideal-a->exponent; /* most that can be dropped */ | ||||
3110 | if (todrop<0) status|=DEC_Rounded0x00000800; /* ideally would add 0s */ | ||||
3111 | else { /* unrounded */ | ||||
3112 | /* there are some to drop, but emax may not allow all */ | ||||
3113 | Intint32_t maxexp=set->emax-set->digits+1; | ||||
3114 | Intint32_t maxdrop=maxexp-a->exponent; | ||||
3115 | if (todrop>maxdrop && set->clamp) { /* apply clamping */ | ||||
3116 | todrop=maxdrop; | ||||
3117 | status|=DEC_Clamped0x00000400; | ||||
3118 | } | ||||
3119 | if (dropped<todrop) { /* clamp to those available */ | ||||
3120 | todrop=dropped; | ||||
3121 | status|=DEC_Clamped0x00000400; | ||||
3122 | } | ||||
3123 | if (todrop>0) { /* have some to drop */ | ||||
3124 | decShiftToLeast(a->lsu, D2U(a->digits)((a->digits)<=49?d2utable[a->digits]:((a->digits) +1 -1)/1), todrop); | ||||
3125 | a->exponent+=todrop; /* maintain numerical value */ | ||||
3126 | a->digits-=todrop; /* new length */ | ||||
3127 | } | ||||
3128 | } | ||||
3129 | } | ||||
3130 | } | ||||
3131 | } | ||||
3132 | |||||
3133 | /* double-check Underflow, as perhaps the result could not have */ | ||||
3134 | /* been subnormal (initial argument too big), or it is now Exact */ | ||||
3135 | if (status&DEC_Underflow0x00002000) { | ||||
3136 | Intint32_t ae=rhs->exponent+rhs->digits-1; /* adjusted exponent */ | ||||
3137 | /* check if truly subnormal */ | ||||
3138 | #if DECEXTFLAG1 /* DEC_Subnormal too */ | ||||
3139 | if (ae>=set->emin*2) status&=~(DEC_Subnormal0x00001000|DEC_Underflow0x00002000); | ||||
3140 | #else | ||||
3141 | if (ae>=set->emin*2) status&=~DEC_Underflow0x00002000; | ||||
3142 | #endif | ||||
3143 | /* check if truly inexact */ | ||||
3144 | if (!(status&DEC_Inexact0x00000020)) status&=~DEC_Underflow0x00002000; | ||||
3145 | } | ||||
3146 | |||||
3147 | uprv_decNumberCopyuprv_decNumberCopy_71(res, a); /* a is now the result */ | ||||
3148 | } while(0); /* end protected */ | ||||
3149 | |||||
3150 | if (allocbuff!=NULL__null) free(allocbuff)uprv_free_71(allocbuff); /* drop any storage used */ | ||||
3151 | if (allocbufa!=NULL__null) free(allocbufa)uprv_free_71(allocbufa); /* .. */ | ||||
3152 | if (allocbufb!=NULL__null) free(allocbufb)uprv_free_71(allocbufb); /* .. */ | ||||
3153 | #if DECSUBSET0 | ||||
3154 | if (allocrhs !=NULL__null) free(allocrhs)uprv_free_71(allocrhs); /* .. */ | ||||
3155 | #endif | ||||
3156 | if (status!=0) decStatus(res, status, set);/* then report status */ | ||||
3157 | #if DECCHECK0 | ||||
3158 | decCheckInexact(res, set); | ||||
3159 | #endif | ||||
3160 | return res; | ||||
3161 | } /* decNumberSquareRoot */ | ||||
3162 | #if defined(__clang__1) || U_GCC_MAJOR_MINOR(4 * 100 + 2) >= 406 | ||||
3163 | #pragma GCC diagnostic pop | ||||
3164 | #endif | ||||
3165 | |||||
3166 | /* ------------------------------------------------------------------ */ | ||||
3167 | /* decNumberSubtract -- subtract two Numbers */ | ||||
3168 | /* */ | ||||
3169 | /* This computes C = A - B */ | ||||
3170 | /* */ | ||||
3171 | /* res is C, the result. C may be A and/or B (e.g., X=X-X) */ | ||||
3172 | /* lhs is A */ | ||||
3173 | /* rhs is B */ | ||||
3174 | /* set is the context */ | ||||
3175 | /* */ | ||||
3176 | /* C must have space for set->digits digits. */ | ||||
3177 | /* ------------------------------------------------------------------ */ | ||||
3178 | U_CAPIextern "C" decNumber * U_EXPORT2 uprv_decNumberSubtractuprv_decNumberSubtract_71(decNumber *res, const decNumber *lhs, | ||||
3179 | const decNumber *rhs, decContext *set) { | ||||
3180 | uIntuint32_t status=0; /* accumulator */ | ||||
3181 | |||||
3182 | decAddOp(res, lhs, rhs, set, DECNEG0x80, &status); | ||||
3183 | if (status!=0) decStatus(res, status, set); | ||||
3184 | #if DECCHECK0 | ||||
3185 | decCheckInexact(res, set); | ||||
3186 | #endif | ||||
3187 | return res; | ||||
3188 | } /* decNumberSubtract */ | ||||
3189 | |||||
3190 | /* ------------------------------------------------------------------ */ | ||||
3191 | /* decNumberToIntegralExact -- round-to-integral-value with InExact */ | ||||
3192 | /* decNumberToIntegralValue -- round-to-integral-value */ | ||||
3193 | /* */ | ||||
3194 | /* res is the result */ | ||||
3195 | /* rhs is input number */ | ||||
3196 | /* set is the context */ | ||||
3197 | /* */ | ||||
3198 | /* res must have space for any value of rhs. */ | ||||
3199 | /* */ | ||||
3200 | /* This implements the IEEE special operators and therefore treats */ | ||||
3201 | /* special values as valid. For finite numbers it returns */ | ||||
3202 | /* rescale(rhs, 0) if rhs->exponent is <0. */ | ||||
3203 | /* Otherwise the result is rhs (so no error is possible, except for */ | ||||
3204 | /* sNaN). */ | ||||
3205 | /* */ | ||||
3206 | /* The context is used for rounding mode and status after sNaN, but */ | ||||
3207 | /* the digits setting is ignored. The Exact version will signal */ | ||||
3208 | /* Inexact if the result differs numerically from rhs; the other */ | ||||
3209 | /* never signals Inexact. */ | ||||
3210 | /* ------------------------------------------------------------------ */ | ||||
3211 | U_CAPIextern "C" decNumber * U_EXPORT2 uprv_decNumberToIntegralExactuprv_decNumberToIntegralExact_71(decNumber *res, const decNumber *rhs, | ||||
3212 | decContext *set) { | ||||
3213 | decNumber dn; | ||||
3214 | decContext workset; /* working context */ | ||||
3215 | uIntuint32_t status=0; /* accumulator */ | ||||
3216 | |||||
3217 | #if DECCHECK0 | ||||
3218 | if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; | ||||
3219 | #endif | ||||
3220 | |||||
3221 | /* handle infinities and NaNs */ | ||||
3222 | if (SPECIALARG(rhs->bits & (0x40|0x20|0x10))) { | ||||
3223 | if (decNumberIsInfinite(rhs)(((rhs)->bits&0x40)!=0)) uprv_decNumberCopyuprv_decNumberCopy_71(res, rhs); /* an Infinity */ | ||||
3224 | else decNaNs(res, rhs, NULL__null, set, &status); /* a NaN */ | ||||
3225 | } | ||||
3226 | else { /* finite */ | ||||
3227 | /* have a finite number; no error possible (res must be big enough) */ | ||||
3228 | if (rhs->exponent>=0) return uprv_decNumberCopyuprv_decNumberCopy_71(res, rhs); | ||||
3229 | /* that was easy, but if negative exponent there is work to do... */ | ||||
3230 | workset=*set; /* clone rounding, etc. */ | ||||
3231 | workset.digits=rhs->digits; /* no length rounding */ | ||||
3232 | workset.traps=0; /* no traps */ | ||||
3233 | uprv_decNumberZerouprv_decNumberZero_71(&dn); /* make a number with exponent 0 */ | ||||
3234 | uprv_decNumberQuantizeuprv_decNumberQuantize_71(res, rhs, &dn, &workset); | ||||
3235 | status|=workset.status; | ||||
3236 | } | ||||
3237 | if (status!=0) decStatus(res, status, set); | ||||
3238 | return res; | ||||
3239 | } /* decNumberToIntegralExact */ | ||||
3240 | |||||
3241 | U_CAPIextern "C" decNumber * U_EXPORT2 uprv_decNumberToIntegralValueuprv_decNumberToIntegralValue_71(decNumber *res, const decNumber *rhs, | ||||
3242 | decContext *set) { | ||||
3243 | decContext workset=*set; /* working context */ | ||||
3244 | workset.traps=0; /* no traps */ | ||||
3245 | uprv_decNumberToIntegralExactuprv_decNumberToIntegralExact_71(res, rhs, &workset); | ||||
3246 | /* this never affects set, except for sNaNs; NaN will have been set */ | ||||
3247 | /* or propagated already, so no need to call decStatus */ | ||||
3248 | set->status|=workset.status&DEC_Invalid_operation0x00000080; | ||||
3249 | return res; | ||||
3250 | } /* decNumberToIntegralValue */ | ||||
3251 | |||||
3252 | /* ------------------------------------------------------------------ */ | ||||
3253 | /* decNumberXor -- XOR two Numbers, digitwise */ | ||||
3254 | /* */ | ||||
3255 | /* This computes C = A ^ B */ | ||||
3256 | /* */ | ||||
3257 | /* res is C, the result. C may be A and/or B (e.g., X=X^X) */ | ||||
3258 | /* lhs is A */ | ||||
3259 | /* rhs is B */ | ||||
3260 | /* set is the context (used for result length and error report) */ | ||||
3261 | /* */ | ||||
3262 | /* C must have space for set->digits digits. */ | ||||
3263 | /* */ | ||||
3264 | /* Logical function restrictions apply (see above); a NaN is */ | ||||
3265 | /* returned with Invalid_operation if a restriction is violated. */ | ||||
3266 | /* ------------------------------------------------------------------ */ | ||||
3267 | U_CAPIextern "C" decNumber * U_EXPORT2 uprv_decNumberXoruprv_decNumberXor_71(decNumber *res, const decNumber *lhs, | ||||
3268 | const decNumber *rhs, decContext *set) { | ||||
3269 | const Unituint8_t *ua, *ub; /* -> operands */ | ||||
3270 | const Unituint8_t *msua, *msub; /* -> operand msus */ | ||||
3271 | Unituint8_t *uc, *msuc; /* -> result and its msu */ | ||||
3272 | Intint32_t msudigs; /* digits in res msu */ | ||||
3273 | #if DECCHECK0 | ||||
3274 | if (decCheckOperands(res, lhs, rhs, set)) return res; | ||||
3275 | #endif | ||||
3276 | |||||
3277 | if (lhs->exponent!=0 || decNumberIsSpecial(lhs)(((lhs)->bits&(0x40|0x20|0x10))!=0) || decNumberIsNegative(lhs)(((lhs)->bits&0x80)!=0) | ||||
3278 | || rhs->exponent!=0 || decNumberIsSpecial(rhs)(((rhs)->bits&(0x40|0x20|0x10))!=0) || decNumberIsNegative(rhs)(((rhs)->bits&0x80)!=0)) { | ||||
3279 | decStatus(res, DEC_Invalid_operation0x00000080, set); | ||||
3280 | return res; | ||||
3281 | } | ||||
3282 | /* operands are valid */ | ||||
3283 | ua=lhs->lsu; /* bottom-up */ | ||||
3284 | ub=rhs->lsu; /* .. */ | ||||
3285 | uc=res->lsu; /* .. */ | ||||
3286 | msua=ua+D2U(lhs->digits)((lhs->digits)<=49?d2utable[lhs->digits]:((lhs->digits )+1 -1)/1)-1; /* -> msu of lhs */ | ||||
3287 | msub=ub+D2U(rhs->digits)((rhs->digits)<=49?d2utable[rhs->digits]:((rhs->digits )+1 -1)/1)-1; /* -> msu of rhs */ | ||||
3288 | msuc=uc+D2U(set->digits)((set->digits)<=49?d2utable[set->digits]:((set->digits )+1 -1)/1)-1; /* -> msu of result */ | ||||
3289 | msudigs=MSUDIGITS(set->digits)((set->digits)-(((set->digits)<=49?d2utable[set-> digits]:((set->digits)+1 -1)/1)-1)*1); /* [faster than remainder] */ | ||||
3290 | for (; uc<=msuc; ua++, ub++, uc++) { /* Unit loop */ | ||||
3291 | Unituint8_t a, b; /* extract units */ | ||||
3292 | if (ua>msua) a=0; | ||||
3293 | else a=*ua; | ||||
3294 | if (ub>msub) b=0; | ||||
3295 | else b=*ub; | ||||
3296 | *uc=0; /* can now write back */ | ||||
3297 | if (a|b) { /* maybe 1 bits to examine */ | ||||
3298 | Intint32_t i, j; | ||||
3299 | /* This loop could be unrolled and/or use BIN2BCD tables */ | ||||
3300 | for (i=0; i<DECDPUN1; i++) { | ||||
3301 | if ((a^b)&1) *uc=*uc+(Unituint8_t)powersDECPOWERS[i]; /* effect XOR */ | ||||
3302 | j=a%10; | ||||
3303 | a=a/10; | ||||
3304 | j|=b%10; | ||||
3305 | b=b/10; | ||||
3306 | if (j>1) { | ||||
3307 | decStatus(res, DEC_Invalid_operation0x00000080, set); | ||||
3308 | return res; | ||||
3309 | } | ||||
3310 | if (uc==msuc && i==msudigs-1) break; /* just did final digit */ | ||||
3311 | } /* each digit */ | ||||
3312 | } /* non-zero */ | ||||
3313 | } /* each unit */ | ||||
3314 | /* [here uc-1 is the msu of the result] */ | ||||
3315 | res->digits=decGetDigits(res->lsu, static_cast<int32_t>(uc-res->lsu)); | ||||
3316 | res->exponent=0; /* integer */ | ||||
3317 | res->bits=0; /* sign=0 */ | ||||
3318 | return res; /* [no status to set] */ | ||||
3319 | } /* decNumberXor */ | ||||
3320 | |||||
3321 | |||||
3322 | /* ================================================================== */ | ||||
3323 | /* Utility routines */ | ||||
3324 | /* ================================================================== */ | ||||
3325 | |||||
3326 | /* ------------------------------------------------------------------ */ | ||||
3327 | /* decNumberClass -- return the decClass of a decNumber */ | ||||
3328 | /* dn -- the decNumber to test */ | ||||
3329 | /* set -- the context to use for Emin */ | ||||
3330 | /* returns the decClass enum */ | ||||
3331 | /* ------------------------------------------------------------------ */ | ||||
3332 | enum decClass uprv_decNumberClass(const decNumber *dn, decContext *set) { | ||||
3333 | if (decNumberIsSpecial(dn)(((dn)->bits&(0x40|0x20|0x10))!=0)) { | ||||
3334 | if (decNumberIsQNaN(dn)(((dn)->bits&(0x20))!=0)) return DEC_CLASS_QNAN; | ||||
3335 | if (decNumberIsSNaN(dn)(((dn)->bits&(0x10))!=0)) return DEC_CLASS_SNAN; | ||||
3336 | /* must be an infinity */ | ||||
3337 | if (decNumberIsNegative(dn)(((dn)->bits&0x80)!=0)) return DEC_CLASS_NEG_INF; | ||||
3338 | return DEC_CLASS_POS_INF; | ||||
3339 | } | ||||
3340 | /* is finite */ | ||||
3341 | if (uprv_decNumberIsNormaluprv_decNumberIsNormal_71(dn, set)) { /* most common */ | ||||
3342 | if (decNumberIsNegative(dn)(((dn)->bits&0x80)!=0)) return DEC_CLASS_NEG_NORMAL; | ||||
3343 | return DEC_CLASS_POS_NORMAL; | ||||
3344 | } | ||||
3345 | /* is subnormal or zero */ | ||||
3346 | if (decNumberIsZero(dn)(*(dn)->lsu==0 && (dn)->digits==1 && (( (dn)->bits&(0x40|0x20|0x10))==0))) { /* most common */ | ||||
3347 | if (decNumberIsNegative(dn)(((dn)->bits&0x80)!=0)) return DEC_CLASS_NEG_ZERO; | ||||
3348 | return DEC_CLASS_POS_ZERO; | ||||
3349 | } | ||||
3350 | if (decNumberIsNegative(dn)(((dn)->bits&0x80)!=0)) return DEC_CLASS_NEG_SUBNORMAL; | ||||
3351 | return DEC_CLASS_POS_SUBNORMAL; | ||||
3352 | } /* decNumberClass */ | ||||
3353 | |||||
3354 | /* ------------------------------------------------------------------ */ | ||||
3355 | /* decNumberClassToString -- convert decClass to a string */ | ||||
3356 | /* */ | ||||
3357 | /* eclass is a valid decClass */ | ||||
3358 | /* returns a constant string describing the class (max 13+1 chars) */ | ||||
3359 | /* ------------------------------------------------------------------ */ | ||||
3360 | const char *uprv_decNumberClassToStringuprv_decNumberClassToString_71(enum decClass eclass) { | ||||
3361 | if (eclass==DEC_CLASS_POS_NORMAL) return DEC_ClassString_PN"+Normal"; | ||||
3362 | if (eclass==DEC_CLASS_NEG_NORMAL) return DEC_ClassString_NN"-Normal"; | ||||
3363 | if (eclass==DEC_CLASS_POS_ZERO) return DEC_ClassString_PZ"+Zero"; | ||||
3364 | if (eclass==DEC_CLASS_NEG_ZERO) return DEC_ClassString_NZ"-Zero"; | ||||
3365 | if (eclass==DEC_CLASS_POS_SUBNORMAL) return DEC_ClassString_PS"+Subnormal"; | ||||
3366 | if (eclass==DEC_CLASS_NEG_SUBNORMAL) return DEC_ClassString_NS"-Subnormal"; | ||||
3367 | if (eclass==DEC_CLASS_POS_INF) return DEC_ClassString_PI"+Infinity"; | ||||
3368 | if (eclass==DEC_CLASS_NEG_INF) return DEC_ClassString_NI"-Infinity"; | ||||
3369 | if (eclass==DEC_CLASS_QNAN) return DEC_ClassString_QN"NaN"; | ||||
3370 | if (eclass==DEC_CLASS_SNAN) return DEC_ClassString_SN"sNaN"; | ||||
3371 | return DEC_ClassString_UN"Invalid"; /* Unknown */ | ||||
3372 | } /* decNumberClassToString */ | ||||
3373 | |||||
3374 | /* ------------------------------------------------------------------ */ | ||||
3375 | /* decNumberCopy -- copy a number */ | ||||
3376 | /* */ | ||||
3377 | /* dest is the target decNumber */ | ||||
3378 | /* src is the source decNumber */ | ||||
3379 | /* returns dest */ | ||||
3380 | /* */ | ||||
3381 | /* (dest==src is allowed and is a no-op) */ | ||||
3382 | /* All fields are updated as required. This is a utility operation, */ | ||||
3383 | /* so special values are unchanged and no error is possible. */ | ||||
3384 | /* ------------------------------------------------------------------ */ | ||||
3385 | U_CAPIextern "C" decNumber * U_EXPORT2 uprv_decNumberCopyuprv_decNumberCopy_71(decNumber *dest, const decNumber *src) { | ||||
3386 | |||||
3387 | #if DECCHECK0 | ||||
3388 | if (src==NULL__null) return uprv_decNumberZerouprv_decNumberZero_71(dest); | ||||
3389 | #endif | ||||
3390 | |||||
3391 | if (dest==src) return dest; /* no copy required */ | ||||
3392 | |||||
3393 | /* Use explicit assignments here as structure assignment could copy */ | ||||
3394 | /* more than just the lsu (for small DECDPUN). This would not affect */ | ||||
3395 | /* the value of the results, but could disturb test harness spill */ | ||||
3396 | /* checking. */ | ||||
3397 | dest->bits=src->bits; | ||||
3398 | dest->exponent=src->exponent; | ||||
3399 | dest->digits=src->digits; | ||||
3400 | dest->lsu[0]=src->lsu[0]; | ||||
3401 | if (src->digits>DECDPUN1) { /* more Units to come */ | ||||
3402 | const Unituint8_t *smsup, *s; /* work */ | ||||
3403 | Unituint8_t *d; /* .. */ | ||||
3404 | /* memcpy for the remaining Units would be safe as they cannot */ | ||||
3405 | /* overlap. However, this explicit loop is faster in short cases. */ | ||||
3406 | d=dest->lsu+1; /* -> first destination */ | ||||
3407 | smsup=src->lsu+D2U(src->digits)((src->digits)<=49?d2utable[src->digits]:((src->digits )+1 -1)/1); /* -> source msu+1 */ | ||||
3408 | for (s=src->lsu+1; s<smsup; s++, d++) *d=*s; | ||||
3409 | } | ||||
3410 | return dest; | ||||
3411 | } /* decNumberCopy */ | ||||
3412 | |||||
3413 | /* ------------------------------------------------------------------ */ | ||||
3414 | /* decNumberCopyAbs -- quiet absolute value operator */ | ||||
3415 | /* */ | ||||
3416 | /* This sets C = abs(A) */ | ||||
3417 | /* */ | ||||
3418 | /* res is C, the result. C may be A */ | ||||
3419 | /* rhs is A */ | ||||
3420 | /* */ | ||||
3421 | /* C must have space for set->digits digits. */ | ||||
3422 | /* No exception or error can occur; this is a quiet bitwise operation.*/ | ||||
3423 | /* See also decNumberAbs for a checking version of this. */ | ||||
3424 | /* ------------------------------------------------------------------ */ | ||||
3425 | U_CAPIextern "C" decNumber * U_EXPORT2 uprv_decNumberCopyAbsuprv_decNumberCopyAbs_71(decNumber *res, const decNumber *rhs) { | ||||
3426 | #if DECCHECK0 | ||||
3427 | if (decCheckOperands(res, DECUNUSED, rhs, DECUNCONT)) return res; | ||||
3428 | #endif | ||||
3429 | uprv_decNumberCopyuprv_decNumberCopy_71(res, rhs); | ||||
3430 | res->bits&=~DECNEG0x80; /* turn off sign */ | ||||
3431 | return res; | ||||
3432 | } /* decNumberCopyAbs */ | ||||
3433 | |||||
3434 | /* ------------------------------------------------------------------ */ | ||||
3435 | /* decNumberCopyNegate -- quiet negate value operator */ | ||||
3436 | /* */ | ||||
3437 | /* This sets C = negate(A) */ | ||||
3438 | /* */ | ||||
3439 | /* res is C, the result. C may be A */ | ||||
3440 | /* rhs is A */ | ||||
3441 | /* */ | ||||
3442 | /* C must have space for set->digits digits. */ | ||||
3443 | /* No exception or error can occur; this is a quiet bitwise operation.*/ | ||||
3444 | /* See also decNumberMinus for a checking version of this. */ | ||||
3445 | /* ------------------------------------------------------------------ */ | ||||
3446 | U_CAPIextern "C" decNumber * U_EXPORT2 uprv_decNumberCopyNegateuprv_decNumberCopyNegate_71(decNumber *res, const decNumber *rhs) { | ||||
3447 | #if DECCHECK0 | ||||
3448 | if (decCheckOperands(res, DECUNUSED, rhs, DECUNCONT)) return res; | ||||
3449 | #endif | ||||
3450 | uprv_decNumberCopyuprv_decNumberCopy_71(res, rhs); | ||||
3451 | res->bits^=DECNEG0x80; /* invert the sign */ | ||||
3452 | return res; | ||||
3453 | } /* decNumberCopyNegate */ | ||||
3454 | |||||
3455 | /* ------------------------------------------------------------------ */ | ||||
3456 | /* decNumberCopySign -- quiet copy and set sign operator */ | ||||
3457 | /* */ | ||||
3458 | /* This sets C = A with the sign of B */ | ||||
3459 | /* */ | ||||
3460 | /* res is C, the result. C may be A */ | ||||
3461 | /* lhs is A */ | ||||
3462 | /* rhs is B */ | ||||
3463 | /* */ | ||||
3464 | /* C must have space for set->digits digits. */ | ||||
3465 | /* No exception or error can occur; this is a quiet bitwise operation.*/ | ||||
3466 | /* ------------------------------------------------------------------ */ | ||||
3467 | U_CAPIextern "C" decNumber * U_EXPORT2 uprv_decNumberCopySignuprv_decNumberCopySign_71(decNumber *res, const decNumber *lhs, | ||||
3468 | const decNumber *rhs) { | ||||
3469 | uByteuint8_t sign; /* rhs sign */ | ||||
3470 | #if DECCHECK0 | ||||
3471 | if (decCheckOperands(res, DECUNUSED, rhs, DECUNCONT)) return res; | ||||
3472 | #endif | ||||
3473 | sign=rhs->bits & DECNEG0x80; /* save sign bit */ | ||||
3474 | uprv_decNumberCopyuprv_decNumberCopy_71(res, lhs); | ||||
3475 | res->bits&=~DECNEG0x80; /* clear the sign */ | ||||
3476 | res->bits|=sign; /* set from rhs */ | ||||
3477 | return res; | ||||
3478 | } /* decNumberCopySign */ | ||||
3479 | |||||
3480 | /* ------------------------------------------------------------------ */ | ||||
3481 | /* decNumberGetBCD -- get the coefficient in BCD8 */ | ||||
3482 | /* dn is the source decNumber */ | ||||
3483 | /* bcd is the uInt array that will receive dn->digits BCD bytes, */ | ||||
3484 | /* most-significant at offset 0 */ | ||||
3485 | /* returns bcd */ | ||||
3486 | /* */ | ||||
3487 | /* bcd must have at least dn->digits bytes. No error is possible; if */ | ||||
3488 | /* dn is a NaN or Infinite, digits must be 1 and the coefficient 0. */ | ||||
3489 | /* ------------------------------------------------------------------ */ | ||||
3490 | U_CAPIextern "C" uByteuint8_t * U_EXPORT2 uprv_decNumberGetBCDuprv_decNumberGetBCD_71(const decNumber *dn, uByteuint8_t *bcd) { | ||||
3491 | uByteuint8_t *ub=bcd+dn->digits-1; /* -> lsd */ | ||||
3492 | const Unituint8_t *up=dn->lsu; /* Unit pointer, -> lsu */ | ||||
3493 | |||||
3494 | #if DECDPUN1==1 /* trivial simple copy */ | ||||
3495 | for (; ub>=bcd; ub--, up++) *ub=*up; | ||||
3496 | #else /* chopping needed */ | ||||
3497 | uIntuint32_t u=*up; /* work */ | ||||
3498 | uIntuint32_t cut=DECDPUN1; /* downcounter through unit */ | ||||
3499 | for (; ub>=bcd; ub--) { | ||||
3500 | *ub=(uByteuint8_t)(u%10); /* [*6554 trick inhibits, here] */ | ||||
3501 | u=u/10; | ||||
3502 | cut--; | ||||
3503 | if (cut>0) continue; /* more in this unit */ | ||||
3504 | up++; | ||||
3505 | u=*up; | ||||
3506 | cut=DECDPUN1; | ||||
3507 | } | ||||
3508 | #endif | ||||
3509 | return bcd; | ||||
3510 | } /* decNumberGetBCD */ | ||||
3511 | |||||
3512 | /* ------------------------------------------------------------------ */ | ||||
3513 | /* decNumberSetBCD -- set (replace) the coefficient from BCD8 */ | ||||
3514 | /* dn is the target decNumber */ | ||||
3515 | /* bcd is the uInt array that will source n BCD bytes, most- */ | ||||
3516 | /* significant at offset 0 */ | ||||
3517 | /* n is the number of digits in the source BCD array (bcd) */ | ||||
3518 | /* returns dn */ | ||||
3519 | /* */ | ||||
3520 | /* dn must have space for at least n digits. No error is possible; */ | ||||
3521 | /* if dn is a NaN, or Infinite, or is to become a zero, n must be 1 */ | ||||
3522 | /* and bcd[0] zero. */ | ||||
3523 | /* ------------------------------------------------------------------ */ | ||||
3524 | U_CAPIextern "C" decNumber * U_EXPORT2 uprv_decNumberSetBCDuprv_decNumberSetBCD_71(decNumber *dn, const uByteuint8_t *bcd, uIntuint32_t n) { | ||||
3525 | Unituint8_t *up=dn->lsu+D2U(dn->digits)((dn->digits)<=49?d2utable[dn->digits]:((dn->digits )+1 -1)/1)-1; /* -> msu [target pointer] */ | ||||
3526 | const uByteuint8_t *ub=bcd; /* -> source msd */ | ||||
3527 | |||||
3528 | #if DECDPUN1==1 /* trivial simple copy */ | ||||
3529 | for (; ub<bcd+n; ub++, up--) *up=*ub; | ||||
3530 | #else /* some assembly needed */ | ||||
3531 | /* calculate how many digits in msu, and hence first cut */ | ||||
3532 | Intint32_t cut=MSUDIGITS(n)((n)-(((n)<=49?d2utable[n]:((n)+1 -1)/1)-1)*1); /* [faster than remainder] */ | ||||
3533 | for (;up>=dn->lsu; up--) { /* each Unit from msu */ | ||||
3534 | *up=0; /* will take <=DECDPUN digits */ | ||||
3535 | for (; cut>0; ub++, cut--) *up=X10(*up)(((*up)<<1)+((*up)<<3))+*ub; | ||||
3536 | cut=DECDPUN1; /* next Unit has all digits */ | ||||
3537 | } | ||||
3538 | #endif | ||||
3539 | dn->digits=n; /* set digit count */ | ||||
3540 | return dn; | ||||
3541 | } /* decNumberSetBCD */ | ||||
3542 | |||||
3543 | /* ------------------------------------------------------------------ */ | ||||
3544 | /* decNumberIsNormal -- test normality of a decNumber */ | ||||
3545 | /* dn is the decNumber to test */ | ||||
3546 | /* set is the context to use for Emin */ | ||||
3547 | /* returns 1 if |dn| is finite and >=Nmin, 0 otherwise */ | ||||
3548 | /* ------------------------------------------------------------------ */ | ||||
3549 | Intint32_t uprv_decNumberIsNormaluprv_decNumberIsNormal_71(const decNumber *dn, decContext *set) { | ||||
3550 | Intint32_t ae; /* adjusted exponent */ | ||||
3551 | #if DECCHECK0 | ||||
3552 | if (decCheckOperands(DECUNRESU, DECUNUSED, dn, set)) return 0; | ||||
3553 | #endif | ||||
3554 | |||||
3555 | if (decNumberIsSpecial(dn)(((dn)->bits&(0x40|0x20|0x10))!=0)) return 0; /* not finite */ | ||||
3556 | if (decNumberIsZero(dn)(*(dn)->lsu==0 && (dn)->digits==1 && (( (dn)->bits&(0x40|0x20|0x10))==0))) return 0; /* not non-zero */ | ||||
3557 | |||||
3558 | ae=dn->exponent+dn->digits-1; /* adjusted exponent */ | ||||
3559 | if (ae<set->emin) return 0; /* is subnormal */ | ||||
3560 | return 1; | ||||
3561 | } /* decNumberIsNormal */ | ||||
3562 | |||||
3563 | /* ------------------------------------------------------------------ */ | ||||
3564 | /* decNumberIsSubnormal -- test subnormality of a decNumber */ | ||||
3565 | /* dn is the decNumber to test */ | ||||
3566 | /* set is the context to use for Emin */ | ||||
3567 | /* returns 1 if |dn| is finite, non-zero, and <Nmin, 0 otherwise */ | ||||
3568 | /* ------------------------------------------------------------------ */ | ||||
3569 | Intint32_t uprv_decNumberIsSubnormaluprv_decNumberIsSubnormal_71(const decNumber *dn, decContext *set) { | ||||
3570 | Intint32_t ae; /* adjusted exponent */ | ||||
3571 | #if DECCHECK0 | ||||
3572 | if (decCheckOperands(DECUNRESU, DECUNUSED, dn, set)) return 0; | ||||
3573 | #endif | ||||
3574 | |||||
3575 | if (decNumberIsSpecial(dn)(((dn)->bits&(0x40|0x20|0x10))!=0)) return 0; /* not finite */ | ||||
3576 | if (decNumberIsZero(dn)(*(dn)->lsu==0 && (dn)->digits==1 && (( (dn)->bits&(0x40|0x20|0x10))==0))) return 0; /* not non-zero */ | ||||
3577 | |||||
3578 | ae=dn->exponent+dn->digits-1; /* adjusted exponent */ | ||||
3579 | if (ae<set->emin) return 1; /* is subnormal */ | ||||
3580 | return 0; | ||||
3581 | } /* decNumberIsSubnormal */ | ||||
3582 | |||||
3583 | /* ------------------------------------------------------------------ */ | ||||
3584 | /* decNumberTrim -- remove insignificant zeros */ | ||||
3585 | /* */ | ||||
3586 | /* dn is the number to trim */ | ||||
3587 | /* returns dn */ | ||||
3588 | /* */ | ||||
3589 | /* All fields are updated as required. This is a utility operation, */ | ||||
3590 | /* so special values are unchanged and no error is possible. The */ | ||||
3591 | /* zeros are removed unconditionally. */ | ||||
3592 | /* ------------------------------------------------------------------ */ | ||||
3593 | U_CAPIextern "C" decNumber * U_EXPORT2 uprv_decNumberTrimuprv_decNumberTrim_71(decNumber *dn) { | ||||
3594 | Intint32_t dropped; /* work */ | ||||
3595 | decContext set; /* .. */ | ||||
3596 | #if DECCHECK0 | ||||
3597 | if (decCheckOperands(DECUNRESU, DECUNUSED, dn, DECUNCONT)) return dn; | ||||
3598 | #endif | ||||
3599 | uprv_decContextDefaultuprv_decContextDefault_71(&set, DEC_INIT_BASE0); /* clamp=0 */ | ||||
3600 | return decTrim(dn, &set, 0, 1, &dropped); | ||||
3601 | } /* decNumberTrim */ | ||||
3602 | |||||
3603 | /* ------------------------------------------------------------------ */ | ||||
3604 | /* decNumberVersion -- return the name and version of this module */ | ||||
3605 | /* */ | ||||
3606 | /* No error is possible. */ | ||||
3607 | /* ------------------------------------------------------------------ */ | ||||
3608 | const char * uprv_decNumberVersionuprv_decNumberVersion_71(void) { | ||||
3609 | return DECVERSION"decNumber 3.61"; | ||||
3610 | } /* decNumberVersion */ | ||||
3611 | |||||
3612 | /* ------------------------------------------------------------------ */ | ||||
3613 | /* decNumberZero -- set a number to 0 */ | ||||
3614 | /* */ | ||||
3615 | /* dn is the number to set, with space for one digit */ | ||||
3616 | /* returns dn */ | ||||
3617 | /* */ | ||||
3618 | /* No error is possible. */ | ||||
3619 | /* ------------------------------------------------------------------ */ | ||||
3620 | /* Memset is not used as it is much slower in some environments. */ | ||||
3621 | U_CAPIextern "C" decNumber * U_EXPORT2 uprv_decNumberZerouprv_decNumberZero_71(decNumber *dn) { | ||||
3622 | |||||
3623 | #if DECCHECK0 | ||||
3624 | if (decCheckOperands(dn, DECUNUSED, DECUNUSED, DECUNCONT)) return dn; | ||||
3625 | #endif | ||||
3626 | |||||
3627 | dn->bits=0; | ||||
3628 | dn->exponent=0; | ||||
3629 | dn->digits=1; | ||||
3630 | dn->lsu[0]=0; | ||||
3631 | return dn; | ||||
3632 | } /* decNumberZero */ | ||||
3633 | |||||
3634 | /* ================================================================== */ | ||||
3635 | /* Local routines */ | ||||
3636 | /* ================================================================== */ | ||||
3637 | |||||
3638 | /* ------------------------------------------------------------------ */ | ||||
3639 | /* decToString -- lay out a number into a string */ | ||||
3640 | /* */ | ||||
3641 | /* dn is the number to lay out */ | ||||
3642 | /* string is where to lay out the number */ | ||||
3643 | /* eng is 1 if Engineering, 0 if Scientific */ | ||||
3644 | /* */ | ||||
3645 | /* string must be at least dn->digits+14 characters long */ | ||||
3646 | /* No error is possible. */ | ||||
3647 | /* */ | ||||
3648 | /* Note that this routine can generate a -0 or 0.000. These are */ | ||||
3649 | /* never generated in subset to-number or arithmetic, but can occur */ | ||||
3650 | /* in non-subset arithmetic (e.g., -1*0 or 1.234-1.234). */ | ||||
3651 | /* ------------------------------------------------------------------ */ | ||||
3652 | /* If DECCHECK is enabled the string "?" is returned if a number is */ | ||||
3653 | /* invalid. */ | ||||
3654 | static void decToString(const decNumber *dn, char *string, Flaguint8_t eng) { | ||||
3655 | Intint32_t exp=dn->exponent; /* local copy */ | ||||
3656 | Intint32_t e; /* E-part value */ | ||||
3657 | Intint32_t pre; /* digits before the '.' */ | ||||
3658 | Intint32_t cut; /* for counting digits in a Unit */ | ||||
3659 | char *c=string; /* work [output pointer] */ | ||||
3660 | const Unituint8_t *up=dn->lsu+D2U(dn->digits)((dn->digits)<=49?d2utable[dn->digits]:((dn->digits )+1 -1)/1)-1; /* -> msu [input pointer] */ | ||||
3661 | uIntuint32_t u, pow; /* work */ | ||||
3662 | |||||
3663 | #if DECCHECK0 | ||||
3664 | if (decCheckOperands(DECUNRESU, dn, DECUNUSED, DECUNCONT)) { | ||||
3665 | strcpy(string, "?"); | ||||
3666 | return;} | ||||
3667 | #endif | ||||
3668 | |||||
3669 | if (decNumberIsNegative(dn)(((dn)->bits&0x80)!=0)) { /* Negatives get a minus */ | ||||
3670 | *c='-'; | ||||
3671 | c++; | ||||
3672 | } | ||||
3673 | if (dn->bits&DECSPECIAL(0x40|0x20|0x10)) { /* Is a special value */ | ||||
3674 | if (decNumberIsInfinite(dn)(((dn)->bits&0x40)!=0)) { | ||||
3675 | strcpy(c, "Inf"); | ||||
3676 | strcpy(c+3, "inity"); | ||||
3677 | return;} | ||||
3678 | /* a NaN */ | ||||
3679 | if (dn->bits&DECSNAN0x10) { /* signalling NaN */ | ||||
3680 | *c='s'; | ||||
3681 | c++; | ||||
3682 | } | ||||
3683 | strcpy(c, "NaN"); | ||||
3684 | c+=3; /* step past */ | ||||
3685 | /* if not a clean non-zero coefficient, that's all there is in a */ | ||||
3686 | /* NaN string */ | ||||
3687 | if (exp!=0 || (*dn->lsu==0 && dn->digits==1)) return; | ||||
3688 | /* [drop through to add integer] */ | ||||
3689 | } | ||||
3690 | |||||
3691 | /* calculate how many digits in msu, and hence first cut */ | ||||
3692 | cut=MSUDIGITS(dn->digits)((dn->digits)-(((dn->digits)<=49?d2utable[dn->digits ]:((dn->digits)+1 -1)/1)-1)*1); /* [faster than remainder] */ | ||||
3693 | cut--; /* power of ten for digit */ | ||||
3694 | |||||
3695 | if (exp==0) { /* simple integer [common fastpath] */ | ||||
3696 | for (;up>=dn->lsu; up--) { /* each Unit from msu */ | ||||
3697 | u=*up; /* contains DECDPUN digits to lay out */ | ||||
3698 | for (; cut>=0; c++, cut--) TODIGIT(u, cut, c, pow)do { *(c)='0'; pow=DECPOWERS[cut]*2; if ((u)>pow) { pow*=4 ; if ((u)>=pow) {(u)-=pow; *(c)+=8;} pow/=2; if ((u)>=pow ) {(u)-=pow; *(c)+=4;} pow/=2; } if ((u)>=pow) {(u)-=pow; * (c)+=2;} pow/=2; if ((u)>=pow) {(u)-=pow; *(c)+=1;} } while (false); | ||||
3699 | cut=DECDPUN1-1; /* next Unit has all digits */ | ||||
3700 | } | ||||
3701 | *c='\0'; /* terminate the string */ | ||||
3702 | return;} | ||||
3703 | |||||
3704 | /* non-0 exponent -- assume plain form */ | ||||
3705 | pre=dn->digits+exp; /* digits before '.' */ | ||||
3706 | e=0; /* no E */ | ||||
3707 | if ((exp>0) || (pre<-5)) { /* need exponential form */ | ||||
3708 | e=exp+dn->digits-1; /* calculate E value */ | ||||
3709 | pre=1; /* assume one digit before '.' */ | ||||
3710 | if (eng && (e!=0)) { /* engineering: may need to adjust */ | ||||
3711 | Intint32_t adj; /* adjustment */ | ||||
3712 | /* The C remainder operator is undefined for negative numbers, so */ | ||||
3713 | /* a positive remainder calculation must be used here */ | ||||
3714 | if (e<0) { | ||||
3715 | adj=(-e)%3; | ||||
3716 | if (adj!=0) adj=3-adj; | ||||
3717 | } | ||||
3718 | else { /* e>0 */ | ||||
3719 | adj=e%3; | ||||
3720 | } | ||||
3721 | e=e-adj; | ||||
3722 | /* if dealing with zero still produce an exponent which is a */ | ||||
3723 | /* multiple of three, as expected, but there will only be the */ | ||||
3724 | /* one zero before the E, still. Otherwise note the padding. */ | ||||
3725 | if (!ISZERO(dn)(*(dn)->lsu==0 && (dn)->digits==1 && (( (dn)->bits&(0x40|0x20|0x10))==0))) pre+=adj; | ||||
3726 | else { /* is zero */ | ||||
3727 | if (adj!=0) { /* 0.00Esnn needed */ | ||||
3728 | e=e+3; | ||||
3729 | pre=-(2-adj); | ||||
3730 | } | ||||
3731 | } /* zero */ | ||||
3732 | } /* eng */ | ||||
3733 | } /* need exponent */ | ||||
3734 | |||||
3735 | /* lay out the digits of the coefficient, adding 0s and . as needed */ | ||||
3736 | u=*up; | ||||
3737 | if (pre>0) { /* xxx.xxx or xx00 (engineering) form */ | ||||
3738 | Intint32_t n=pre; | ||||
3739 | for (; pre>0; pre--, c++, cut--) { | ||||
3740 | if (cut<0) { /* need new Unit */ | ||||
3741 | if (up==dn->lsu) break; /* out of input digits (pre>digits) */ | ||||
3742 | up--; | ||||
3743 | cut=DECDPUN1-1; | ||||
3744 | u=*up; | ||||
3745 | } | ||||
3746 | TODIGIT(u, cut, c, pow)do { *(c)='0'; pow=DECPOWERS[cut]*2; if ((u)>pow) { pow*=4 ; if ((u)>=pow) {(u)-=pow; *(c)+=8;} pow/=2; if ((u)>=pow ) {(u)-=pow; *(c)+=4;} pow/=2; } if ((u)>=pow) {(u)-=pow; * (c)+=2;} pow/=2; if ((u)>=pow) {(u)-=pow; *(c)+=1;} } while (false); | ||||
3747 | } | ||||
3748 | if (n<dn->digits) { /* more to come, after '.' */ | ||||
3749 | *c='.'; c++; | ||||
3750 | for (;; c++, cut--) { | ||||
3751 | if (cut<0) { /* need new Unit */ | ||||
3752 | if (up==dn->lsu) break; /* out of input digits */ | ||||
3753 | up--; | ||||
3754 | cut=DECDPUN1-1; | ||||
3755 | u=*up; | ||||
3756 | } | ||||
3757 | TODIGIT(u, cut, c, pow)do { *(c)='0'; pow=DECPOWERS[cut]*2; if ((u)>pow) { pow*=4 ; if ((u)>=pow) {(u)-=pow; *(c)+=8;} pow/=2; if ((u)>=pow ) {(u)-=pow; *(c)+=4;} pow/=2; } if ((u)>=pow) {(u)-=pow; * (c)+=2;} pow/=2; if ((u)>=pow) {(u)-=pow; *(c)+=1;} } while (false); | ||||
3758 | } | ||||
3759 | } | ||||
3760 | else for (; pre>0; pre--, c++) *c='0'; /* 0 padding (for engineering) needed */ | ||||
3761 | } | ||||
3762 | else { /* 0.xxx or 0.000xxx form */ | ||||
3763 | *c='0'; c++; | ||||
3764 | *c='.'; c++; | ||||
3765 | for (; pre<0; pre++, c++) *c='0'; /* add any 0's after '.' */ | ||||
3766 | for (; ; c++, cut--) { | ||||
3767 | if (cut<0) { /* need new Unit */ | ||||
3768 | if (up==dn->lsu) break; /* out of input digits */ | ||||
3769 | up--; | ||||
3770 | cut=DECDPUN1-1; | ||||
3771 | u=*up; | ||||
3772 | } | ||||
3773 | TODIGIT(u, cut, c, pow)do { *(c)='0'; pow=DECPOWERS[cut]*2; if ((u)>pow) { pow*=4 ; if ((u)>=pow) {(u)-=pow; *(c)+=8;} pow/=2; if ((u)>=pow ) {(u)-=pow; *(c)+=4;} pow/=2; } if ((u)>=pow) {(u)-=pow; * (c)+=2;} pow/=2; if ((u)>=pow) {(u)-=pow; *(c)+=1;} } while (false); | ||||
3774 | } | ||||
3775 | } | ||||
3776 | |||||
3777 | /* Finally add the E-part, if needed. It will never be 0, has a | ||||
3778 | base maximum and minimum of +999999999 through -999999999, but | ||||
3779 | could range down to -1999999998 for abnormal numbers */ | ||||
3780 | if (e!=0) { | ||||
3781 | Flaguint8_t had=0; /* 1=had non-zero */ | ||||
3782 | *c='E'; c++; | ||||
3783 | *c='+'; c++; /* assume positive */ | ||||
3784 | u=e; /* .. */ | ||||
3785 | if (e<0) { | ||||
3786 | *(c-1)='-'; /* oops, need - */ | ||||
3787 | u=-e; /* uInt, please */ | ||||
3788 | } | ||||
3789 | /* lay out the exponent [_itoa or equivalent is not ANSI C] */ | ||||
3790 | for (cut=9; cut>=0; cut--) { | ||||
3791 | TODIGIT(u, cut, c, pow)do { *(c)='0'; pow=DECPOWERS[cut]*2; if ((u)>pow) { pow*=4 ; if ((u)>=pow) {(u)-=pow; *(c)+=8;} pow/=2; if ((u)>=pow ) {(u)-=pow; *(c)+=4;} pow/=2; } if ((u)>=pow) {(u)-=pow; * (c)+=2;} pow/=2; if ((u)>=pow) {(u)-=pow; *(c)+=1;} } while (false); | ||||
3792 | if (*c=='0' && !had) continue; /* skip leading zeros */ | ||||
3793 | had=1; /* had non-0 */ | ||||
3794 | c++; /* step for next */ | ||||
3795 | } /* cut */ | ||||
3796 | } | ||||
3797 | *c='\0'; /* terminate the string (all paths) */ | ||||
3798 | return; | ||||
3799 | } /* decToString */ | ||||
3800 | |||||
3801 | /* ------------------------------------------------------------------ */ | ||||
3802 | /* decAddOp -- add/subtract operation */ | ||||
3803 | /* */ | ||||
3804 | /* This computes C = A + B */ | ||||
3805 | /* */ | ||||
3806 | /* res is C, the result. C may be A and/or B (e.g., X=X+X) */ | ||||
3807 | /* lhs is A */ | ||||
3808 | /* rhs is B */ | ||||
3809 | /* set is the context */ | ||||
3810 | /* negate is DECNEG if rhs should be negated, or 0 otherwise */ | ||||
3811 | /* status accumulates status for the caller */ | ||||
3812 | /* */ | ||||
3813 | /* C must have space for set->digits digits. */ | ||||
3814 | /* Inexact in status must be 0 for correct Exact zero sign in result */ | ||||
3815 | /* ------------------------------------------------------------------ */ | ||||
3816 | /* If possible, the coefficient is calculated directly into C. */ | ||||
3817 | /* However, if: */ | ||||
3818 | /* -- a digits+1 calculation is needed because the numbers are */ | ||||
3819 | /* unaligned and span more than set->digits digits */ | ||||
3820 | /* -- a carry to digits+1 digits looks possible */ | ||||
3821 | /* -- C is the same as A or B, and the result would destructively */ | ||||
3822 | /* overlap the A or B coefficient */ | ||||
3823 | /* then the result must be calculated into a temporary buffer. In */ | ||||
3824 | /* this case a local (stack) buffer is used if possible, and only if */ | ||||
3825 | /* too long for that does malloc become the final resort. */ | ||||
3826 | /* */ | ||||
3827 | /* Misalignment is handled as follows: */ | ||||
3828 | /* Apad: (AExp>BExp) Swap operands and proceed as for BExp>AExp. */ | ||||
3829 | /* BPad: Apply the padding by a combination of shifting (whole */ | ||||
3830 | /* units) and multiplication (part units). */ | ||||
3831 | /* */ | ||||
3832 | /* Addition, especially x=x+1, is speed-critical. */ | ||||
3833 | /* The static buffer is larger than might be expected to allow for */ | ||||
3834 | /* calls from higher-level functions (notable exp). */ | ||||
3835 | /* ------------------------------------------------------------------ */ | ||||
3836 | static decNumber * decAddOp(decNumber *res, const decNumber *lhs, | ||||
3837 | const decNumber *rhs, decContext *set, | ||||
3838 | uByteuint8_t negate, uIntuint32_t *status) { | ||||
3839 | #if DECSUBSET0 | ||||
3840 | decNumber *alloclhs=NULL__null; /* non-NULL if rounded lhs allocated */ | ||||
3841 | decNumber *allocrhs=NULL__null; /* .., rhs */ | ||||
3842 | #endif | ||||
3843 | Intint32_t rhsshift; /* working shift (in Units) */ | ||||
3844 | Intint32_t maxdigits; /* longest logical length */ | ||||
3845 | Intint32_t mult; /* multiplier */ | ||||
3846 | Intint32_t residue; /* rounding accumulator */ | ||||
3847 | uByteuint8_t bits; /* result bits */ | ||||
3848 | Flaguint8_t diffsign; /* non-0 if arguments have different sign */ | ||||
3849 | Unituint8_t *acc; /* accumulator for result */ | ||||
3850 | Unituint8_t accbuff[SD2U(DECBUFFER*2+20)(((36*2+20)+1 -1)/1)]; /* local buffer [*2+20 reduces many */ | ||||
3851 | /* allocations when called from */ | ||||
3852 | /* other operations, notable exp] */ | ||||
3853 | Unituint8_t *allocacc=NULL__null; /* -> allocated acc buffer, iff allocated */ | ||||
3854 | Intint32_t reqdigits=set->digits; /* local copy; requested DIGITS */ | ||||
3855 | Intint32_t padding; /* work */ | ||||
3856 | |||||
3857 | #if DECCHECK0 | ||||
3858 | if (decCheckOperands(res, lhs, rhs, set)) return res; | ||||
3859 | #endif | ||||
3860 | |||||
3861 | do { /* protect allocated storage */ | ||||
3862 | #if DECSUBSET0 | ||||
3863 | if (!set->extended) { | ||||
3864 | /* reduce operands and set lostDigits status, as needed */ | ||||
3865 | if (lhs->digits>reqdigits) { | ||||
3866 | alloclhs=decRoundOperand(lhs, set, status); | ||||
3867 | if (alloclhs==NULL__null) break; | ||||
3868 | lhs=alloclhs; | ||||
3869 | } | ||||
3870 | if (rhs->digits>reqdigits) { | ||||
3871 | allocrhs=decRoundOperand(rhs, set, status); | ||||
3872 | if (allocrhs==NULL__null) break; | ||||
3873 | rhs=allocrhs; | ||||
3874 | } | ||||
3875 | } | ||||
3876 | #endif | ||||
3877 | /* [following code does not require input rounding] */ | ||||
3878 | |||||
3879 | /* note whether signs differ [used all paths] */ | ||||
3880 | diffsign=(Flaguint8_t)((lhs->bits^rhs->bits^negate)&DECNEG0x80); | ||||
3881 | |||||
3882 | /* handle infinities and NaNs */ | ||||
3883 | if (SPECIALARGS((lhs->bits | rhs->bits) & (0x40|0x20|0x10))) { /* a special bit set */ | ||||
3884 | if (SPECIALARGS((lhs->bits | rhs->bits) & (0x40|0x20|0x10)) & (DECSNAN0x10 | DECNAN0x20)) /* a NaN */ | ||||
3885 | decNaNs(res, lhs, rhs, set, status); | ||||
3886 | else { /* one or two infinities */ | ||||
3887 | if (decNumberIsInfinite(lhs)(((lhs)->bits&0x40)!=0)) { /* LHS is infinity */ | ||||
3888 | /* two infinities with different signs is invalid */ | ||||
3889 | if (decNumberIsInfinite(rhs)(((rhs)->bits&0x40)!=0) && diffsign) { | ||||
3890 | *status|=DEC_Invalid_operation0x00000080; | ||||
3891 | break; | ||||
3892 | } | ||||
3893 | bits=lhs->bits & DECNEG0x80; /* get sign from LHS */ | ||||
3894 | } | ||||
3895 | else bits=(rhs->bits^negate) & DECNEG0x80;/* RHS must be Infinity */ | ||||
3896 | bits|=DECINF0x40; | ||||
3897 | uprv_decNumberZerouprv_decNumberZero_71(res); | ||||
3898 | res->bits=bits; /* set +/- infinity */ | ||||
3899 | } /* an infinity */ | ||||
3900 | break; | ||||
3901 | } | ||||
3902 | |||||
3903 | /* Quick exit for add 0s; return the non-0, modified as need be */ | ||||
3904 | if (ISZERO(lhs)(*(lhs)->lsu==0 && (lhs)->digits==1 && ( ((lhs)->bits&(0x40|0x20|0x10))==0))) { | ||||
3905 | Intint32_t adjust; /* work */ | ||||
3906 | Intint32_t lexp=lhs->exponent; /* save in case LHS==RES */ | ||||
3907 | bits=lhs->bits; /* .. */ | ||||
3908 | residue=0; /* clear accumulator */ | ||||
3909 | decCopyFit(res, rhs, set, &residue, status); /* copy (as needed) */ | ||||
3910 | res->bits^=negate; /* flip if rhs was negated */ | ||||
3911 | #if DECSUBSET0 | ||||
3912 | if (set->extended) { /* exponents on zeros count */ | ||||
3913 | #endif | ||||
3914 | /* exponent will be the lower of the two */ | ||||
3915 | adjust=lexp-res->exponent; /* adjustment needed [if -ve] */ | ||||
3916 | if (ISZERO(res)(*(res)->lsu==0 && (res)->digits==1 && ( ((res)->bits&(0x40|0x20|0x10))==0))) { /* both 0: special IEEE 754 rules */ | ||||
3917 | if (adjust<0) res->exponent=lexp; /* set exponent */ | ||||
3918 | /* 0-0 gives +0 unless rounding to -infinity, and -0-0 gives -0 */ | ||||
3919 | if (diffsign) { | ||||
3920 | if (set->round!=DEC_ROUND_FLOOR) res->bits=0; | ||||
3921 | else res->bits=DECNEG0x80; /* preserve 0 sign */ | ||||
3922 | } | ||||
3923 | } | ||||
3924 | else { /* non-0 res */ | ||||
3925 | if (adjust<0) { /* 0-padding needed */ | ||||
3926 | if ((res->digits-adjust)>set->digits) { | ||||
3927 | adjust=res->digits-set->digits; /* to fit exactly */ | ||||
3928 | *status|=DEC_Rounded0x00000800; /* [but exact] */ | ||||
3929 | } | ||||
3930 | res->digits=decShiftToMost(res->lsu, res->digits, -adjust); | ||||
3931 | res->exponent+=adjust; /* set the exponent. */ | ||||
3932 | } | ||||
3933 | } /* non-0 res */ | ||||
3934 | #if DECSUBSET0 | ||||
3935 | } /* extended */ | ||||
3936 | #endif | ||||
3937 | decFinish(res, set, &residue, status)decFinalize(res,set,&residue,status); /* clean and finalize */ | ||||
3938 | break;} | ||||
3939 | |||||
3940 | if (ISZERO(rhs)(*(rhs)->lsu==0 && (rhs)->digits==1 && ( ((rhs)->bits&(0x40|0x20|0x10))==0))) { /* [lhs is non-zero] */ | ||||
3941 | Intint32_t adjust; /* work */ | ||||
3942 | Intint32_t rexp=rhs->exponent; /* save in case RHS==RES */ | ||||
3943 | bits=rhs->bits; /* be clean */ | ||||
3944 | residue=0; /* clear accumulator */ | ||||
3945 | decCopyFit(res, lhs, set, &residue, status); /* copy (as needed) */ | ||||
3946 | #if DECSUBSET0 | ||||
3947 | if (set->extended) { /* exponents on zeros count */ | ||||
3948 | #endif | ||||
3949 | /* exponent will be the lower of the two */ | ||||
3950 | /* [0-0 case handled above] */ | ||||
3951 | adjust=rexp-res->exponent; /* adjustment needed [if -ve] */ | ||||
3952 | if (adjust<0) { /* 0-padding needed */ | ||||
3953 | if ((res->digits-adjust)>set->digits) { | ||||
3954 | adjust=res->digits-set->digits; /* to fit exactly */ | ||||
3955 | *status|=DEC_Rounded0x00000800; /* [but exact] */ | ||||
3956 | } | ||||
3957 | res->digits=decShiftToMost(res->lsu, res->digits, -adjust); | ||||
3958 | res->exponent+=adjust; /* set the exponent. */ | ||||
3959 | } | ||||
3960 | #if DECSUBSET0 | ||||
3961 | } /* extended */ | ||||
3962 | #endif | ||||
3963 | decFinish(res, set, &residue, status)decFinalize(res,set,&residue,status); /* clean and finalize */ | ||||
3964 | break;} | ||||
3965 | |||||
3966 | /* [NB: both fastpath and mainpath code below assume these cases */ | ||||
3967 | /* (notably 0-0) have already been handled] */ | ||||
3968 | |||||
3969 | /* calculate the padding needed to align the operands */ | ||||
3970 | padding=rhs->exponent-lhs->exponent; | ||||
3971 | |||||
3972 | /* Fastpath cases where the numbers are aligned and normal, the RHS */ | ||||
3973 | /* is all in one unit, no operand rounding is needed, and no carry, */ | ||||
3974 | /* lengthening, or borrow is needed */ | ||||
3975 | if (padding==0 | ||||
3976 | && rhs->digits<=DECDPUN1 | ||||
3977 | && rhs->exponent>=set->emin /* [some normals drop through] */ | ||||
3978 | && rhs->exponent<=set->emax-set->digits+1 /* [could clamp] */ | ||||
3979 | && rhs->digits<=reqdigits | ||||
3980 | && lhs->digits<=reqdigits) { | ||||
3981 | Intint32_t partial=*lhs->lsu; | ||||
3982 | if (!diffsign) { /* adding */ | ||||
3983 | partial+=*rhs->lsu; | ||||
3984 | if ((partial<=DECDPUNMAX9) /* result fits in unit */ | ||||
3985 | && (lhs->digits>=DECDPUN1 || /* .. and no digits-count change */ | ||||
3986 | partial<(Intint32_t)powersDECPOWERS[lhs->digits])) { /* .. */ | ||||
3987 | if (res!=lhs) uprv_decNumberCopyuprv_decNumberCopy_71(res, lhs); /* not in place */ | ||||
3988 | *res->lsu=(Unituint8_t)partial; /* [copy could have overwritten RHS] */ | ||||
3989 | break; | ||||
3990 | } | ||||
3991 | /* else drop out for careful add */ | ||||
3992 | } | ||||
3993 | else { /* signs differ */ | ||||
3994 | partial-=*rhs->lsu; | ||||
3995 | if (partial>0) { /* no borrow needed, and non-0 result */ | ||||
3996 | if (res!=lhs) uprv_decNumberCopyuprv_decNumberCopy_71(res, lhs); /* not in place */ | ||||
3997 | *res->lsu=(Unituint8_t)partial; | ||||
3998 | /* this could have reduced digits [but result>0] */ | ||||
3999 | res->digits=decGetDigits(res->lsu, D2U(res->digits)((res->digits)<=49?d2utable[res->digits]:((res->digits )+1 -1)/1)); | ||||
4000 | break; | ||||
4001 | } | ||||
4002 | /* else drop out for careful subtract */ | ||||
4003 | } | ||||
4004 | } | ||||
4005 | |||||
4006 | /* Now align (pad) the lhs or rhs so they can be added or */ | ||||
4007 | /* subtracted, as necessary. If one number is much larger than */ | ||||
4008 | /* the other (that is, if in plain form there is a least one */ | ||||
4009 | /* digit between the lowest digit of one and the highest of the */ | ||||
4010 | /* other) padding with up to DIGITS-1 trailing zeros may be */ | ||||
4011 | /* needed; then apply rounding (as exotic rounding modes may be */ | ||||
4012 | /* affected by the residue). */ | ||||
4013 | rhsshift=0; /* rhs shift to left (padding) in Units */ | ||||
4014 | bits=lhs->bits; /* assume sign is that of LHS */ | ||||
4015 | mult=1; /* likely multiplier */ | ||||
4016 | |||||
4017 | /* [if padding==0 the operands are aligned; no padding is needed] */ | ||||
4018 | if (padding!=0) { | ||||
4019 | /* some padding needed; always pad the RHS, as any required */ | ||||
4020 | /* padding can then be effected by a simple combination of */ | ||||
4021 | /* shifts and a multiply */ | ||||
4022 | Flaguint8_t swapped=0; | ||||
4023 | if (padding<0) { /* LHS needs the padding */ | ||||
4024 | const decNumber *t; | ||||
4025 | padding=-padding; /* will be +ve */ | ||||
4026 | bits=(uByteuint8_t)(rhs->bits^negate); /* assumed sign is now that of RHS */ | ||||
4027 | t=lhs; lhs=rhs; rhs=t; | ||||
4028 | swapped=1; | ||||
4029 | } | ||||
4030 | |||||
4031 | /* If, after pad, rhs would be longer than lhs by digits+1 or */ | ||||
4032 | /* more then lhs cannot affect the answer, except as a residue, */ | ||||
4033 | /* so only need to pad up to a length of DIGITS+1. */ | ||||
4034 | if (rhs->digits+padding > lhs->digits+reqdigits+1) { | ||||
4035 | /* The RHS is sufficient */ | ||||
4036 | /* for residue use the relative sign indication... */ | ||||
4037 | Intint32_t shift=reqdigits-rhs->digits; /* left shift needed */ | ||||
4038 | residue=1; /* residue for rounding */ | ||||
4039 | if (diffsign) residue=-residue; /* signs differ */ | ||||
4040 | /* copy, shortening if necessary */ | ||||
4041 | decCopyFit(res, rhs, set, &residue, status); | ||||
4042 | /* if it was already shorter, then need to pad with zeros */ | ||||
4043 | if (shift>0) { | ||||
4044 | res->digits=decShiftToMost(res->lsu, res->digits, shift); | ||||
4045 | res->exponent-=shift; /* adjust the exponent. */ | ||||
4046 | } | ||||
4047 | /* flip the result sign if unswapped and rhs was negated */ | ||||
4048 | if (!swapped) res->bits^=negate; | ||||
4049 | decFinish(res, set, &residue, status)decFinalize(res,set,&residue,status); /* done */ | ||||
4050 | break;} | ||||
4051 | |||||
4052 | /* LHS digits may affect result */ | ||||
4053 | rhsshift=D2U(padding+1)((padding+1)<=49?d2utable[padding+1]:((padding+1)+1 -1)/1)-1; /* this much by Unit shift .. */ | ||||
4054 | mult=powersDECPOWERS[padding-(rhsshift*DECDPUN1)]; /* .. this by multiplication */ | ||||
4055 | } /* padding needed */ | ||||
4056 | |||||
4057 | if (diffsign) mult=-mult; /* signs differ */ | ||||
4058 | |||||
4059 | /* determine the longer operand */ | ||||
4060 | maxdigits=rhs->digits+padding; /* virtual length of RHS */ | ||||
4061 | if (lhs->digits>maxdigits) maxdigits=lhs->digits; | ||||
4062 | |||||
4063 | /* Decide on the result buffer to use; if possible place directly */ | ||||
4064 | /* into result. */ | ||||
4065 | acc=res->lsu; /* assume add direct to result */ | ||||
4066 | /* If destructive overlap, or the number is too long, or a carry or */ | ||||
4067 | /* borrow to DIGITS+1 might be possible, a buffer must be used. */ | ||||
4068 | /* [Might be worth more sophisticated tests when maxdigits==reqdigits] */ | ||||
4069 | if ((maxdigits>=reqdigits) /* is, or could be, too large */ | ||||
4070 | || (res==rhs && rhsshift>0)) { /* destructive overlap */ | ||||
4071 | /* buffer needed, choose it; units for maxdigits digits will be */ | ||||
4072 | /* needed, +1 Unit for carry or borrow */ | ||||
4073 | Intint32_t need=D2U(maxdigits)((maxdigits)<=49?d2utable[maxdigits]:((maxdigits)+1 -1)/1)+1; | ||||
4074 | acc=accbuff; /* assume use local buffer */ | ||||
4075 | if (need*sizeof(Unituint8_t)>sizeof(accbuff)) { | ||||
4076 | /* printf("malloc add %ld %ld\n", need, sizeof(accbuff)); */ | ||||
4077 | allocacc=(Unituint8_t *)malloc(need*sizeof(Unit))uprv_malloc_71(need*sizeof(uint8_t)); | ||||
4078 | if (allocacc==NULL__null) { /* hopeless -- abandon */ | ||||
4079 | *status|=DEC_Insufficient_storage0x00000010; | ||||
4080 | break;} | ||||
4081 | acc=allocacc; | ||||
4082 | } | ||||
4083 | } | ||||
4084 | |||||
4085 | res->bits=(uByteuint8_t)(bits&DECNEG0x80); /* it's now safe to overwrite.. */ | ||||
4086 | res->exponent=lhs->exponent; /* .. operands (even if aliased) */ | ||||
4087 | |||||
4088 | #if DECTRACE0 | ||||
4089 | decDumpAr('A', lhs->lsu, D2U(lhs->digits)((lhs->digits)<=49?d2utable[lhs->digits]:((lhs->digits )+1 -1)/1)); | ||||
4090 | decDumpAr('B', rhs->lsu, D2U(rhs->digits)((rhs->digits)<=49?d2utable[rhs->digits]:((rhs->digits )+1 -1)/1)); | ||||
4091 | printf(" :h: %ld %ld\n", rhsshift, mult); | ||||
4092 | #endif | ||||
4093 | |||||
4094 | /* add [A+B*m] or subtract [A+B*(-m)] */ | ||||
4095 | U_ASSERT(rhs->digits > 0)(void)0; | ||||
4096 | U_ASSERT(lhs->digits > 0)(void)0; | ||||
4097 | res->digits=decUnitAddSub(lhs->lsu, D2U(lhs->digits)((lhs->digits)<=49?d2utable[lhs->digits]:((lhs->digits )+1 -1)/1), | ||||
4098 | rhs->lsu, D2U(rhs->digits)((rhs->digits)<=49?d2utable[rhs->digits]:((rhs->digits )+1 -1)/1), | ||||
4099 | rhsshift, acc, mult) | ||||
4100 | *DECDPUN1; /* [units -> digits] */ | ||||
4101 | if (res->digits<0) { /* borrowed... */ | ||||
4102 | res->digits=-res->digits; | ||||
4103 | res->bits^=DECNEG0x80; /* flip the sign */ | ||||
4104 | } | ||||
4105 | #if DECTRACE0 | ||||
4106 | decDumpAr('+', acc, D2U(res->digits)((res->digits)<=49?d2utable[res->digits]:((res->digits )+1 -1)/1)); | ||||
4107 | #endif | ||||
4108 | |||||
4109 | /* If a buffer was used the result must be copied back, possibly */ | ||||
4110 | /* shortening. (If no buffer was used then the result must have */ | ||||
4111 | /* fit, so can't need rounding and residue must be 0.) */ | ||||
4112 | residue=0; /* clear accumulator */ | ||||
4113 | if (acc!=res->lsu) { | ||||
4114 | #if DECSUBSET0 | ||||
4115 | if (set->extended) { /* round from first significant digit */ | ||||
4116 | #endif | ||||
4117 | /* remove leading zeros that were added due to rounding up to */ | ||||
4118 | /* integral Units -- before the test for rounding. */ | ||||
4119 | if (res->digits>reqdigits) | ||||
4120 | res->digits=decGetDigits(acc, D2U(res->digits)((res->digits)<=49?d2utable[res->digits]:((res->digits )+1 -1)/1)); | ||||
4121 | decSetCoeff(res, set, acc, res->digits, &residue, status); | ||||
4122 | #if DECSUBSET0 | ||||
4123 | } | ||||
4124 | else { /* subset arithmetic rounds from original significant digit */ | ||||
4125 | /* May have an underestimate. This only occurs when both */ | ||||
4126 | /* numbers fit in DECDPUN digits and are padding with a */ | ||||
4127 | /* negative multiple (-10, -100...) and the top digit(s) become */ | ||||
4128 | /* 0. (This only matters when using X3.274 rules where the */ | ||||
4129 | /* leading zero could be included in the rounding.) */ | ||||
4130 | if (res->digits<maxdigits) { | ||||
4131 | *(acc+D2U(res->digits)((res->digits)<=49?d2utable[res->digits]:((res->digits )+1 -1)/1))=0; /* ensure leading 0 is there */ | ||||
4132 | res->digits=maxdigits; | ||||
4133 | } | ||||
4134 | else { | ||||
4135 | /* remove leading zeros that added due to rounding up to */ | ||||
4136 | /* integral Units (but only those in excess of the original */ | ||||
4137 | /* maxdigits length, unless extended) before test for rounding. */ | ||||
4138 | if (res->digits>reqdigits) { | ||||
4139 | res->digits=decGetDigits(acc, D2U(res->digits)((res->digits)<=49?d2utable[res->digits]:((res->digits )+1 -1)/1)); | ||||
4140 | if (res->digits<maxdigits) res->digits=maxdigits; | ||||
4141 | } | ||||
4142 | } | ||||
4143 | decSetCoeff(res, set, acc, res->digits, &residue, status); | ||||
4144 | /* Now apply rounding if needed before removing leading zeros. */ | ||||
4145 | /* This is safe because subnormals are not a possibility */ | ||||
4146 | if (residue!=0) { | ||||
4147 | decApplyRound(res, set, residue, status); | ||||
4148 | residue=0; /* did what needed to be done */ | ||||
4149 | } | ||||
4150 | } /* subset */ | ||||
4151 | #endif | ||||
4152 | } /* used buffer */ | ||||
4153 | |||||
4154 | /* strip leading zeros [these were left on in case of subset subtract] */ | ||||
4155 | res->digits=decGetDigits(res->lsu, D2U(res->digits)((res->digits)<=49?d2utable[res->digits]:((res->digits )+1 -1)/1)); | ||||
4156 | |||||
4157 | /* apply checks and rounding */ | ||||
4158 | decFinish(res, set, &residue, status)decFinalize(res,set,&residue,status); | ||||
4159 | |||||
4160 | /* "When the sum of two operands with opposite signs is exactly */ | ||||
4161 | /* zero, the sign of that sum shall be '+' in all rounding modes */ | ||||
4162 | /* except round toward -Infinity, in which mode that sign shall be */ | ||||
4163 | /* '-'." [Subset zeros also never have '-', set by decFinish.] */ | ||||
4164 | if (ISZERO(res)(*(res)->lsu==0 && (res)->digits==1 && ( ((res)->bits&(0x40|0x20|0x10))==0)) && diffsign | ||||
4165 | #if DECSUBSET0 | ||||
4166 | && set->extended | ||||
4167 | #endif | ||||
4168 | && (*status&DEC_Inexact0x00000020)==0) { | ||||
4169 | if (set->round==DEC_ROUND_FLOOR) res->bits|=DECNEG0x80; /* sign - */ | ||||
4170 | else res->bits&=~DECNEG0x80; /* sign + */ | ||||
4171 | } | ||||
4172 | } while(0); /* end protected */ | ||||
4173 | |||||
4174 | if (allocacc!=NULL__null) free(allocacc)uprv_free_71(allocacc); /* drop any storage used */ | ||||
4175 | #if DECSUBSET0 | ||||
4176 | if (allocrhs!=NULL__null) free(allocrhs)uprv_free_71(allocrhs); /* .. */ | ||||
4177 | if (alloclhs!=NULL__null) free(alloclhs)uprv_free_71(alloclhs); /* .. */ | ||||
4178 | #endif | ||||
4179 | return res; | ||||
4180 | } /* decAddOp */ | ||||
4181 | |||||
4182 | /* ------------------------------------------------------------------ */ | ||||
4183 | /* decDivideOp -- division operation */ | ||||
4184 | /* */ | ||||
4185 | /* This routine performs the calculations for all four division */ | ||||
4186 | /* operators (divide, divideInteger, remainder, remainderNear). */ | ||||
4187 | /* */ | ||||
4188 | /* C=A op B */ | ||||
4189 | /* */ | ||||
4190 | /* res is C, the result. C may be A and/or B (e.g., X=X/X) */ | ||||
4191 | /* lhs is A */ | ||||
4192 | /* rhs is B */ | ||||
4193 | /* set is the context */ | ||||
4194 | /* op is DIVIDE, DIVIDEINT, REMAINDER, or REMNEAR respectively. */ | ||||
4195 | /* status is the usual accumulator */ | ||||
4196 | /* */ | ||||
4197 | /* C must have space for set->digits digits. */ | ||||
4198 | /* */ | ||||
4199 | /* ------------------------------------------------------------------ */ | ||||
4200 | /* The underlying algorithm of this routine is the same as in the */ | ||||
4201 | /* 1981 S/370 implementation, that is, non-restoring long division */ | ||||
4202 | /* with bi-unit (rather than bi-digit) estimation for each unit */ | ||||
4203 | /* multiplier. In this pseudocode overview, complications for the */ | ||||
4204 | /* Remainder operators and division residues for exact rounding are */ | ||||
4205 | /* omitted for clarity. */ | ||||
4206 | /* */ | ||||
4207 | /* Prepare operands and handle special values */ | ||||
4208 | /* Test for x/0 and then 0/x */ | ||||
4209 | /* Exp =Exp1 - Exp2 */ | ||||
4210 | /* Exp =Exp +len(var1) -len(var2) */ | ||||
4211 | /* Sign=Sign1 * Sign2 */ | ||||
4212 | /* Pad accumulator (Var1) to double-length with 0's (pad1) */ | ||||
4213 | /* Pad Var2 to same length as Var1 */ | ||||
4214 | /* msu2pair/plus=1st 2 or 1 units of var2, +1 to allow for round */ | ||||
4215 | /* have=0 */ | ||||
4216 | /* Do until (have=digits+1 OR residue=0) */ | ||||
4217 | /* if exp<0 then if integer divide/residue then leave */ | ||||
4218 | /* this_unit=0 */ | ||||
4219 | /* Do forever */ | ||||
4220 | /* compare numbers */ | ||||
4221 | /* if <0 then leave inner_loop */ | ||||
4222 | /* if =0 then (* quick exit without subtract *) do */ | ||||
4223 | /* this_unit=this_unit+1; output this_unit */ | ||||
4224 | /* leave outer_loop; end */ | ||||
4225 | /* Compare lengths of numbers (mantissae): */ | ||||
4226 | /* If same then tops2=msu2pair -- {units 1&2 of var2} */ | ||||
4227 | /* else tops2=msu2plus -- {0, unit 1 of var2} */ | ||||
4228 | /* tops1=first_unit_of_Var1*10**DECDPUN +second_unit_of_var1 */ | ||||
4229 | /* mult=tops1/tops2 -- Good and safe guess at divisor */ | ||||
4230 | /* if mult=0 then mult=1 */ | ||||
4231 | /* this_unit=this_unit+mult */ | ||||
4232 | /* subtract */ | ||||
4233 | /* end inner_loop */ | ||||
4234 | /* if have\=0 | this_unit\=0 then do */ | ||||
4235 | /* output this_unit */ | ||||
4236 | /* have=have+1; end */ | ||||
4237 | /* var2=var2/10 */ | ||||
4238 | /* exp=exp-1 */ | ||||
4239 | /* end outer_loop */ | ||||
4240 | /* exp=exp+1 -- set the proper exponent */ | ||||
4241 | /* if have=0 then generate answer=0 */ | ||||
4242 | /* Return (Result is defined by Var1) */ | ||||
4243 | /* */ | ||||
4244 | /* ------------------------------------------------------------------ */ | ||||
4245 | /* Two working buffers are needed during the division; one (digits+ */ | ||||
4246 | /* 1) to accumulate the result, and the other (up to 2*digits+1) for */ | ||||
4247 | /* long subtractions. These are acc and var1 respectively. */ | ||||
4248 | /* var1 is a copy of the lhs coefficient, var2 is the rhs coefficient.*/ | ||||
4249 | /* The static buffers may be larger than might be expected to allow */ | ||||
4250 | /* for calls from higher-level functions (notable exp). */ | ||||
4251 | /* ------------------------------------------------------------------ */ | ||||
4252 | static decNumber * decDivideOp(decNumber *res, | ||||
4253 | const decNumber *lhs, const decNumber *rhs, | ||||
4254 | decContext *set, Flaguint8_t op, uIntuint32_t *status) { | ||||
4255 | #if DECSUBSET0 | ||||
4256 | decNumber *alloclhs=NULL__null; /* non-NULL if rounded lhs allocated */ | ||||
4257 | decNumber *allocrhs=NULL__null; /* .., rhs */ | ||||
4258 | #endif | ||||
4259 | Unituint8_t accbuff[SD2U(DECBUFFER+DECDPUN+10)(((36 +1 +10)+1 -1)/1)]; /* local buffer */ | ||||
4260 | Unituint8_t *acc=accbuff; /* -> accumulator array for result */ | ||||
4261 | Unituint8_t *allocacc=NULL__null; /* -> allocated buffer, iff allocated */ | ||||
4262 | Unituint8_t *accnext; /* -> where next digit will go */ | ||||
4263 | Intint32_t acclength; /* length of acc needed [Units] */ | ||||
4264 | Intint32_t accunits; /* count of units accumulated */ | ||||
4265 | Intint32_t accdigits; /* count of digits accumulated */ | ||||
4266 | |||||
4267 | Unituint8_t varbuff[SD2U(DECBUFFER*2+DECDPUN)(((36*2+1)+1 -1)/1)]; /* buffer for var1 */ | ||||
4268 | Unituint8_t *var1=varbuff; /* -> var1 array for long subtraction */ | ||||
4269 | Unituint8_t *varalloc=NULL__null; /* -> allocated buffer, iff used */ | ||||
4270 | Unituint8_t *msu1; /* -> msu of var1 */ | ||||
4271 | |||||
4272 | const Unituint8_t *var2; /* -> var2 array */ | ||||
4273 | const Unituint8_t *msu2; /* -> msu of var2 */ | ||||
4274 | Intint32_t msu2plus; /* msu2 plus one [does not vary] */ | ||||
4275 | eIntint32_t msu2pair; /* msu2 pair plus one [does not vary] */ | ||||
4276 | |||||
4277 | Intint32_t var1units, var2units; /* actual lengths */ | ||||
4278 | Intint32_t var2ulen; /* logical length (units) */ | ||||
4279 | Intint32_t var1initpad=0; /* var1 initial padding (digits) */ | ||||
4280 | Intint32_t maxdigits; /* longest LHS or required acc length */ | ||||
4281 | Intint32_t mult; /* multiplier for subtraction */ | ||||
4282 | Unituint8_t thisunit; /* current unit being accumulated */ | ||||
4283 | Intint32_t residue; /* for rounding */ | ||||
4284 | Intint32_t reqdigits=set->digits; /* requested DIGITS */ | ||||
4285 | Intint32_t exponent; /* working exponent */ | ||||
4286 | Intint32_t maxexponent=0; /* DIVIDE maximum exponent if unrounded */ | ||||
4287 | uByteuint8_t bits; /* working sign */ | ||||
4288 | Unituint8_t *target; /* work */ | ||||
4289 | const Unituint8_t *source; /* .. */ | ||||
4290 | uIntuint32_t const *pow; /* .. */ | ||||
4291 | Intint32_t shift, cut; /* .. */ | ||||
4292 | #if DECSUBSET0 | ||||
4293 | Intint32_t dropped; /* work */ | ||||
4294 | #endif | ||||
4295 | |||||
4296 | #if DECCHECK0 | ||||
4297 | if (decCheckOperands(res, lhs, rhs, set)) return res; | ||||
4298 | #endif | ||||
4299 | |||||
4300 | do { /* protect allocated storage */ | ||||
4301 | #if DECSUBSET0 | ||||
4302 | if (!set->extended) { | ||||
4303 | /* reduce operands and set lostDigits status, as needed */ | ||||
4304 | if (lhs->digits>reqdigits) { | ||||
4305 | alloclhs=decRoundOperand(lhs, set, status); | ||||
4306 | if (alloclhs==NULL__null) break; | ||||
4307 | lhs=alloclhs; | ||||
4308 | } | ||||
4309 | if (rhs->digits>reqdigits) { | ||||
4310 | allocrhs=decRoundOperand(rhs, set, status); | ||||
4311 | if (allocrhs==NULL__null) break; | ||||
4312 | rhs=allocrhs; | ||||
4313 | } | ||||
4314 | } | ||||
4315 | #endif | ||||
4316 | /* [following code does not require input rounding] */ | ||||
4317 | |||||
4318 | bits=(lhs->bits^rhs->bits)&DECNEG0x80; /* assumed sign for divisions */ | ||||
4319 | |||||
4320 | /* handle infinities and NaNs */ | ||||
4321 | if (SPECIALARGS((lhs->bits | rhs->bits) & (0x40|0x20|0x10))) { /* a special bit set */ | ||||
| |||||
4322 | if (SPECIALARGS((lhs->bits | rhs->bits) & (0x40|0x20|0x10)) & (DECSNAN0x10 | DECNAN0x20)) { /* one or two NaNs */ | ||||
4323 | decNaNs(res, lhs, rhs, set, status); | ||||
4324 | break; | ||||
4325 | } | ||||
4326 | /* one or two infinities */ | ||||
4327 | if (decNumberIsInfinite(lhs)(((lhs)->bits&0x40)!=0)) { /* LHS (dividend) is infinite */ | ||||
4328 | if (decNumberIsInfinite(rhs)(((rhs)->bits&0x40)!=0) || /* two infinities are invalid .. */ | ||||
4329 | op & (REMAINDER0x40 | REMNEAR0x10)) { /* as is remainder of infinity */ | ||||
4330 | *status|=DEC_Invalid_operation0x00000080; | ||||
4331 | break; | ||||
4332 | } | ||||
4333 | /* [Note that infinity/0 raises no exceptions] */ | ||||
4334 | uprv_decNumberZerouprv_decNumberZero_71(res); | ||||
4335 | res->bits=bits|DECINF0x40; /* set +/- infinity */ | ||||
4336 | break; | ||||
4337 | } | ||||
4338 | else { /* RHS (divisor) is infinite */ | ||||
4339 | residue=0; | ||||
4340 | if (op&(REMAINDER0x40|REMNEAR0x10)) { | ||||
4341 | /* result is [finished clone of] lhs */ | ||||
4342 | decCopyFit(res, lhs, set, &residue, status); | ||||
4343 | } | ||||
4344 | else { /* a division */ | ||||
4345 | uprv_decNumberZerouprv_decNumberZero_71(res); | ||||
4346 | res->bits=bits; /* set +/- zero */ | ||||
4347 | /* for DIVIDEINT the exponent is always 0. For DIVIDE, result */ | ||||
4348 | /* is a 0 with infinitely negative exponent, clamped to minimum */ | ||||
4349 | if (op&DIVIDE0x80) { | ||||
4350 | res->exponent=set->emin-set->digits+1; | ||||
4351 | *status|=DEC_Clamped0x00000400; | ||||
4352 | } | ||||
4353 | } | ||||
4354 | decFinish(res, set, &residue, status)decFinalize(res,set,&residue,status); | ||||
4355 | break; | ||||
4356 | } | ||||
4357 | } | ||||
4358 | |||||
4359 | /* handle 0 rhs (x/0) */ | ||||
4360 | if (ISZERO(rhs)(*(rhs)->lsu==0 && (rhs)->digits==1 && ( ((rhs)->bits&(0x40|0x20|0x10))==0))) { /* x/0 is always exceptional */ | ||||
4361 | if (ISZERO(lhs)(*(lhs)->lsu==0 && (lhs)->digits==1 && ( ((lhs)->bits&(0x40|0x20|0x10))==0))) { | ||||
4362 | uprv_decNumberZerouprv_decNumberZero_71(res); /* [after lhs test] */ | ||||
4363 | *status|=DEC_Division_undefined0x00000008;/* 0/0 will become NaN */ | ||||
4364 | } | ||||
4365 | else { | ||||
4366 | uprv_decNumberZerouprv_decNumberZero_71(res); | ||||
4367 | if (op&(REMAINDER0x40|REMNEAR0x10)) *status|=DEC_Invalid_operation0x00000080; | ||||
4368 | else { | ||||
4369 | *status|=DEC_Division_by_zero0x00000002; /* x/0 */ | ||||
4370 | res->bits=bits|DECINF0x40; /* .. is +/- Infinity */ | ||||
4371 | } | ||||
4372 | } | ||||
4373 | break;} | ||||
4374 | |||||
4375 | /* handle 0 lhs (0/x) */ | ||||
4376 | if (ISZERO(lhs)(*(lhs)->lsu==0 && (lhs)->digits==1 && ( ((lhs)->bits&(0x40|0x20|0x10))==0))) { /* 0/x [x!=0] */ | ||||
4377 | #if DECSUBSET0 | ||||
4378 | if (!set->extended) uprv_decNumberZerouprv_decNumberZero_71(res); | ||||
4379 | else { | ||||
4380 | #endif | ||||
4381 | if (op&DIVIDE0x80) { | ||||
4382 | residue=0; | ||||
4383 | exponent=lhs->exponent-rhs->exponent; /* ideal exponent */ | ||||
4384 | uprv_decNumberCopyuprv_decNumberCopy_71(res, lhs); /* [zeros always fit] */ | ||||
4385 | res->bits=bits; /* sign as computed */ | ||||
4386 | res->exponent=exponent; /* exponent, too */ | ||||
4387 | decFinalize(res, set, &residue, status); /* check exponent */ | ||||
4388 | } | ||||
4389 | else if (op&DIVIDEINT0x20) { | ||||
4390 | uprv_decNumberZerouprv_decNumberZero_71(res); /* integer 0 */ | ||||
4391 | res->bits=bits; /* sign as computed */ | ||||
4392 | } | ||||
4393 | else { /* a remainder */ | ||||
4394 | exponent=rhs->exponent; /* [save in case overwrite] */ | ||||
4395 | uprv_decNumberCopyuprv_decNumberCopy_71(res, lhs); /* [zeros always fit] */ | ||||
4396 | if (exponent<res->exponent) res->exponent=exponent; /* use lower */ | ||||
4397 | } | ||||
4398 | #if DECSUBSET0 | ||||
4399 | } | ||||
4400 | #endif | ||||
4401 | break;} | ||||
4402 | |||||
4403 | /* Precalculate exponent. This starts off adjusted (and hence fits */ | ||||
4404 | /* in 31 bits) and becomes the usual unadjusted exponent as the */ | ||||
4405 | /* division proceeds. The order of evaluation is important, here, */ | ||||
4406 | /* to avoid wrap. */ | ||||
4407 | exponent=(lhs->exponent+lhs->digits)-(rhs->exponent+rhs->digits); | ||||
4408 | |||||
4409 | /* If the working exponent is -ve, then some quick exits are */ | ||||
4410 | /* possible because the quotient is known to be <1 */ | ||||
4411 | /* [for REMNEAR, it needs to be < -1, as -0.5 could need work] */ | ||||
4412 | if (exponent<0 && !(op==DIVIDE0x80)) { | ||||
4413 | if (op&DIVIDEINT0x20) { | ||||
4414 | uprv_decNumberZerouprv_decNumberZero_71(res); /* integer part is 0 */ | ||||
4415 | #if DECSUBSET0 | ||||
4416 | if (set->extended) | ||||
4417 | #endif | ||||
4418 | res->bits=bits; /* set +/- zero */ | ||||
4419 | break;} | ||||
4420 | /* fastpath remainders so long as the lhs has the smaller */ | ||||
4421 | /* (or equal) exponent */ | ||||
4422 | if (lhs->exponent<=rhs->exponent) { | ||||
4423 | if (op&REMAINDER0x40 || exponent<-1) { | ||||
4424 | /* It is REMAINDER or safe REMNEAR; result is [finished */ | ||||
4425 | /* clone of] lhs (r = x - 0*y) */ | ||||
4426 | residue=0; | ||||
4427 | decCopyFit(res, lhs, set, &residue, status); | ||||
4428 | decFinish(res, set, &residue, status)decFinalize(res,set,&residue,status); | ||||
4429 | break; | ||||
4430 | } | ||||
4431 | /* [unsafe REMNEAR drops through] */ | ||||
4432 | } | ||||
4433 | } /* fastpaths */ | ||||
4434 | |||||
4435 | /* Long (slow) division is needed; roll up the sleeves... */ | ||||
4436 | |||||
4437 | /* The accumulator will hold the quotient of the division. */ | ||||
4438 | /* If it needs to be too long for stack storage, then allocate. */ | ||||
4439 | acclength=D2U(reqdigits+DECDPUN)((reqdigits+1)<=49?d2utable[reqdigits+1]:((reqdigits+1)+1 - 1)/1); /* in Units */ | ||||
4440 | if (acclength*sizeof(Unituint8_t)>sizeof(accbuff)) { | ||||
4441 | /* printf("malloc dvacc %ld units\n", acclength); */ | ||||
4442 | allocacc=(Unituint8_t *)malloc(acclength*sizeof(Unit))uprv_malloc_71(acclength*sizeof(uint8_t)); | ||||
4443 | if (allocacc==NULL__null) { /* hopeless -- abandon */ | ||||
4444 | *status|=DEC_Insufficient_storage0x00000010; | ||||
4445 | break;} | ||||
4446 | acc=allocacc; /* use the allocated space */ | ||||
4447 | } | ||||
4448 | |||||
4449 | /* var1 is the padded LHS ready for subtractions. */ | ||||
4450 | /* If it needs to be too long for stack storage, then allocate. */ | ||||
4451 | /* The maximum units needed for var1 (long subtraction) is: */ | ||||
4452 | /* Enough for */ | ||||
4453 | /* (rhs->digits+reqdigits-1) -- to allow full slide to right */ | ||||
4454 | /* or (lhs->digits) -- to allow for long lhs */ | ||||
4455 | /* whichever is larger */ | ||||
4456 | /* +1 -- for rounding of slide to right */ | ||||
4457 | /* +1 -- for leading 0s */ | ||||
4458 | /* +1 -- for pre-adjust if a remainder or DIVIDEINT */ | ||||
4459 | /* [Note: unused units do not participate in decUnitAddSub data] */ | ||||
4460 | maxdigits=rhs->digits+reqdigits-1; | ||||
4461 | if (lhs->digits>maxdigits) maxdigits=lhs->digits; | ||||
4462 | var1units=D2U(maxdigits)((maxdigits)<=49?d2utable[maxdigits]:((maxdigits)+1 -1)/1)+2; | ||||
4463 | /* allocate a guard unit above msu1 for REMAINDERNEAR */ | ||||
4464 | if (!(op&DIVIDE0x80)) var1units++; | ||||
4465 | if ((var1units+1)*sizeof(Unituint8_t)>sizeof(varbuff)) { | ||||
4466 | /* printf("malloc dvvar %ld units\n", var1units+1); */ | ||||
4467 | varalloc=(Unituint8_t *)malloc((var1units+1)*sizeof(Unit))uprv_malloc_71((var1units+1)*sizeof(uint8_t)); | ||||
4468 | if (varalloc==NULL__null) { /* hopeless -- abandon */ | ||||
4469 | *status|=DEC_Insufficient_storage0x00000010; | ||||
4470 | break;} | ||||
4471 | var1=varalloc; /* use the allocated space */ | ||||
4472 | } | ||||
4473 | |||||
4474 | /* Extend the lhs and rhs to full long subtraction length. The lhs */ | ||||
4475 | /* is truly extended into the var1 buffer, with 0 padding, so a */ | ||||
4476 | /* subtract in place is always possible. The rhs (var2) has */ | ||||
4477 | /* virtual padding (implemented by decUnitAddSub). */ | ||||
4478 | /* One guard unit was allocated above msu1 for rem=rem+rem in */ | ||||
4479 | /* REMAINDERNEAR. */ | ||||
4480 | msu1=var1+var1units-1; /* msu of var1 */ | ||||
4481 | source=lhs->lsu+D2U(lhs->digits)((lhs->digits)<=49?d2utable[lhs->digits]:((lhs->digits )+1 -1)/1)-1; /* msu of input array */ | ||||
4482 | for (target=msu1; source>=lhs->lsu; source--, target--) *target=*source; | ||||
4483 | for (; target>=var1; target--) *target=0; | ||||
4484 | |||||
4485 | /* rhs (var2) is left-aligned with var1 at the start */ | ||||
4486 | var2ulen=var1units; /* rhs logical length (units) */ | ||||
4487 | var2units=D2U(rhs->digits)((rhs->digits)<=49?d2utable[rhs->digits]:((rhs->digits )+1 -1)/1); /* rhs actual length (units) */ | ||||
4488 | var2=rhs->lsu; /* -> rhs array */ | ||||
4489 | msu2=var2+var2units-1; /* -> msu of var2 [never changes] */ | ||||
4490 | /* now set up the variables which will be used for estimating the */ | ||||
4491 | /* multiplication factor. If these variables are not exact, add */ | ||||
4492 | /* 1 to make sure that the multiplier is never overestimated. */ | ||||
4493 | msu2plus=*msu2; /* it's value .. */ | ||||
4494 | if (var2units>1) msu2plus++; /* .. +1 if any more */ | ||||
4495 | msu2pair=(eIntint32_t)*msu2*(DECDPUNMAX9+1);/* top two pair .. */ | ||||
4496 | if (var2units
| ||||
4497 | msu2pair+=*(msu2-1); /* .. */ | ||||
4498 | if (var2units>2) msu2pair++; /* .. +1 if any more */ | ||||
4499 | } | ||||
4500 | |||||
4501 | /* The calculation is working in units, which may have leading zeros, */ | ||||
4502 | /* but the exponent was calculated on the assumption that they are */ | ||||
4503 | /* both left-aligned. Adjust the exponent to compensate: add the */ | ||||
4504 | /* number of leading zeros in var1 msu and subtract those in var2 msu. */ | ||||
4505 | /* [This is actually done by counting the digits and negating, as */ | ||||
4506 | /* lead1=DECDPUN-digits1, and similarly for lead2.] */ | ||||
4507 | for (pow=&powersDECPOWERS[1]; *msu1>=*pow; pow++) exponent--; | ||||
4508 | for (pow=&powersDECPOWERS[1]; *msu2>=*pow; pow++) exponent++; | ||||
4509 | |||||
4510 | /* Now, if doing an integer divide or remainder, ensure that */ | ||||
4511 | /* the result will be Unit-aligned. To do this, shift the var1 */ | ||||
4512 | /* accumulator towards least if need be. (It's much easier to */ | ||||
4513 | /* do this now than to reassemble the residue afterwards, if */ | ||||
4514 | /* doing a remainder.) Also ensure the exponent is not negative. */ | ||||
4515 | if (!(op&DIVIDE0x80)) { | ||||
4516 | Unituint8_t *u; /* work */ | ||||
4517 | /* save the initial 'false' padding of var1, in digits */ | ||||
4518 | var1initpad=(var1units-D2U(lhs->digits)((lhs->digits)<=49?d2utable[lhs->digits]:((lhs->digits )+1 -1)/1))*DECDPUN1; | ||||
4519 | /* Determine the shift to do. */ | ||||
4520 | if (exponent<0) cut=-exponent; | ||||
4521 | else cut=DECDPUN1-exponent%DECDPUN1; | ||||
4522 | decShiftToLeast(var1, var1units, cut); | ||||
4523 | exponent+=cut; /* maintain numerical value */ | ||||
4524 | var1initpad-=cut; /* .. and reduce padding */ | ||||
4525 | /* clean any most-significant units which were just emptied */ | ||||
4526 | for (u=msu1; cut>=DECDPUN1; cut-=DECDPUN1, u--) *u=0; | ||||
4527 | } /* align */ | ||||
4528 | else { /* is DIVIDE */ | ||||
4529 | maxexponent=lhs->exponent-rhs->exponent; /* save */ | ||||
4530 | /* optimization: if the first iteration will just produce 0, */ | ||||
4531 | /* preadjust to skip it [valid for DIVIDE only] */ | ||||
4532 | if (*msu1<*msu2) { | ||||
4533 | var2ulen--; /* shift down */ | ||||
4534 | exponent-=DECDPUN1; /* update the exponent */ | ||||
4535 | } | ||||
4536 | } | ||||
4537 | |||||
4538 | /* ---- start the long-division loops ------------------------------ */ | ||||
4539 | accunits=0; /* no units accumulated yet */ | ||||
4540 | accdigits=0; /* .. or digits */ | ||||
4541 | accnext=acc+acclength-1; /* -> msu of acc [NB: allows digits+1] */ | ||||
4542 | for (;;) { /* outer forever loop */ | ||||
4543 | thisunit=0; /* current unit assumed 0 */ | ||||
4544 | /* find the next unit */ | ||||
4545 | for (;;) { /* inner forever loop */ | ||||
4546 | /* strip leading zero units [from either pre-adjust or from */ | ||||
4547 | /* subtract last time around]. Leave at least one unit. */ | ||||
4548 | for (; *msu1==0 && msu1>var1; msu1--) var1units--; | ||||
4549 | |||||
4550 | if (var1units
| ||||
4551 | if (var1units
| ||||
4552 | /* compare the two numbers, from msu */ | ||||
4553 | const Unituint8_t *pv1, *pv2; | ||||
4554 | Unituint8_t v2; /* units to compare */ | ||||
4555 | pv2=msu2; /* -> msu */ | ||||
4556 | for (pv1=msu1; ; pv1--, pv2--) { | ||||
4557 | /* v1=*pv1 -- always OK */ | ||||
4558 | v2=0; /* assume in padding */ | ||||
4559 | if (pv2>=var2) v2=*pv2; /* in range */ | ||||
4560 | if (*pv1!=v2) break; /* no longer the same */ | ||||
4561 | if (pv1==var1) break; /* done; leave pv1 as is */ | ||||
4562 | } | ||||
4563 | /* here when all inspected or a difference seen */ | ||||
4564 | if (*pv1<v2) break; /* var1 too low to subtract */ | ||||
4565 | if (*pv1==v2) { /* var1 == var2 */ | ||||
4566 | /* reach here if var1 and var2 are identical; subtraction */ | ||||
4567 | /* would increase digit by one, and the residue will be 0 so */ | ||||
4568 | /* the calculation is done; leave the loop with residue=0. */ | ||||
4569 | thisunit++; /* as though subtracted */ | ||||
4570 | *var1=0; /* set var1 to 0 */ | ||||
4571 | var1units=1; /* .. */ | ||||
4572 | break; /* from inner */ | ||||
4573 | } /* var1 == var2 */ | ||||
4574 | /* *pv1>v2. Prepare for real subtraction; the lengths are equal */ | ||||
4575 | /* Estimate the multiplier (there's always a msu1-1)... */ | ||||
4576 | /* Bring in two units of var2 to provide a good estimate. */ | ||||
4577 | mult=(Intint32_t)(((eIntint32_t)*msu1*(DECDPUNMAX9+1)+*(msu1-1))/msu2pair); | ||||
4578 | } /* lengths the same */ | ||||
4579 | else { /* var1units > var2ulen, so subtraction is safe */ | ||||
4580 | /* The var2 msu is one unit towards the lsu of the var1 msu, */ | ||||
4581 | /* so only one unit for var2 can be used. */ | ||||
4582 | mult=(Intint32_t)(((eIntint32_t)*msu1*(DECDPUNMAX9+1)+*(msu1-1))/msu2plus); | ||||
4583 | } | ||||
4584 | if (mult==0) mult=1; /* must always be at least 1 */ | ||||
4585 | /* subtraction needed; var1 is > var2 */ | ||||
4586 | thisunit=(Unituint8_t)(thisunit+mult); /* accumulate */ | ||||
4587 | /* subtract var1-var2, into var1; only the overlap needs */ | ||||
4588 | /* processing, as this is an in-place calculation */ | ||||
4589 | shift=var2ulen-var2units; | ||||
4590 | #if DECTRACE0 | ||||
4591 | decDumpAr('1', &var1[shift], var1units-shift); | ||||
4592 | decDumpAr('2', var2, var2units); | ||||
4593 | printf("m=%ld\n", -mult); | ||||
4594 | #endif | ||||
4595 | decUnitAddSub(&var1[shift], var1units-shift, | ||||
4596 | var2, var2units, 0, | ||||
4597 | &var1[shift], -mult); | ||||
4598 | #if DECTRACE0 | ||||
4599 | decDumpAr('#', &var1[shift], var1units-shift); | ||||
4600 | #endif | ||||
4601 | /* var1 now probably has leading zeros; these are removed at the */ | ||||
4602 | /* top of the inner loop. */ | ||||
4603 | } /* inner loop */ | ||||
4604 | |||||
4605 | /* The next unit has been calculated in full; unless it's a */ | ||||
4606 | /* leading zero, add to acc */ | ||||
4607 | if (accunits
| ||||
4608 | *accnext=thisunit; /* store in accumulator */ | ||||
4609 | /* account exactly for the new digits */ | ||||
4610 | if (accunits==0) { | ||||
4611 | accdigits++; /* at least one */ | ||||
4612 | for (pow=&powersDECPOWERS[1]; thisunit>=*pow; pow++) accdigits++; | ||||
4613 | } | ||||
4614 | else accdigits+=DECDPUN1; | ||||
4615 | accunits++; /* update count */ | ||||
4616 | accnext--; /* ready for next */ | ||||
4617 | if (accdigits>reqdigits) break; /* have enough digits */ | ||||
4618 | } | ||||
4619 | |||||
4620 | /* if the residue is zero, the operation is done (unless divide */ | ||||
4621 | /* or divideInteger and still not enough digits yet) */ | ||||
4622 | if (*var1==0 && var1units==1) { /* residue is 0 */ | ||||
| |||||
4623 | if (op&(REMAINDER0x40|REMNEAR0x10)) break; | ||||
4624 | if ((op&DIVIDE0x80) && (exponent<=maxexponent)) break; | ||||
4625 | /* [drop through if divideInteger] */ | ||||
4626 | } | ||||
4627 | /* also done enough if calculating remainder or integer */ | ||||
4628 | /* divide and just did the last ('units') unit */ | ||||
4629 | if (exponent==0 && !(op&DIVIDE0x80)) break; | ||||
4630 | |||||
4631 | /* to get here, var1 is less than var2, so divide var2 by the per- */ | ||||
4632 | /* Unit power of ten and go for the next digit */ | ||||
4633 | var2ulen--; /* shift down */ | ||||
4634 | exponent-=DECDPUN1; /* update the exponent */ | ||||
4635 | } /* outer loop */ | ||||
4636 | |||||
4637 | /* ---- division is complete --------------------------------------- */ | ||||
4638 | /* here: acc has at least reqdigits+1 of good results (or fewer */ | ||||
4639 | /* if early stop), starting at accnext+1 (its lsu) */ | ||||
4640 | /* var1 has any residue at the stopping point */ | ||||
4641 | /* accunits is the number of digits collected in acc */ | ||||
4642 | if (accunits==0) { /* acc is 0 */ | ||||
4643 | accunits=1; /* show have a unit .. */ | ||||
4644 | accdigits=1; /* .. */ | ||||
4645 | *accnext=0; /* .. whose value is 0 */ | ||||
4646 | } | ||||
4647 | else accnext++; /* back to last placed */ | ||||
4648 | /* accnext now -> lowest unit of result */ | ||||
4649 | |||||
4650 | residue=0; /* assume no residue */ | ||||
4651 | if (op&DIVIDE0x80) { | ||||
4652 | /* record the presence of any residue, for rounding */ | ||||
4653 | if (*var1!=0 || var1units>1) residue=1; | ||||
4654 | else { /* no residue */ | ||||
4655 | /* Had an exact division; clean up spurious trailing 0s. */ | ||||
4656 | /* There will be at most DECDPUN-1, from the final multiply, */ | ||||
4657 | /* and then only if the result is non-0 (and even) and the */ | ||||
4658 | /* exponent is 'loose'. */ | ||||
4659 | #if DECDPUN1>1 | ||||
4660 | Unituint8_t lsu=*accnext; | ||||
4661 | if (!(lsu&0x01) && (lsu!=0)) { | ||||
4662 | /* count the trailing zeros */ | ||||
4663 | Intint32_t drop=0; | ||||
4664 | for (;; drop++) { /* [will terminate because lsu!=0] */ | ||||
4665 | if (exponent>=maxexponent) break; /* don't chop real 0s */ | ||||
4666 | #if DECDPUN1<=4 | ||||
4667 | if ((lsu-QUOT10(lsu, drop+1)((((uint32_t)(lsu)>>(drop+1))*multies[drop+1])>>17 ) | ||||
4668 | *powersDECPOWERS[drop+1])!=0) break; /* found non-0 digit */ | ||||
4669 | #else | ||||
4670 | if (lsu%powersDECPOWERS[drop+1]!=0) break; /* found non-0 digit */ | ||||
4671 | #endif | ||||
4672 | exponent++; | ||||
4673 | } | ||||
4674 | if (drop>0) { | ||||
4675 | accunits=decShiftToLeast(accnext, accunits, drop); | ||||
4676 | accdigits=decGetDigits(accnext, accunits); | ||||
4677 | accunits=D2U(accdigits)((accdigits)<=49?d2utable[accdigits]:((accdigits)+1 -1)/1); | ||||
4678 | /* [exponent was adjusted in the loop] */ | ||||
4679 | } | ||||
4680 | } /* neither odd nor 0 */ | ||||
4681 | #endif | ||||
4682 | } /* exact divide */ | ||||
4683 | } /* divide */ | ||||
4684 | else /* op!=DIVIDE */ { | ||||
4685 | /* check for coefficient overflow */ | ||||
4686 | if (accdigits+exponent>reqdigits) { | ||||
4687 | *status|=DEC_Division_impossible0x00000004; | ||||
4688 | break; | ||||
4689 | } | ||||
4690 | if (op & (REMAINDER0x40|REMNEAR0x10)) { | ||||
4691 | /* [Here, the exponent will be 0, because var1 was adjusted */ | ||||
4692 | /* appropriately.] */ | ||||
4693 | Intint32_t postshift; /* work */ | ||||
4694 | Flaguint8_t wasodd=0; /* integer was odd */ | ||||
4695 | Unituint8_t *quotlsu; /* for save */ | ||||
4696 | Intint32_t quotdigits; /* .. */ | ||||
4697 | |||||
4698 | bits=lhs->bits; /* remainder sign is always as lhs */ | ||||
4699 | |||||
4700 | /* Fastpath when residue is truly 0 is worthwhile [and */ | ||||
4701 | /* simplifies the code below] */ | ||||
4702 | if (*var1==0 && var1units==1) { /* residue is 0 */ | ||||
4703 | Intint32_t exp=lhs->exponent; /* save min(exponents) */ | ||||
4704 | if (rhs->exponent<exp) exp=rhs->exponent; | ||||
4705 | uprv_decNumberZerouprv_decNumberZero_71(res); /* 0 coefficient */ | ||||
4706 | #if DECSUBSET0 | ||||
4707 | if (set->extended) | ||||
4708 | #endif | ||||
4709 | res->exponent=exp; /* .. with proper exponent */ | ||||
4710 | res->bits=(uByteuint8_t)(bits&DECNEG0x80); /* [cleaned] */ | ||||
4711 | decFinish(res, set, &residue, status)decFinalize(res,set,&residue,status); /* might clamp */ | ||||
4712 | break; | ||||
4713 | } | ||||
4714 | /* note if the quotient was odd */ | ||||
4715 | if (*accnext & 0x01) wasodd=1; /* acc is odd */ | ||||
4716 | quotlsu=accnext; /* save in case need to reinspect */ | ||||
4717 | quotdigits=accdigits; /* .. */ | ||||
4718 | |||||
4719 | /* treat the residue, in var1, as the value to return, via acc */ | ||||
4720 | /* calculate the unused zero digits. This is the smaller of: */ | ||||
4721 | /* var1 initial padding (saved above) */ | ||||
4722 | /* var2 residual padding, which happens to be given by: */ | ||||
4723 | postshift=var1initpad+exponent-lhs->exponent+rhs->exponent; | ||||
4724 | /* [the 'exponent' term accounts for the shifts during divide] */ | ||||
4725 | if (var1initpad<postshift) postshift=var1initpad; | ||||
4726 | |||||
4727 | /* shift var1 the requested amount, and adjust its digits */ | ||||
4728 | var1units=decShiftToLeast(var1, var1units, postshift); | ||||
4729 | accnext=var1; | ||||
4730 | accdigits=decGetDigits(var1, var1units); | ||||
4731 | accunits=D2U(accdigits)((accdigits)<=49?d2utable[accdigits]:((accdigits)+1 -1)/1); | ||||
4732 | |||||
4733 | exponent=lhs->exponent; /* exponent is smaller of lhs & rhs */ | ||||
4734 | if (rhs->exponent<exponent) exponent=rhs->exponent; | ||||
4735 | |||||
4736 | /* Now correct the result if doing remainderNear; if it */ | ||||
4737 | /* (looking just at coefficients) is > rhs/2, or == rhs/2 and */ | ||||
4738 | /* the integer was odd then the result should be rem-rhs. */ | ||||
4739 | if (op&REMNEAR0x10) { | ||||
4740 | Intint32_t compare, tarunits; /* work */ | ||||
4741 | Unituint8_t *up; /* .. */ | ||||
4742 | /* calculate remainder*2 into the var1 buffer (which has */ | ||||
4743 | /* 'headroom' of an extra unit and hence enough space) */ | ||||
4744 | /* [a dedicated 'double' loop would be faster, here] */ | ||||
4745 | tarunits=decUnitAddSub(accnext, accunits, accnext, accunits, | ||||
4746 | 0, accnext, 1); | ||||
4747 | /* decDumpAr('r', accnext, tarunits); */ | ||||
4748 | |||||
4749 | /* Here, accnext (var1) holds tarunits Units with twice the */ | ||||
4750 | /* remainder's coefficient, which must now be compared to the */ | ||||
4751 | /* RHS. The remainder's exponent may be smaller than the RHS's. */ | ||||
4752 | compare=decUnitCompare(accnext, tarunits, rhs->lsu, D2U(rhs->digits)((rhs->digits)<=49?d2utable[rhs->digits]:((rhs->digits )+1 -1)/1), | ||||
4753 | rhs->exponent-exponent); | ||||
4754 | if (compare==BADINT(int32_t)0x80000000) { /* deep trouble */ | ||||
4755 | *status|=DEC_Insufficient_storage0x00000010; | ||||
4756 | break;} | ||||
4757 | |||||
4758 | /* now restore the remainder by dividing by two; the lsu */ | ||||
4759 | /* is known to be even. */ | ||||
4760 | for (up=accnext; up<accnext+tarunits; up++) { | ||||
4761 | Intint32_t half; /* half to add to lower unit */ | ||||
4762 | half=*up & 0x01; | ||||
4763 | *up/=2; /* [shift] */ | ||||
4764 | if (!half) continue; | ||||
4765 | *(up-1)+=(DECDPUNMAX9+1)/2; | ||||
4766 | } | ||||
4767 | /* [accunits still describes the original remainder length] */ | ||||
4768 | |||||
4769 | if (compare>0 || (compare==0 && wasodd)) { /* adjustment needed */ | ||||
4770 | Intint32_t exp, expunits, exprem; /* work */ | ||||
4771 | /* This is effectively causing round-up of the quotient, */ | ||||
4772 | /* so if it was the rare case where it was full and all */ | ||||
4773 | /* nines, it would overflow and hence division-impossible */ | ||||
4774 | /* should be raised */ | ||||
4775 | Flaguint8_t allnines=0; /* 1 if quotient all nines */ | ||||
4776 | if (quotdigits==reqdigits) { /* could be borderline */ | ||||
4777 | for (up=quotlsu; ; up++) { | ||||
4778 | if (quotdigits>DECDPUN1) { | ||||
4779 | if (*up!=DECDPUNMAX9) break;/* non-nines */ | ||||
4780 | } | ||||
4781 | else { /* this is the last Unit */ | ||||
4782 | if (*up==powersDECPOWERS[quotdigits]-1) allnines=1; | ||||
4783 | break; | ||||
4784 | } | ||||
4785 | quotdigits-=DECDPUN1; /* checked those digits */ | ||||
4786 | } /* up */ | ||||
4787 | } /* borderline check */ | ||||
4788 | if (allnines) { | ||||
4789 | *status|=DEC_Division_impossible0x00000004; | ||||
4790 | break;} | ||||
4791 | |||||
4792 | /* rem-rhs is needed; the sign will invert. Again, var1 */ | ||||
4793 | /* can safely be used for the working Units array. */ | ||||
4794 | exp=rhs->exponent-exponent; /* RHS padding needed */ | ||||
4795 | /* Calculate units and remainder from exponent. */ | ||||
4796 | expunits=exp/DECDPUN1; | ||||
4797 | exprem=exp%DECDPUN1; | ||||
4798 | /* subtract [A+B*(-m)]; the result will always be negative */ | ||||
4799 | accunits=-decUnitAddSub(accnext, accunits, | ||||
4800 | rhs->lsu, D2U(rhs->digits)((rhs->digits)<=49?d2utable[rhs->digits]:((rhs->digits )+1 -1)/1), | ||||
4801 | expunits, accnext, -(Intint32_t)powersDECPOWERS[exprem]); | ||||
4802 | accdigits=decGetDigits(accnext, accunits); /* count digits exactly */ | ||||
4803 | accunits=D2U(accdigits)((accdigits)<=49?d2utable[accdigits]:((accdigits)+1 -1)/1); /* and recalculate the units for copy */ | ||||
4804 | /* [exponent is as for original remainder] */ | ||||
4805 | bits^=DECNEG0x80; /* flip the sign */ | ||||
4806 | } | ||||
4807 | } /* REMNEAR */ | ||||
4808 | } /* REMAINDER or REMNEAR */ | ||||
4809 | } /* not DIVIDE */ | ||||
4810 | |||||
4811 | /* Set exponent and bits */ | ||||
4812 | res->exponent=exponent; | ||||
4813 | res->bits=(uByteuint8_t)(bits&DECNEG0x80); /* [cleaned] */ | ||||
4814 | |||||
4815 | /* Now the coefficient. */ | ||||
4816 | decSetCoeff(res, set, accnext, accdigits, &residue, status); | ||||
4817 | |||||
4818 | decFinish(res, set, &residue, status)decFinalize(res,set,&residue,status); /* final cleanup */ | ||||
4819 | |||||
4820 | #if DECSUBSET0 | ||||
4821 | /* If a divide then strip trailing zeros if subset [after round] */ | ||||
4822 | if (!set->extended && (op==DIVIDE0x80)) decTrim(res, set, 0, 1, &dropped); | ||||
4823 | #endif | ||||
4824 | } while(0); /* end protected */ | ||||
4825 | |||||
4826 | if (varalloc!=NULL__null) free(varalloc)uprv_free_71(varalloc); /* drop any storage used */ | ||||
4827 | if (allocacc!=NULL__null) free(allocacc)uprv_free_71(allocacc); /* .. */ | ||||
4828 | #if DECSUBSET0 | ||||
4829 | if (allocrhs!=NULL__null) free(allocrhs)uprv_free_71(allocrhs); /* .. */ | ||||
4830 | if (alloclhs!=NULL__null) free(alloclhs)uprv_free_71(alloclhs); /* .. */ | ||||
4831 | #endif | ||||
4832 | return res; | ||||
4833 | } /* decDivideOp */ | ||||
4834 | |||||
4835 | /* ------------------------------------------------------------------ */ | ||||
4836 | /* decMultiplyOp -- multiplication operation */ | ||||
4837 | /* */ | ||||
4838 | /* This routine performs the multiplication C=A x B. */ | ||||
4839 | /* */ | ||||
4840 | /* res is C, the result. C may be A and/or B (e.g., X=X*X) */ | ||||
4841 | /* lhs is A */ | ||||
4842 | /* rhs is B */ | ||||
4843 | /* set is the context */ | ||||
4844 | /* status is the usual accumulator */ | ||||
4845 | /* */ | ||||
4846 | /* C must have space for set->digits digits. */ | ||||
4847 | /* */ | ||||
4848 | /* ------------------------------------------------------------------ */ | ||||
4849 | /* 'Classic' multiplication is used rather than Karatsuba, as the */ | ||||
4850 | /* latter would give only a minor improvement for the short numbers */ | ||||
4851 | /* expected to be handled most (and uses much more memory). */ | ||||
4852 | /* */ | ||||
4853 | /* There are two major paths here: the general-purpose ('old code') */ | ||||
4854 | /* path which handles all DECDPUN values, and a fastpath version */ | ||||
4855 | /* which is used if 64-bit ints are available, DECDPUN<=4, and more */ | ||||
4856 | /* than two calls to decUnitAddSub would be made. */ | ||||
4857 | /* */ | ||||
4858 | /* The fastpath version lumps units together into 8-digit or 9-digit */ | ||||
4859 | /* chunks, and also uses a lazy carry strategy to minimise expensive */ | ||||
4860 | /* 64-bit divisions. The chunks are then broken apart again into */ | ||||
4861 | /* units for continuing processing. Despite this overhead, the */ | ||||
4862 | /* fastpath can speed up some 16-digit operations by 10x (and much */ | ||||
4863 | /* more for higher-precision calculations). */ | ||||
4864 | /* */ | ||||
4865 | /* A buffer always has to be used for the accumulator; in the */ | ||||
4866 | /* fastpath, buffers are also always needed for the chunked copies of */ | ||||
4867 | /* of the operand coefficients. */ | ||||
4868 | /* Static buffers are larger than needed just for multiply, to allow */ | ||||
4869 | /* for calls from other operations (notably exp). */ | ||||
4870 | /* ------------------------------------------------------------------ */ | ||||
4871 | #define FASTMUL(1 && 1<5) (DECUSE641 && DECDPUN1<5) | ||||
4872 | static decNumber * decMultiplyOp(decNumber *res, const decNumber *lhs, | ||||
4873 | const decNumber *rhs, decContext *set, | ||||
4874 | uIntuint32_t *status) { | ||||
4875 | Intint32_t accunits; /* Units of accumulator in use */ | ||||
4876 | Intint32_t exponent; /* work */ | ||||
4877 | Intint32_t residue=0; /* rounding residue */ | ||||
4878 | uByteuint8_t bits; /* result sign */ | ||||
4879 | Unituint8_t *acc; /* -> accumulator Unit array */ | ||||
4880 | Intint32_t needbytes; /* size calculator */ | ||||
4881 | void *allocacc=NULL__null; /* -> allocated accumulator, iff allocated */ | ||||
4882 | Unituint8_t accbuff[SD2U(DECBUFFER*4+1)(((36*4+1)+1 -1)/1)]; /* buffer (+1 for DECBUFFER==0, */ | ||||
4883 | /* *4 for calls from other operations) */ | ||||
4884 | const Unituint8_t *mer, *mermsup; /* work */ | ||||
4885 | Intint32_t madlength; /* Units in multiplicand */ | ||||
4886 | Intint32_t shift; /* Units to shift multiplicand by */ | ||||
4887 | |||||
4888 | #if FASTMUL(1 && 1<5) | ||||
4889 | /* if DECDPUN is 1 or 3 work in base 10**9, otherwise */ | ||||
4890 | /* (DECDPUN is 2 or 4) then work in base 10**8 */ | ||||
4891 | #if DECDPUN1 & 1 /* odd */ | ||||
4892 | #define FASTBASE1000000000 1000000000 /* base */ | ||||
4893 | #define FASTDIGS9 9 /* digits in base */ | ||||
4894 | #define FASTLAZY18 18 /* carry resolution point [1->18] */ | ||||
4895 | #else | ||||
4896 | #define FASTBASE1000000000 100000000 | ||||
4897 | #define FASTDIGS9 8 | ||||
4898 | #define FASTLAZY18 1844 /* carry resolution point [1->1844] */ | ||||
4899 | #endif | ||||
4900 | /* three buffers are used, two for chunked copies of the operands */ | ||||
4901 | /* (base 10**8 or base 10**9) and one base 2**64 accumulator with */ | ||||
4902 | /* lazy carry evaluation */ | ||||
4903 | uIntuint32_t zlhibuff[(DECBUFFER36*2+1)/8+1]; /* buffer (+1 for DECBUFFER==0) */ | ||||
4904 | uIntuint32_t *zlhi=zlhibuff; /* -> lhs array */ | ||||
4905 | uIntuint32_t *alloclhi=NULL__null; /* -> allocated buffer, iff allocated */ | ||||
4906 | uIntuint32_t zrhibuff[(DECBUFFER36*2+1)/8+1]; /* buffer (+1 for DECBUFFER==0) */ | ||||
4907 | uIntuint32_t *zrhi=zrhibuff; /* -> rhs array */ | ||||
4908 | uIntuint32_t *allocrhi=NULL__null; /* -> allocated buffer, iff allocated */ | ||||
4909 | uLonguint64_t zaccbuff[(DECBUFFER36*2+1)/4+2]; /* buffer (+1 for DECBUFFER==0) */ | ||||
4910 | /* [allocacc is shared for both paths, as only one will run] */ | ||||
4911 | uLonguint64_t *zacc=zaccbuff; /* -> accumulator array for exact result */ | ||||
4912 | #if DECDPUN1==1 | ||||
4913 | Intint32_t zoff; /* accumulator offset */ | ||||
4914 | #endif | ||||
4915 | uIntuint32_t *lip, *rip; /* item pointers */ | ||||
4916 | uIntuint32_t *lmsi, *rmsi; /* most significant items */ | ||||
4917 | Intint32_t ilhs, irhs, iacc; /* item counts in the arrays */ | ||||
4918 | Intint32_t lazy; /* lazy carry counter */ | ||||
4919 | uLonguint64_t lcarry; /* uLong carry */ | ||||
4920 | uIntuint32_t carry; /* carry (NB not uLong) */ | ||||
4921 | Intint32_t count; /* work */ | ||||
4922 | const Unituint8_t *cup; /* .. */ | ||||
4923 | Unituint8_t *up; /* .. */ | ||||
4924 | uLonguint64_t *lp; /* .. */ | ||||
4925 | Intint32_t p; /* .. */ | ||||
4926 | #endif | ||||
4927 | |||||
4928 | #if DECSUBSET0 | ||||
4929 | decNumber *alloclhs=NULL__null; /* -> allocated buffer, iff allocated */ | ||||
4930 | decNumber *allocrhs=NULL__null; /* -> allocated buffer, iff allocated */ | ||||
4931 | #endif | ||||
4932 | |||||
4933 | #if DECCHECK0 | ||||
4934 | if (decCheckOperands(res, lhs, rhs, set)) return res; | ||||
4935 | #endif | ||||
4936 | |||||
4937 | /* precalculate result sign */ | ||||
4938 | bits=(uByteuint8_t)((lhs->bits^rhs->bits)&DECNEG0x80); | ||||
4939 | |||||
4940 | /* handle infinities and NaNs */ | ||||
4941 | if (SPECIALARGS((lhs->bits | rhs->bits) & (0x40|0x20|0x10))) { /* a special bit set */ | ||||
4942 | if (SPECIALARGS((lhs->bits | rhs->bits) & (0x40|0x20|0x10)) & (DECSNAN0x10 | DECNAN0x20)) { /* one or two NaNs */ | ||||
4943 | decNaNs(res, lhs, rhs, set, status); | ||||
4944 | return res;} | ||||
4945 | /* one or two infinities; Infinity * 0 is invalid */ | ||||
4946 | if (((lhs->bits & DECINF0x40)==0 && ISZERO(lhs)(*(lhs)->lsu==0 && (lhs)->digits==1 && ( ((lhs)->bits&(0x40|0x20|0x10))==0))) | ||||
4947 | ||((rhs->bits & DECINF0x40)==0 && ISZERO(rhs)(*(rhs)->lsu==0 && (rhs)->digits==1 && ( ((rhs)->bits&(0x40|0x20|0x10))==0)))) { | ||||
4948 | *status|=DEC_Invalid_operation0x00000080; | ||||
4949 | return res;} | ||||
4950 | uprv_decNumberZerouprv_decNumberZero_71(res); | ||||
4951 | res->bits=bits|DECINF0x40; /* infinity */ | ||||
4952 | return res;} | ||||
4953 | |||||
4954 | /* For best speed, as in DMSRCN [the original Rexx numerics */ | ||||
4955 | /* module], use the shorter number as the multiplier (rhs) and */ | ||||
4956 | /* the longer as the multiplicand (lhs) to minimise the number of */ | ||||
4957 | /* adds (partial products) */ | ||||
4958 | if (lhs->digits<rhs->digits) { /* swap... */ | ||||
4959 | const decNumber *hold=lhs; | ||||
4960 | lhs=rhs; | ||||
4961 | rhs=hold; | ||||
4962 | } | ||||
4963 | |||||
4964 | do { /* protect allocated storage */ | ||||
4965 | #if DECSUBSET0 | ||||
4966 | if (!set->extended) { | ||||
4967 | /* reduce operands and set lostDigits status, as needed */ | ||||
4968 | if (lhs->digits>set->digits) { | ||||
4969 | alloclhs=decRoundOperand(lhs, set, status); | ||||
4970 | if (alloclhs==NULL__null) break; | ||||
4971 | lhs=alloclhs; | ||||
4972 | } | ||||
4973 | if (rhs->digits>set->digits) { | ||||
4974 | allocrhs=decRoundOperand(rhs, set, status); | ||||
4975 | if (allocrhs==NULL__null) break; | ||||
4976 | rhs=allocrhs; | ||||
4977 | } | ||||
4978 | } | ||||
4979 | #endif | ||||
4980 | /* [following code does not require input rounding] */ | ||||
4981 | |||||
4982 | #if FASTMUL(1 && 1<5) /* fastpath can be used */ | ||||
4983 | /* use the fast path if there are enough digits in the shorter */ | ||||
4984 | /* operand to make the setup and takedown worthwhile */ | ||||
4985 | #define NEEDTWO(1*2) (DECDPUN1*2) /* within two decUnitAddSub calls */ | ||||
4986 | if (rhs->digits>NEEDTWO(1*2)) { /* use fastpath... */ | ||||
4987 | /* calculate the number of elements in each array */ | ||||
4988 | ilhs=(lhs->digits+FASTDIGS9-1)/FASTDIGS9; /* [ceiling] */ | ||||
4989 | irhs=(rhs->digits+FASTDIGS9-1)/FASTDIGS9; /* .. */ | ||||
4990 | iacc=ilhs+irhs; | ||||
4991 | |||||
4992 | /* allocate buffers if required, as usual */ | ||||
4993 | needbytes=ilhs*sizeof(uIntuint32_t); | ||||
4994 | if (needbytes>(Intint32_t)sizeof(zlhibuff)) { | ||||
4995 | alloclhi=(uIntuint32_t *)malloc(needbytes)uprv_malloc_71(needbytes); | ||||
4996 | zlhi=alloclhi;} | ||||
4997 | needbytes=irhs*sizeof(uIntuint32_t); | ||||
4998 | if (needbytes>(Intint32_t)sizeof(zrhibuff)) { | ||||
4999 | allocrhi=(uIntuint32_t *)malloc(needbytes)uprv_malloc_71(needbytes); | ||||
5000 | zrhi=allocrhi;} | ||||
5001 | |||||
5002 | /* Allocating the accumulator space needs a special case when */ | ||||
5003 | /* DECDPUN=1 because when converting the accumulator to Units */ | ||||
5004 | /* after the multiplication each 8-byte item becomes 9 1-byte */ | ||||
5005 | /* units. Therefore iacc extra bytes are needed at the front */ | ||||
5006 | /* (rounded up to a multiple of 8 bytes), and the uLong */ | ||||
5007 | /* accumulator starts offset the appropriate number of units */ | ||||
5008 | /* to the right to avoid overwrite during the unchunking. */ | ||||
5009 | |||||
5010 | /* Make sure no signed int overflow below. This is always true */ | ||||
5011 | /* if the given numbers have less digits than DEC_MAX_DIGITS. */ | ||||
5012 | U_ASSERT((uint32_t)iacc <= INT32_MAX/sizeof(uLong))(void)0; | ||||
5013 | needbytes=iacc*sizeof(uLonguint64_t); | ||||
5014 | #if DECDPUN1==1 | ||||
5015 | zoff=(iacc+7)/8; /* items to offset by */ | ||||
5016 | needbytes+=zoff*8; | ||||
5017 | #endif | ||||
5018 | if (needbytes>(Intint32_t)sizeof(zaccbuff)) { | ||||
5019 | allocacc=(uLonguint64_t *)malloc(needbytes)uprv_malloc_71(needbytes); | ||||
5020 | zacc=(uLonguint64_t *)allocacc;} | ||||
5021 | if (zlhi==NULL__null||zrhi==NULL__null||zacc==NULL__null) { | ||||
5022 | *status|=DEC_Insufficient_storage0x00000010; | ||||
5023 | break;} | ||||
5024 | |||||
5025 | acc=(Unituint8_t *)zacc; /* -> target Unit array */ | ||||
5026 | #if DECDPUN1==1 | ||||
5027 | zacc+=zoff; /* start uLong accumulator to right */ | ||||
5028 | #endif | ||||
5029 | |||||
5030 | /* assemble the chunked copies of the left and right sides */ | ||||
5031 | for (count=lhs->digits, cup=lhs->lsu, lip=zlhi; count>0; lip++) | ||||
5032 | for (p=0, *lip=0; p<FASTDIGS9 && count>0; | ||||
5033 | p+=DECDPUN1, cup++, count-=DECDPUN1) | ||||
5034 | *lip+=*cup*powersDECPOWERS[p]; | ||||
5035 | lmsi=lip-1; /* save -> msi */ | ||||
5036 | for (count=rhs->digits, cup=rhs->lsu, rip=zrhi; count>0; rip++) | ||||
5037 | for (p=0, *rip=0; p<FASTDIGS9 && count>0; | ||||
5038 | p+=DECDPUN1, cup++, count-=DECDPUN1) | ||||
5039 | *rip+=*cup*powersDECPOWERS[p]; | ||||
5040 | rmsi=rip-1; /* save -> msi */ | ||||
5041 | |||||
5042 | /* zero the accumulator */ | ||||
5043 | for (lp=zacc; lp<zacc+iacc; lp++) *lp=0; | ||||
5044 | |||||
5045 | /* Start the multiplication */ | ||||
5046 | /* Resolving carries can dominate the cost of accumulating the */ | ||||
5047 | /* partial products, so this is only done when necessary. */ | ||||
5048 | /* Each uLong item in the accumulator can hold values up to */ | ||||
5049 | /* 2**64-1, and each partial product can be as large as */ | ||||
5050 | /* (10**FASTDIGS-1)**2. When FASTDIGS=9, this can be added to */ | ||||
5051 | /* itself 18.4 times in a uLong without overflowing, so during */ | ||||
5052 | /* the main calculation resolution is carried out every 18th */ | ||||
5053 | /* add -- every 162 digits. Similarly, when FASTDIGS=8, the */ | ||||
5054 | /* partial products can be added to themselves 1844.6 times in */ | ||||
5055 | /* a uLong without overflowing, so intermediate carry */ | ||||
5056 | /* resolution occurs only every 14752 digits. Hence for common */ | ||||
5057 | /* short numbers usually only the one final carry resolution */ | ||||
5058 | /* occurs. */ | ||||
5059 | /* (The count is set via FASTLAZY to simplify experiments to */ | ||||
5060 | /* measure the value of this approach: a 35% improvement on a */ | ||||
5061 | /* [34x34] multiply.) */ | ||||
5062 | lazy=FASTLAZY18; /* carry delay count */ | ||||
5063 | for (rip=zrhi; rip<=rmsi; rip++) { /* over each item in rhs */ | ||||
5064 | lp=zacc+(rip-zrhi); /* where to add the lhs */ | ||||
5065 | for (lip=zlhi; lip<=lmsi; lip++, lp++) { /* over each item in lhs */ | ||||
5066 | *lp+=(uLonguint64_t)(*lip)*(*rip); /* [this should in-line] */ | ||||
5067 | } /* lip loop */ | ||||
5068 | lazy--; | ||||
5069 | if (lazy>0 && rip!=rmsi) continue; | ||||
5070 | lazy=FASTLAZY18; /* reset delay count */ | ||||
5071 | /* spin up the accumulator resolving overflows */ | ||||
5072 | for (lp=zacc; lp<zacc+iacc; lp++) { | ||||
5073 | if (*lp<FASTBASE1000000000) continue; /* it fits */ | ||||
5074 | lcarry=*lp/FASTBASE1000000000; /* top part [slow divide] */ | ||||
5075 | /* lcarry can exceed 2**32-1, so check again; this check */ | ||||
5076 | /* and occasional extra divide (slow) is well worth it, as */ | ||||
5077 | /* it allows FASTLAZY to be increased to 18 rather than 4 */ | ||||
5078 | /* in the FASTDIGS=9 case */ | ||||
5079 | if (lcarry<FASTBASE1000000000) carry=(uIntuint32_t)lcarry; /* [usual] */ | ||||
5080 | else { /* two-place carry [fairly rare] */ | ||||
5081 | uIntuint32_t carry2=(uIntuint32_t)(lcarry/FASTBASE1000000000); /* top top part */ | ||||
5082 | *(lp+2)+=carry2; /* add to item+2 */ | ||||
5083 | *lp-=((uLonguint64_t)FASTBASE1000000000*FASTBASE1000000000*carry2); /* [slow] */ | ||||
5084 | carry=(uIntuint32_t)(lcarry-((uLonguint64_t)FASTBASE1000000000*carry2)); /* [inline] */ | ||||
5085 | } | ||||
5086 | *(lp+1)+=carry; /* add to item above [inline] */ | ||||
5087 | *lp-=((uLonguint64_t)FASTBASE1000000000*carry); /* [inline] */ | ||||
5088 | } /* carry resolution */ | ||||
5089 | } /* rip loop */ | ||||
5090 | |||||
5091 | /* The multiplication is complete; time to convert back into */ | ||||
5092 | /* units. This can be done in-place in the accumulator and in */ | ||||
5093 | /* 32-bit operations, because carries were resolved after the */ | ||||
5094 | /* final add. This needs N-1 divides and multiplies for */ | ||||
5095 | /* each item in the accumulator (which will become up to N */ | ||||
5096 | /* units, where 2<=N<=9). */ | ||||
5097 | for (lp=zacc, up=acc; lp<zacc+iacc; lp++) { | ||||
5098 | uIntuint32_t item=(uIntuint32_t)*lp; /* decapitate to uInt */ | ||||
5099 | for (p=0; p<FASTDIGS9-DECDPUN1; p+=DECDPUN1, up++) { | ||||
5100 | uIntuint32_t part=item/(DECDPUNMAX9+1); | ||||
5101 | *up=(Unituint8_t)(item-(part*(DECDPUNMAX9+1))); | ||||
5102 | item=part; | ||||
5103 | } /* p */ | ||||
5104 | *up=(Unituint8_t)item; up++; /* [final needs no division] */ | ||||
5105 | } /* lp */ | ||||
5106 | accunits = static_cast<int32_t>(up-acc); /* count of units */ | ||||
5107 | } | ||||
5108 | else { /* here to use units directly, without chunking ['old code'] */ | ||||
5109 | #endif | ||||
5110 | |||||
5111 | /* if accumulator will be too long for local storage, then allocate */ | ||||
5112 | acc=accbuff; /* -> assume buffer for accumulator */ | ||||
5113 | needbytes=(D2U(lhs->digits)((lhs->digits)<=49?d2utable[lhs->digits]:((lhs->digits )+1 -1)/1)+D2U(rhs->digits)((rhs->digits)<=49?d2utable[rhs->digits]:((rhs->digits )+1 -1)/1))*sizeof(Unituint8_t); | ||||
5114 | if (needbytes>(Intint32_t)sizeof(accbuff)) { | ||||
5115 | allocacc=(Unituint8_t *)malloc(needbytes)uprv_malloc_71(needbytes); | ||||
5116 | if (allocacc==NULL__null) {*status|=DEC_Insufficient_storage0x00000010; break;} | ||||
5117 | acc=(Unituint8_t *)allocacc; /* use the allocated space */ | ||||
5118 | } | ||||
5119 | |||||
5120 | /* Now the main long multiplication loop */ | ||||
5121 | /* Unlike the equivalent in the IBM Java implementation, there */ | ||||
5122 | /* is no advantage in calculating from msu to lsu. So, do it */ | ||||
5123 | /* by the book, as it were. */ | ||||
5124 | /* Each iteration calculates ACC=ACC+MULTAND*MULT */ | ||||
5125 | accunits=1; /* accumulator starts at '0' */ | ||||
5126 | *acc=0; /* .. (lsu=0) */ | ||||
5127 | shift=0; /* no multiplicand shift at first */ | ||||
5128 | madlength=D2U(lhs->digits)((lhs->digits)<=49?d2utable[lhs->digits]:((lhs->digits )+1 -1)/1); /* this won't change */ | ||||
5129 | mermsup=rhs->lsu+D2U(rhs->digits)((rhs->digits)<=49?d2utable[rhs->digits]:((rhs->digits )+1 -1)/1); /* -> msu+1 of multiplier */ | ||||
5130 | |||||
5131 | for (mer=rhs->lsu; mer<mermsup; mer++) { | ||||
5132 | /* Here, *mer is the next Unit in the multiplier to use */ | ||||
5133 | /* If non-zero [optimization] add it... */ | ||||
5134 | if (*mer!=0) accunits=decUnitAddSub(&acc[shift], accunits-shift, | ||||
5135 | lhs->lsu, madlength, 0, | ||||
5136 | &acc[shift], *mer) | ||||
5137 | + shift; | ||||
5138 | else { /* extend acc with a 0; it will be used shortly */ | ||||
5139 | *(acc+accunits)=0; /* [this avoids length of <=0 later] */ | ||||
5140 | accunits++; | ||||
5141 | } | ||||
5142 | /* multiply multiplicand by 10**DECDPUN for next Unit to left */ | ||||
5143 | shift++; /* add this for 'logical length' */ | ||||
5144 | } /* n */ | ||||
5145 | #if FASTMUL(1 && 1<5) | ||||
5146 | } /* unchunked units */ | ||||
5147 | #endif | ||||
5148 | /* common end-path */ | ||||
5149 | #if DECTRACE0 | ||||
5150 | decDumpAr('*', acc, accunits); /* Show exact result */ | ||||
5151 | #endif | ||||
5152 | |||||
5153 | /* acc now contains the exact result of the multiplication, */ | ||||
5154 | /* possibly with a leading zero unit; build the decNumber from */ | ||||
5155 | /* it, noting if any residue */ | ||||
5156 | res->bits=bits; /* set sign */ | ||||
5157 | res->digits=decGetDigits(acc, accunits); /* count digits exactly */ | ||||
5158 | |||||
5159 | /* There can be a 31-bit wrap in calculating the exponent. */ | ||||
5160 | /* This can only happen if both input exponents are negative and */ | ||||
5161 | /* both their magnitudes are large. If there was a wrap, set a */ | ||||
5162 | /* safe very negative exponent, from which decFinalize() will */ | ||||
5163 | /* raise a hard underflow shortly. */ | ||||
5164 | exponent=lhs->exponent+rhs->exponent; /* calculate exponent */ | ||||
5165 | if (lhs->exponent<0 && rhs->exponent<0 && exponent>0) | ||||
5166 | exponent=-2*DECNUMMAXE999999999; /* force underflow */ | ||||
5167 | res->exponent=exponent; /* OK to overwrite now */ | ||||
5168 | |||||
5169 | |||||
5170 | /* Set the coefficient. If any rounding, residue records */ | ||||
5171 | decSetCoeff(res, set, acc, res->digits, &residue, status); | ||||
5172 | decFinish(res, set, &residue, status)decFinalize(res,set,&residue,status); /* final cleanup */ | ||||
5173 | } while(0); /* end protected */ | ||||
5174 | |||||
5175 | if (allocacc!=NULL__null) free(allocacc)uprv_free_71(allocacc); /* drop any storage used */ | ||||
5176 | #if DECSUBSET0 | ||||
5177 | if (allocrhs!=NULL__null) free(allocrhs)uprv_free_71(allocrhs); /* .. */ | ||||
5178 | if (alloclhs!=NULL__null) free(alloclhs)uprv_free_71(alloclhs); /* .. */ | ||||
5179 | #endif | ||||
5180 | #if FASTMUL(1 && 1<5) | ||||
5181 | if (allocrhi!=NULL__null) free(allocrhi)uprv_free_71(allocrhi); /* .. */ | ||||
5182 | if (alloclhi!=NULL__null) free(alloclhi)uprv_free_71(alloclhi); /* .. */ | ||||
5183 | #endif | ||||
5184 | return res; | ||||
5185 | } /* decMultiplyOp */ | ||||
5186 | |||||
5187 | /* ------------------------------------------------------------------ */ | ||||
5188 | /* decExpOp -- effect exponentiation */ | ||||
5189 | /* */ | ||||
5190 | /* This computes C = exp(A) */ | ||||
5191 | /* */ | ||||
5192 | /* res is C, the result. C may be A */ | ||||
5193 | /* rhs is A */ | ||||
5194 | /* set is the context; note that rounding mode has no effect */ | ||||
5195 | /* */ | ||||
5196 | /* C must have space for set->digits digits. status is updated but */ | ||||
5197 | /* not set. */ | ||||
5198 | /* */ | ||||
5199 | /* Restrictions: */ | ||||
5200 | /* */ | ||||
5201 | /* digits, emax, and -emin in the context must be less than */ | ||||
5202 | /* 2*DEC_MAX_MATH (1999998), and the rhs must be within these */ | ||||
5203 | /* bounds or a zero. This is an internal routine, so these */ | ||||
5204 | /* restrictions are contractual and not enforced. */ | ||||
5205 | /* */ | ||||
5206 | /* A finite result is rounded using DEC_ROUND_HALF_EVEN; it will */ | ||||
5207 | /* almost always be correctly rounded, but may be up to 1 ulp in */ | ||||
5208 | /* error in rare cases. */ | ||||
5209 | /* */ | ||||
5210 | /* Finite results will always be full precision and Inexact, except */ | ||||
5211 | /* when A is a zero or -Infinity (giving 1 or 0 respectively). */ | ||||
5212 | /* ------------------------------------------------------------------ */ | ||||
5213 | /* This approach used here is similar to the algorithm described in */ | ||||
5214 | /* */ | ||||
5215 | /* Variable Precision Exponential Function, T. E. Hull and */ | ||||
5216 | /* A. Abrham, ACM Transactions on Mathematical Software, Vol 12 #2, */ | ||||
5217 | /* pp79-91, ACM, June 1986. */ | ||||
5218 | /* */ | ||||
5219 | /* with the main difference being that the iterations in the series */ | ||||
5220 | /* evaluation are terminated dynamically (which does not require the */ | ||||
5221 | /* extra variable-precision variables which are expensive in this */ | ||||
5222 | /* context). */ | ||||
5223 | /* */ | ||||
5224 | /* The error analysis in Hull & Abrham's paper applies except for the */ | ||||
5225 | /* round-off error accumulation during the series evaluation. This */ | ||||
5226 | /* code does not precalculate the number of iterations and so cannot */ | ||||
5227 | /* use Horner's scheme. Instead, the accumulation is done at double- */ | ||||
5228 | /* precision, which ensures that the additions of the terms are exact */ | ||||
5229 | /* and do not accumulate round-off (and any round-off errors in the */ | ||||
5230 | /* terms themselves move 'to the right' faster than they can */ | ||||
5231 | /* accumulate). This code also extends the calculation by allowing, */ | ||||
5232 | /* in the spirit of other decNumber operators, the input to be more */ | ||||
5233 | /* precise than the result (the precision used is based on the more */ | ||||
5234 | /* precise of the input or requested result). */ | ||||
5235 | /* */ | ||||
5236 | /* Implementation notes: */ | ||||
5237 | /* */ | ||||
5238 | /* 1. This is separated out as decExpOp so it can be called from */ | ||||
5239 | /* other Mathematical functions (notably Ln) with a wider range */ | ||||
5240 | /* than normal. In particular, it can handle the slightly wider */ | ||||
5241 | /* (double) range needed by Ln (which has to be able to calculate */ | ||||
5242 | /* exp(-x) where x can be the tiniest number (Ntiny). */ | ||||
5243 | /* */ | ||||
5244 | /* 2. Normalizing x to be <=0.1 (instead of <=1) reduces loop */ | ||||
5245 | /* iterations by approximately a third with additional (although */ | ||||
5246 | /* diminishing) returns as the range is reduced to even smaller */ | ||||
5247 | /* fractions. However, h (the power of 10 used to correct the */ | ||||
5248 | /* result at the end, see below) must be kept <=8 as otherwise */ | ||||
5249 | /* the final result cannot be computed. Hence the leverage is a */ | ||||
5250 | /* sliding value (8-h), where potentially the range is reduced */ | ||||
5251 | /* more for smaller values. */ | ||||
5252 | /* */ | ||||
5253 | /* The leverage that can be applied in this way is severely */ | ||||
5254 | /* limited by the cost of the raise-to-the power at the end, */ | ||||
5255 | /* which dominates when the number of iterations is small (less */ | ||||
5256 | /* than ten) or when rhs is short. As an example, the adjustment */ | ||||
5257 | /* x**10,000,000 needs 31 multiplications, all but one full-width. */ | ||||
5258 | /* */ | ||||
5259 | /* 3. The restrictions (especially precision) could be raised with */ | ||||
5260 | /* care, but the full decNumber range seems very hard within the */ | ||||
5261 | /* 32-bit limits. */ | ||||
5262 | /* */ | ||||
5263 | /* 4. The working precisions for the static buffers are twice the */ | ||||
5264 | /* obvious size to allow for calls from decNumberPower. */ | ||||
5265 | /* ------------------------------------------------------------------ */ | ||||
5266 | decNumber * decExpOp(decNumber *res, const decNumber *rhs, | ||||
5267 | decContext *set, uIntuint32_t *status) { | ||||
5268 | uIntuint32_t ignore=0; /* working status */ | ||||
5269 | Intint32_t h; /* adjusted exponent for 0.xxxx */ | ||||
5270 | Intint32_t p; /* working precision */ | ||||
5271 | Intint32_t residue; /* rounding residue */ | ||||
5272 | uIntuint32_t needbytes; /* for space calculations */ | ||||
5273 | const decNumber *x=rhs; /* (may point to safe copy later) */ | ||||
5274 | decContext aset, tset, dset; /* working contexts */ | ||||
5275 | Intint32_t comp; /* work */ | ||||
5276 | |||||
5277 | /* the argument is often copied to normalize it, so (unusually) it */ | ||||
5278 | /* is treated like other buffers, using DECBUFFER, +1 in case */ | ||||
5279 | /* DECBUFFER is 0 */ | ||||
5280 | decNumber bufr[D2N(DECBUFFER*2+1)(((((((36*2+1)+1 -1)/1)-1)*sizeof(uint8_t))+sizeof(decNumber) *2-1)/sizeof(decNumber))]; | ||||
5281 | decNumber *allocrhs=NULL__null; /* non-NULL if rhs buffer allocated */ | ||||
5282 | |||||
5283 | /* the working precision will be no more than set->digits+8+1 */ | ||||
5284 | /* so for on-stack buffers DECBUFFER+9 is used, +1 in case DECBUFFER */ | ||||
5285 | /* is 0 (and twice that for the accumulator) */ | ||||
5286 | |||||
5287 | /* buffer for t, term (working precision plus) */ | ||||
5288 | decNumber buft[D2N(DECBUFFER*2+9+1)(((((((36*2+9+1)+1 -1)/1)-1)*sizeof(uint8_t))+sizeof(decNumber )*2-1)/sizeof(decNumber))]; | ||||
5289 | decNumber *allocbuft=NULL__null; /* -> allocated buft, iff allocated */ | ||||
5290 | decNumber *t=buft; /* term */ | ||||
5291 | /* buffer for a, accumulator (working precision * 2), at least 9 */ | ||||
5292 | decNumber bufa[D2N(DECBUFFER*4+18+1)(((((((36*4+18+1)+1 -1)/1)-1)*sizeof(uint8_t))+sizeof(decNumber )*2-1)/sizeof(decNumber))]; | ||||
5293 | decNumber *allocbufa=NULL__null; /* -> allocated bufa, iff allocated */ | ||||
5294 | decNumber *a=bufa; /* accumulator */ | ||||
5295 | /* decNumber for the divisor term; this needs at most 9 digits */ | ||||
5296 | /* and so can be fixed size [16 so can use standard context] */ | ||||
5297 | decNumber bufd[D2N(16)(((((((16)+1 -1)/1)-1)*sizeof(uint8_t))+sizeof(decNumber)*2-1 )/sizeof(decNumber))]; | ||||
5298 | decNumber *d=bufd; /* divisor */ | ||||
5299 | decNumber numone; /* constant 1 */ | ||||
5300 | |||||
5301 | #if DECCHECK0 | ||||
5302 | Intint32_t iterations=0; /* for later sanity check */ | ||||
5303 | if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; | ||||
5304 | #endif | ||||
5305 | |||||
5306 | do { /* protect allocated storage */ | ||||
5307 | if (SPECIALARG(rhs->bits & (0x40|0x20|0x10))) { /* handle infinities and NaNs */ | ||||
5308 | if (decNumberIsInfinite(rhs)(((rhs)->bits&0x40)!=0)) { /* an infinity */ | ||||
5309 | if (decNumberIsNegative(rhs)(((rhs)->bits&0x80)!=0)) /* -Infinity -> +0 */ | ||||
5310 | uprv_decNumberZerouprv_decNumberZero_71(res); | ||||
5311 | else uprv_decNumberCopyuprv_decNumberCopy_71(res, rhs); /* +Infinity -> self */ | ||||
5312 | } | ||||
5313 | else decNaNs(res, rhs, NULL__null, set, status); /* a NaN */ | ||||
5314 | break;} | ||||
5315 | |||||
5316 | if (ISZERO(rhs)(*(rhs)->lsu==0 && (rhs)->digits==1 && ( ((rhs)->bits&(0x40|0x20|0x10))==0))) { /* zeros -> exact 1 */ | ||||
5317 | uprv_decNumberZerouprv_decNumberZero_71(res); /* make clean 1 */ | ||||
5318 | *res->lsu=1; /* .. */ | ||||
5319 | break;} /* [no status to set] */ | ||||
5320 | |||||
5321 | /* e**x when 0 < x < 0.66 is < 1+3x/2, hence can fast-path */ | ||||
5322 | /* positive and negative tiny cases which will result in inexact */ | ||||
5323 | /* 1. This also allows the later add-accumulate to always be */ | ||||
5324 | /* exact (because its length will never be more than twice the */ | ||||
5325 | /* working precision). */ | ||||
5326 | /* The comparator (tiny) needs just one digit, so use the */ | ||||
5327 | /* decNumber d for it (reused as the divisor, etc., below); its */ | ||||
5328 | /* exponent is such that if x is positive it will have */ | ||||
5329 | /* set->digits-1 zeros between the decimal point and the digit, */ | ||||
5330 | /* which is 4, and if x is negative one more zero there as the */ | ||||
5331 | /* more precise result will be of the form 0.9999999 rather than */ | ||||
5332 | /* 1.0000001. Hence, tiny will be 0.0000004 if digits=7 and x>0 */ | ||||
5333 | /* or 0.00000004 if digits=7 and x<0. If RHS not larger than */ | ||||
5334 | /* this then the result will be 1.000000 */ | ||||
5335 | uprv_decNumberZerouprv_decNumberZero_71(d); /* clean */ | ||||
5336 | *d->lsu=4; /* set 4 .. */ | ||||
5337 | d->exponent=-set->digits; /* * 10**(-d) */ | ||||
5338 | if (decNumberIsNegative(rhs)(((rhs)->bits&0x80)!=0)) d->exponent--; /* negative case */ | ||||
5339 | comp=decCompare(d, rhs, 1); /* signless compare */ | ||||
5340 | if (comp==BADINT(int32_t)0x80000000) { | ||||
5341 | *status|=DEC_Insufficient_storage0x00000010; | ||||
5342 | break;} | ||||
5343 | if (comp>=0) { /* rhs < d */ | ||||
5344 | Intint32_t shift=set->digits-1; | ||||
5345 | uprv_decNumberZerouprv_decNumberZero_71(res); /* set 1 */ | ||||
5346 | *res->lsu=1; /* .. */ | ||||
5347 | res->digits=decShiftToMost(res->lsu, 1, shift); | ||||
5348 | res->exponent=-shift; /* make 1.0000... */ | ||||
5349 | *status|=DEC_Inexact0x00000020 | DEC_Rounded0x00000800; /* .. inexactly */ | ||||
5350 | break;} /* tiny */ | ||||
5351 | |||||
5352 | /* set up the context to be used for calculating a, as this is */ | ||||
5353 | /* used on both paths below */ | ||||
5354 | uprv_decContextDefaultuprv_decContextDefault_71(&aset, DEC_INIT_DECIMAL6464); | ||||
5355 | /* accumulator bounds are as requested (could underflow) */ | ||||
5356 | aset.emax=set->emax; /* usual bounds */ | ||||
5357 | aset.emin=set->emin; /* .. */ | ||||
5358 | aset.clamp=0; /* and no concrete format */ | ||||
5359 | |||||
5360 | /* calculate the adjusted (Hull & Abrham) exponent (where the */ | ||||
5361 | /* decimal point is just to the left of the coefficient msd) */ | ||||
5362 | h=rhs->exponent+rhs->digits; | ||||
5363 | /* if h>8 then 10**h cannot be calculated safely; however, when */ | ||||
5364 | /* h=8 then exp(|rhs|) will be at least exp(1E+7) which is at */ | ||||
5365 | /* least 6.59E+4342944, so (due to the restriction on Emax/Emin) */ | ||||
5366 | /* overflow (or underflow to 0) is guaranteed -- so this case can */ | ||||
5367 | /* be handled by simply forcing the appropriate excess */ | ||||
5368 | if (h>8) { /* overflow/underflow */ | ||||
5369 | /* set up here so Power call below will over or underflow to */ | ||||
5370 | /* zero; set accumulator to either 2 or 0.02 */ | ||||
5371 | /* [stack buffer for a is always big enough for this] */ | ||||
5372 | uprv_decNumberZerouprv_decNumberZero_71(a); | ||||
5373 | *a->lsu=2; /* not 1 but < exp(1) */ | ||||
5374 | if (decNumberIsNegative(rhs)(((rhs)->bits&0x80)!=0)) a->exponent=-2; /* make 0.02 */ | ||||
5375 | h=8; /* clamp so 10**h computable */ | ||||
5376 | p=9; /* set a working precision */ | ||||
5377 | } | ||||
5378 | else { /* h<=8 */ | ||||
5379 | Intint32_t maxlever=(rhs->digits>8?1:0); | ||||
5380 | /* [could/should increase this for precisions >40 or so, too] */ | ||||
5381 | |||||
5382 | /* if h is 8, cannot normalize to a lower upper limit because */ | ||||
5383 | /* the final result will not be computable (see notes above), */ | ||||
5384 | /* but leverage can be applied whenever h is less than 8. */ | ||||
5385 | /* Apply as much as possible, up to a MAXLEVER digits, which */ | ||||
5386 | /* sets the tradeoff against the cost of the later a**(10**h). */ | ||||
5387 | /* As h is increased, the working precision below also */ | ||||
5388 | /* increases to compensate for the "constant digits at the */ | ||||
5389 | /* front" effect. */ | ||||
5390 | Intint32_t lever=MINI(8-h, maxlever)((8-h)>(maxlever)?(maxlever):(8-h)); /* leverage attainable */ | ||||
5391 | Intint32_t use=-rhs->digits-lever; /* exponent to use for RHS */ | ||||
5392 | h+=lever; /* apply leverage selected */ | ||||
5393 | if (h<0) { /* clamp */ | ||||
5394 | use+=h; /* [may end up subnormal] */ | ||||
5395 | h=0; | ||||
5396 | } | ||||
5397 | /* Take a copy of RHS if it needs normalization (true whenever x>=1) */ | ||||
5398 | if (rhs->exponent!=use) { | ||||
5399 | decNumber *newrhs=bufr; /* assume will fit on stack */ | ||||
5400 | needbytes=sizeof(decNumber)+(D2U(rhs->digits)((rhs->digits)<=49?d2utable[rhs->digits]:((rhs->digits )+1 -1)/1)-1)*sizeof(Unituint8_t); | ||||
5401 | if (needbytes>sizeof(bufr)) { /* need malloc space */ | ||||
5402 | allocrhs=(decNumber *)malloc(needbytes)uprv_malloc_71(needbytes); | ||||
5403 | if (allocrhs==NULL__null) { /* hopeless -- abandon */ | ||||
5404 | *status|=DEC_Insufficient_storage0x00000010; | ||||
5405 | break;} | ||||
5406 | newrhs=allocrhs; /* use the allocated space */ | ||||
5407 | } | ||||
5408 | uprv_decNumberCopyuprv_decNumberCopy_71(newrhs, rhs); /* copy to safe space */ | ||||
5409 | newrhs->exponent=use; /* normalize; now <1 */ | ||||
5410 | x=newrhs; /* ready for use */ | ||||
5411 | /* decNumberShow(x); */ | ||||
5412 | } | ||||
5413 | |||||
5414 | /* Now use the usual power series to evaluate exp(x). The */ | ||||
5415 | /* series starts as 1 + x + x^2/2 ... so prime ready for the */ | ||||
5416 | /* third term by setting the term variable t=x, the accumulator */ | ||||
5417 | /* a=1, and the divisor d=2. */ | ||||
5418 | |||||
5419 | /* First determine the working precision. From Hull & Abrham */ | ||||
5420 | /* this is set->digits+h+2. However, if x is 'over-precise' we */ | ||||
5421 | /* need to allow for all its digits to potentially participate */ | ||||
5422 | /* (consider an x where all the excess digits are 9s) so in */ | ||||
5423 | /* this case use x->digits+h+2 */ | ||||
5424 | p=MAXI(x->digits, set->digits)((x->digits)<(set->digits)?(set->digits):(x->digits ))+h+2; /* [h<=8] */ | ||||
5425 | |||||
5426 | /* a and t are variable precision, and depend on p, so space */ | ||||
5427 | /* must be allocated for them if necessary */ | ||||
5428 | |||||
5429 | /* the accumulator needs to be able to hold 2p digits so that */ | ||||
5430 | /* the additions on the second and subsequent iterations are */ | ||||
5431 | /* sufficiently exact. */ | ||||
5432 | needbytes=sizeof(decNumber)+(D2U(p*2)((p*2)<=49?d2utable[p*2]:((p*2)+1 -1)/1)-1)*sizeof(Unituint8_t); | ||||
5433 | if (needbytes>sizeof(bufa)) { /* need malloc space */ | ||||
5434 | allocbufa=(decNumber *)malloc(needbytes)uprv_malloc_71(needbytes); | ||||
5435 | if (allocbufa==NULL__null) { /* hopeless -- abandon */ | ||||
5436 | *status|=DEC_Insufficient_storage0x00000010; | ||||
5437 | break;} | ||||
5438 | a=allocbufa; /* use the allocated space */ | ||||
5439 | } | ||||
5440 | /* the term needs to be able to hold p digits (which is */ | ||||
5441 | /* guaranteed to be larger than x->digits, so the initial copy */ | ||||
5442 | /* is safe); it may also be used for the raise-to-power */ | ||||
5443 | /* calculation below, which needs an extra two digits */ | ||||
5444 | needbytes=sizeof(decNumber)+(D2U(p+2)((p+2)<=49?d2utable[p+2]:((p+2)+1 -1)/1)-1)*sizeof(Unituint8_t); | ||||
5445 | if (needbytes>sizeof(buft)) { /* need malloc space */ | ||||
5446 | allocbuft=(decNumber *)malloc(needbytes)uprv_malloc_71(needbytes); | ||||
5447 | if (allocbuft==NULL__null) { /* hopeless -- abandon */ | ||||
5448 | *status|=DEC_Insufficient_storage0x00000010; | ||||
5449 | break;} | ||||
5450 | t=allocbuft; /* use the allocated space */ | ||||
5451 | } | ||||
5452 | |||||
5453 | uprv_decNumberCopyuprv_decNumberCopy_71(t, x); /* term=x */ | ||||
5454 | uprv_decNumberZerouprv_decNumberZero_71(a); *a->lsu=1; /* accumulator=1 */ | ||||
5455 | uprv_decNumberZerouprv_decNumberZero_71(d); *d->lsu=2; /* divisor=2 */ | ||||
5456 | uprv_decNumberZerouprv_decNumberZero_71(&numone); *numone.lsu=1; /* constant 1 for increment */ | ||||
5457 | |||||
5458 | /* set up the contexts for calculating a, t, and d */ | ||||
5459 | uprv_decContextDefaultuprv_decContextDefault_71(&tset, DEC_INIT_DECIMAL6464); | ||||
5460 | dset=tset; | ||||
5461 | /* accumulator bounds are set above, set precision now */ | ||||
5462 | aset.digits=p*2; /* double */ | ||||
5463 | /* term bounds avoid any underflow or overflow */ | ||||
5464 | tset.digits=p; | ||||
5465 | tset.emin=DEC_MIN_EMIN-999999999; /* [emax is plenty] */ | ||||
5466 | /* [dset.digits=16, etc., are sufficient] */ | ||||
5467 | |||||
5468 | /* finally ready to roll */ | ||||
5469 | for (;;) { | ||||
5470 | #if DECCHECK0 | ||||
5471 | iterations++; | ||||
5472 | #endif | ||||
5473 | /* only the status from the accumulation is interesting */ | ||||
5474 | /* [but it should remain unchanged after first add] */ | ||||
5475 | decAddOp(a, a, t, &aset, 0, status); /* a=a+t */ | ||||
5476 | decMultiplyOp(t, t, x, &tset, &ignore); /* t=t*x */ | ||||
5477 | decDivideOp(t, t, d, &tset, DIVIDE0x80, &ignore); /* t=t/d */ | ||||
5478 | /* the iteration ends when the term cannot affect the result, */ | ||||
5479 | /* if rounded to p digits, which is when its value is smaller */ | ||||
5480 | /* than the accumulator by p+1 digits. There must also be */ | ||||
5481 | /* full precision in a. */ | ||||
5482 | if (((a->digits+a->exponent)>=(t->digits+t->exponent+p+1)) | ||||
5483 | && (a->digits>=p)) break; | ||||
5484 | decAddOp(d, d, &numone, &dset, 0, &ignore); /* d=d+1 */ | ||||
5485 | } /* iterate */ | ||||
5486 | |||||
5487 | #if DECCHECK0 | ||||
5488 | /* just a sanity check; comment out test to show always */ | ||||
5489 | if (iterations>p+3) | ||||
5490 | printf("Exp iterations=%ld, status=%08lx, p=%ld, d=%ld\n", | ||||
5491 | (LI)iterations, (LI)*status, (LI)p, (LI)x->digits); | ||||
5492 | #endif | ||||
5493 | } /* h<=8 */ | ||||
5494 | |||||
5495 | /* apply postconditioning: a=a**(10**h) -- this is calculated */ | ||||
5496 | /* at a slightly higher precision than Hull & Abrham suggest */ | ||||
5497 | if (h>0) { | ||||
5498 | Intint32_t seenbit=0; /* set once a 1-bit is seen */ | ||||
5499 | Intint32_t i; /* counter */ | ||||
5500 | Intint32_t n=powersDECPOWERS[h]; /* always positive */ | ||||
5501 | aset.digits=p+2; /* sufficient precision */ | ||||
5502 | /* avoid the overhead and many extra digits of decNumberPower */ | ||||
5503 | /* as all that is needed is the short 'multipliers' loop; here */ | ||||
5504 | /* accumulate the answer into t */ | ||||
5505 | uprv_decNumberZerouprv_decNumberZero_71(t); *t->lsu=1; /* acc=1 */ | ||||
5506 | for (i=1;;i++){ /* for each bit [top bit ignored] */ | ||||
5507 | /* abandon if have had overflow or terminal underflow */ | ||||
5508 | if (*status & (DEC_Overflow0x00000200|DEC_Underflow0x00002000)) { /* interesting? */ | ||||
5509 | if (*status&DEC_Overflow0x00000200 || ISZERO(t)(*(t)->lsu==0 && (t)->digits==1 && (((t )->bits&(0x40|0x20|0x10))==0))) break;} | ||||
5510 | n=n<<1; /* move next bit to testable position */ | ||||
5511 | if (n<0) { /* top bit is set */ | ||||
5512 | seenbit=1; /* OK, have a significant bit */ | ||||
5513 | decMultiplyOp(t, t, a, &aset, status); /* acc=acc*x */ | ||||
5514 | } | ||||
5515 | if (i==31) break; /* that was the last bit */ | ||||
5516 | if (!seenbit) continue; /* no need to square 1 */ | ||||
5517 | decMultiplyOp(t, t, t, &aset, status); /* acc=acc*acc [square] */ | ||||
5518 | } /*i*/ /* 32 bits */ | ||||
5519 | /* decNumberShow(t); */ | ||||
5520 | a=t; /* and carry on using t instead of a */ | ||||
5521 | } | ||||
5522 | |||||
5523 | /* Copy and round the result to res */ | ||||
5524 | residue=1; /* indicate dirt to right .. */ | ||||
5525 | if (ISZERO(a)(*(a)->lsu==0 && (a)->digits==1 && (((a )->bits&(0x40|0x20|0x10))==0))) residue=0; /* .. unless underflowed to 0 */ | ||||
5526 | aset.digits=set->digits; /* [use default rounding] */ | ||||
5527 | decCopyFit(res, a, &aset, &residue, status); /* copy & shorten */ | ||||
5528 | decFinish(res, set, &residue, status)decFinalize(res,set,&residue,status); /* cleanup/set flags */ | ||||
5529 | } while(0); /* end protected */ | ||||
5530 | |||||
5531 | if (allocrhs !=NULL__null) free(allocrhs)uprv_free_71(allocrhs); /* drop any storage used */ | ||||
5532 | if (allocbufa!=NULL__null) free(allocbufa)uprv_free_71(allocbufa); /* .. */ | ||||
5533 | if (allocbuft!=NULL__null) free(allocbuft)uprv_free_71(allocbuft); /* .. */ | ||||
5534 | /* [status is handled by caller] */ | ||||
5535 | return res; | ||||
5536 | } /* decExpOp */ | ||||
5537 | |||||
5538 | /* ------------------------------------------------------------------ */ | ||||
5539 | /* Initial-estimate natural logarithm table */ | ||||
5540 | /* */ | ||||
5541 | /* LNnn -- 90-entry 16-bit table for values from .10 through .99. */ | ||||
5542 | /* The result is a 4-digit encode of the coefficient (c=the */ | ||||
5543 | /* top 14 bits encoding 0-9999) and a 2-digit encode of the */ | ||||
5544 | /* exponent (e=the bottom 2 bits encoding 0-3) */ | ||||
5545 | /* */ | ||||
5546 | /* The resulting value is given by: */ | ||||
5547 | /* */ | ||||
5548 | /* v = -c * 10**(-e-3) */ | ||||
5549 | /* */ | ||||
5550 | /* where e and c are extracted from entry k = LNnn[x-10] */ | ||||
5551 | /* where x is truncated (NB) into the range 10 through 99, */ | ||||
5552 | /* and then c = k>>2 and e = k&3. */ | ||||
5553 | /* ------------------------------------------------------------------ */ | ||||
5554 | static const uShortuint16_t LNnn[90]={9016, 8652, 8316, 8008, 7724, 7456, 7208, | ||||
5555 | 6972, 6748, 6540, 6340, 6148, 5968, 5792, 5628, 5464, 5312, | ||||
5556 | 5164, 5020, 4884, 4748, 4620, 4496, 4376, 4256, 4144, 4032, | ||||
5557 | 39233, 38181, 37157, 36157, 35181, 34229, 33297, 32389, 31501, 30629, | ||||
5558 | 29777, 28945, 28129, 27329, 26545, 25777, 25021, 24281, 23553, 22837, | ||||
5559 | 22137, 21445, 20769, 20101, 19445, 18801, 18165, 17541, 16925, 16321, | ||||
5560 | 15721, 15133, 14553, 13985, 13421, 12865, 12317, 11777, 11241, 10717, | ||||
5561 | 10197, 9685, 9177, 8677, 8185, 7697, 7213, 6737, 6269, 5801, | ||||
5562 | 5341, 4889, 4437, 39930, 35534, 31186, 26886, 22630, 18418, 14254, | ||||
5563 | 10130, 6046, 20055}; | ||||
5564 | |||||
5565 | /* ------------------------------------------------------------------ */ | ||||
5566 | /* decLnOp -- effect natural logarithm */ | ||||
5567 | /* */ | ||||
5568 | /* This computes C = ln(A) */ | ||||
5569 | /* */ | ||||
5570 | /* res is C, the result. C may be A */ | ||||
5571 | /* rhs is A */ | ||||
5572 | /* set is the context; note that rounding mode has no effect */ | ||||
5573 | /* */ | ||||
5574 | /* C must have space for set->digits digits. */ | ||||
5575 | /* */ | ||||
5576 | /* Notable cases: */ | ||||
5577 | /* A<0 -> Invalid */ | ||||
5578 | /* A=0 -> -Infinity (Exact) */ | ||||
5579 | /* A=+Infinity -> +Infinity (Exact) */ | ||||
5580 | /* A=1 exactly -> 0 (Exact) */ | ||||
5581 | /* */ | ||||
5582 | /* Restrictions (as for Exp): */ | ||||
5583 | /* */ | ||||
5584 | /* digits, emax, and -emin in the context must be less than */ | ||||
5585 | /* DEC_MAX_MATH+11 (1000010), and the rhs must be within these */ | ||||
5586 | /* bounds or a zero. This is an internal routine, so these */ | ||||
5587 | /* restrictions are contractual and not enforced. */ | ||||
5588 | /* */ | ||||
5589 | /* A finite result is rounded using DEC_ROUND_HALF_EVEN; it will */ | ||||
5590 | /* almost always be correctly rounded, but may be up to 1 ulp in */ | ||||
5591 | /* error in rare cases. */ | ||||
5592 | /* ------------------------------------------------------------------ */ | ||||
5593 | /* The result is calculated using Newton's method, with each */ | ||||
5594 | /* iteration calculating a' = a + x * exp(-a) - 1. See, for example, */ | ||||
5595 | /* Epperson 1989. */ | ||||
5596 | /* */ | ||||
5597 | /* The iteration ends when the adjustment x*exp(-a)-1 is tiny enough. */ | ||||
5598 | /* This has to be calculated at the sum of the precision of x and the */ | ||||
5599 | /* working precision. */ | ||||
5600 | /* */ | ||||
5601 | /* Implementation notes: */ | ||||
5602 | /* */ | ||||
5603 | /* 1. This is separated out as decLnOp so it can be called from */ | ||||
5604 | /* other Mathematical functions (e.g., Log 10) with a wider range */ | ||||
5605 | /* than normal. In particular, it can handle the slightly wider */ | ||||
5606 | /* (+9+2) range needed by a power function. */ | ||||
5607 | /* */ | ||||
5608 | /* 2. The speed of this function is about 10x slower than exp, as */ | ||||
5609 | /* it typically needs 4-6 iterations for short numbers, and the */ | ||||
5610 | /* extra precision needed adds a squaring effect, twice. */ | ||||
5611 | /* */ | ||||
5612 | /* 3. Fastpaths are included for ln(10) and ln(2), up to length 40, */ | ||||
5613 | /* as these are common requests. ln(10) is used by log10(x). */ | ||||
5614 | /* */ | ||||
5615 | /* 4. An iteration might be saved by widening the LNnn table, and */ | ||||
5616 | /* would certainly save at least one if it were made ten times */ | ||||
5617 | /* bigger, too (for truncated fractions 0.100 through 0.999). */ | ||||
5618 | /* However, for most practical evaluations, at least four or five */ | ||||
5619 | /* iterations will be needed -- so this would only speed up by */ | ||||
5620 | /* 20-25% and that probably does not justify increasing the table */ | ||||
5621 | /* size. */ | ||||
5622 | /* */ | ||||
5623 | /* 5. The static buffers are larger than might be expected to allow */ | ||||
5624 | /* for calls from decNumberPower. */ | ||||
5625 | /* ------------------------------------------------------------------ */ | ||||
5626 | #if defined(__clang__1) || U_GCC_MAJOR_MINOR(4 * 100 + 2) >= 406 | ||||
5627 | #pragma GCC diagnostic push | ||||
5628 | #pragma GCC diagnostic ignored "-Warray-bounds" | ||||
5629 | #endif | ||||
5630 | decNumber * decLnOp(decNumber *res, const decNumber *rhs, | ||||
5631 | decContext *set, uIntuint32_t *status) { | ||||
5632 | uIntuint32_t ignore=0; /* working status accumulator */ | ||||
5633 | uIntuint32_t needbytes; /* for space calculations */ | ||||
5634 | Intint32_t residue; /* rounding residue */ | ||||
5635 | Intint32_t r; /* rhs=f*10**r [see below] */ | ||||
5636 | Intint32_t p; /* working precision */ | ||||
5637 | Intint32_t pp; /* precision for iteration */ | ||||
5638 | Intint32_t t; /* work */ | ||||
5639 | |||||
5640 | /* buffers for a (accumulator, typically precision+2) and b */ | ||||
5641 | /* (adjustment calculator, same size) */ | ||||
5642 | decNumber bufa[D2N(DECBUFFER+12)(((((((36 +12)+1 -1)/1)-1)*sizeof(uint8_t))+sizeof(decNumber) *2-1)/sizeof(decNumber))]; | ||||
5643 | decNumber *allocbufa=NULL__null; /* -> allocated bufa, iff allocated */ | ||||
5644 | decNumber *a=bufa; /* accumulator/work */ | ||||
5645 | decNumber bufb[D2N(DECBUFFER*2+2)(((((((36*2+2)+1 -1)/1)-1)*sizeof(uint8_t))+sizeof(decNumber) *2-1)/sizeof(decNumber))]; | ||||
5646 | decNumber *allocbufb=NULL__null; /* -> allocated bufa, iff allocated */ | ||||
5647 | decNumber *b=bufb; /* adjustment/work */ | ||||
5648 | |||||
5649 | decNumber numone; /* constant 1 */ | ||||
5650 | decNumber cmp; /* work */ | ||||
5651 | decContext aset, bset; /* working contexts */ | ||||
5652 | |||||
5653 | #if DECCHECK0 | ||||
5654 | Intint32_t iterations=0; /* for later sanity check */ | ||||
5655 | if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; | ||||
5656 | #endif | ||||
5657 | |||||
5658 | do { /* protect allocated storage */ | ||||
5659 | if (SPECIALARG(rhs->bits & (0x40|0x20|0x10))) { /* handle infinities and NaNs */ | ||||
5660 | if (decNumberIsInfinite(rhs)(((rhs)->bits&0x40)!=0)) { /* an infinity */ | ||||
5661 | if (decNumberIsNegative(rhs)(((rhs)->bits&0x80)!=0)) /* -Infinity -> error */ | ||||
5662 | *status|=DEC_Invalid_operation0x00000080; | ||||
5663 | else uprv_decNumberCopyuprv_decNumberCopy_71(res, rhs); /* +Infinity -> self */ | ||||
5664 | } | ||||
5665 | else decNaNs(res, rhs, NULL__null, set, status); /* a NaN */ | ||||
5666 | break;} | ||||
5667 | |||||
5668 | if (ISZERO(rhs)(*(rhs)->lsu==0 && (rhs)->digits==1 && ( ((rhs)->bits&(0x40|0x20|0x10))==0))) { /* +/- zeros -> -Infinity */ | ||||
5669 | uprv_decNumberZerouprv_decNumberZero_71(res); /* make clean */ | ||||
5670 | res->bits=DECINF0x40|DECNEG0x80; /* set - infinity */ | ||||
5671 | break;} /* [no status to set] */ | ||||
5672 | |||||
5673 | /* Non-zero negatives are bad... */ | ||||
5674 | if (decNumberIsNegative(rhs)(((rhs)->bits&0x80)!=0)) { /* -x -> error */ | ||||
5675 | *status|=DEC_Invalid_operation0x00000080; | ||||
5676 | break;} | ||||
5677 | |||||
5678 | /* Here, rhs is positive, finite, and in range */ | ||||
5679 | |||||
5680 | /* lookaside fastpath code for ln(2) and ln(10) at common lengths */ | ||||
5681 | if (rhs->exponent==0 && set->digits<=40) { | ||||
5682 | #if DECDPUN1==1 | ||||
5683 | if (rhs->lsu[0]==0 && rhs->lsu[1]==1 && rhs->digits==2) { /* ln(10) */ | ||||
5684 | #else | ||||
5685 | if (rhs->lsu[0]==10 && rhs->digits==2) { /* ln(10) */ | ||||
5686 | #endif | ||||
5687 | aset=*set; aset.round=DEC_ROUND_HALF_EVEN; | ||||
5688 | #define LN10"2.302585092994045684017991454684364207601" "2.302585092994045684017991454684364207601" | ||||
5689 | uprv_decNumberFromStringuprv_decNumberFromString_71(res, LN10"2.302585092994045684017991454684364207601", &aset); | ||||
5690 | *status|=(DEC_Inexact0x00000020 | DEC_Rounded0x00000800); /* is inexact */ | ||||
5691 | break;} | ||||
5692 | if (rhs->lsu[0]==2 && rhs->digits==1) { /* ln(2) */ | ||||
5693 | aset=*set; aset.round=DEC_ROUND_HALF_EVEN; | ||||
5694 | #define LN2"0.6931471805599453094172321214581765680755" "0.6931471805599453094172321214581765680755" | ||||
5695 | uprv_decNumberFromStringuprv_decNumberFromString_71(res, LN2"0.6931471805599453094172321214581765680755", &aset); | ||||
5696 | *status|=(DEC_Inexact0x00000020 | DEC_Rounded0x00000800); | ||||
5697 | break;} | ||||
5698 | } /* integer and short */ | ||||
5699 | |||||
5700 | /* Determine the working precision. This is normally the */ | ||||
5701 | /* requested precision + 2, with a minimum of 9. However, if */ | ||||
5702 | /* the rhs is 'over-precise' then allow for all its digits to */ | ||||
5703 | /* potentially participate (consider an rhs where all the excess */ | ||||
5704 | /* digits are 9s) so in this case use rhs->digits+2. */ | ||||
5705 | p=MAXI(rhs->digits, MAXI(set->digits, 7))((rhs->digits)<(((set->digits)<(7)?(7):(set->digits )))?(((set->digits)<(7)?(7):(set->digits))):(rhs-> digits))+2; | ||||
5706 | |||||
5707 | /* Allocate space for the accumulator and the high-precision */ | ||||
5708 | /* adjustment calculator, if necessary. The accumulator must */ | ||||
5709 | /* be able to hold p digits, and the adjustment up to */ | ||||
5710 | /* rhs->digits+p digits. They are also made big enough for 16 */ | ||||
5711 | /* digits so that they can be used for calculating the initial */ | ||||
5712 | /* estimate. */ | ||||
5713 | needbytes=sizeof(decNumber)+(D2U(MAXI(p,16))((((p)<(16)?(16):(p)))<=49?d2utable[((p)<(16)?(16):( p))]:((((p)<(16)?(16):(p)))+1 -1)/1)-1)*sizeof(Unituint8_t); | ||||
5714 | if (needbytes>sizeof(bufa)) { /* need malloc space */ | ||||
5715 | allocbufa=(decNumber *)malloc(needbytes)uprv_malloc_71(needbytes); | ||||
5716 | if (allocbufa==NULL__null) { /* hopeless -- abandon */ | ||||
5717 | *status|=DEC_Insufficient_storage0x00000010; | ||||
5718 | break;} | ||||
5719 | a=allocbufa; /* use the allocated space */ | ||||
5720 | } | ||||
5721 | pp=p+rhs->digits; | ||||
5722 | needbytes=sizeof(decNumber)+(D2U(MAXI(pp,16))((((pp)<(16)?(16):(pp)))<=49?d2utable[((pp)<(16)?(16 ):(pp))]:((((pp)<(16)?(16):(pp)))+1 -1)/1)-1)*sizeof(Unituint8_t); | ||||
5723 | if (needbytes>sizeof(bufb)) { /* need malloc space */ | ||||
5724 | allocbufb=(decNumber *)malloc(needbytes)uprv_malloc_71(needbytes); | ||||
5725 | if (allocbufb==NULL__null) { /* hopeless -- abandon */ | ||||
5726 | *status|=DEC_Insufficient_storage0x00000010; | ||||
5727 | break;} | ||||
5728 | b=allocbufb; /* use the allocated space */ | ||||
5729 | } | ||||
5730 | |||||
5731 | /* Prepare an initial estimate in acc. Calculate this by */ | ||||
5732 | /* considering the coefficient of x to be a normalized fraction, */ | ||||
5733 | /* f, with the decimal point at far left and multiplied by */ | ||||
5734 | /* 10**r. Then, rhs=f*10**r and 0.1<=f<1, and */ | ||||
5735 | /* ln(x) = ln(f) + ln(10)*r */ | ||||
5736 | /* Get the initial estimate for ln(f) from a small lookup */ | ||||
5737 | /* table (see above) indexed by the first two digits of f, */ | ||||
5738 | /* truncated. */ | ||||
5739 | |||||
5740 | uprv_decContextDefaultuprv_decContextDefault_71(&aset, DEC_INIT_DECIMAL6464); /* 16-digit extended */ | ||||
5741 | r=rhs->exponent+rhs->digits; /* 'normalised' exponent */ | ||||
5742 | uprv_decNumberFromInt32uprv_decNumberFromInt32_71(a, r); /* a=r */ | ||||
5743 | uprv_decNumberFromInt32uprv_decNumberFromInt32_71(b, 2302585); /* b=ln(10) (2.302585) */ | ||||
5744 | b->exponent=-6; /* .. */ | ||||
5745 | decMultiplyOp(a, a, b, &aset, &ignore); /* a=a*b */ | ||||
5746 | /* now get top two digits of rhs into b by simple truncate and */ | ||||
5747 | /* force to integer */ | ||||
5748 | residue=0; /* (no residue) */ | ||||
5749 | aset.digits=2; aset.round=DEC_ROUND_DOWN; | ||||
5750 | decCopyFit(b, rhs, &aset, &residue, &ignore); /* copy & shorten */ | ||||
5751 | b->exponent=0; /* make integer */ | ||||
5752 | t=decGetInt(b); /* [cannot fail] */ | ||||
5753 | if (t<10) t=X10(t)(((t)<<1)+((t)<<3)); /* adjust single-digit b */ | ||||
5754 | t=LNnn[t-10]; /* look up ln(b) */ | ||||
5755 | uprv_decNumberFromInt32uprv_decNumberFromInt32_71(b, t>>2); /* b=ln(b) coefficient */ | ||||
5756 | b->exponent=-(t&3)-3; /* set exponent */ | ||||
5757 | b->bits=DECNEG0x80; /* ln(0.10)->ln(0.99) always -ve */ | ||||
5758 | aset.digits=16; aset.round=DEC_ROUND_HALF_EVEN; /* restore */ | ||||
5759 | decAddOp(a, a, b, &aset, 0, &ignore); /* acc=a+b */ | ||||
5760 | /* the initial estimate is now in a, with up to 4 digits correct. */ | ||||
5761 | /* When rhs is at or near Nmax the estimate will be low, so we */ | ||||
5762 | /* will approach it from below, avoiding overflow when calling exp. */ | ||||
5763 | |||||
5764 | uprv_decNumberZerouprv_decNumberZero_71(&numone); *numone.lsu=1; /* constant 1 for adjustment */ | ||||
5765 | |||||
5766 | /* accumulator bounds are as requested (could underflow, but */ | ||||
5767 | /* cannot overflow) */ | ||||
5768 | aset.emax=set->emax; | ||||
5769 | aset.emin=set->emin; | ||||
5770 | aset.clamp=0; /* no concrete format */ | ||||
5771 | /* set up a context to be used for the multiply and subtract */ | ||||
5772 | bset=aset; | ||||
5773 | bset.emax=DEC_MAX_MATH999999*2; /* use double bounds for the */ | ||||
5774 | bset.emin=-DEC_MAX_MATH999999*2; /* adjustment calculation */ | ||||
5775 | /* [see decExpOp call below] */ | ||||
5776 | /* for each iteration double the number of digits to calculate, */ | ||||
5777 | /* up to a maximum of p */ | ||||
5778 | pp=9; /* initial precision */ | ||||
5779 | /* [initially 9 as then the sequence starts 7+2, 16+2, and */ | ||||
5780 | /* 34+2, which is ideal for standard-sized numbers] */ | ||||
5781 | aset.digits=pp; /* working context */ | ||||
5782 | bset.digits=pp+rhs->digits; /* wider context */ | ||||
5783 | for (;;) { /* iterate */ | ||||
5784 | #if DECCHECK0 | ||||
5785 | iterations++; | ||||
5786 | if (iterations>24) break; /* consider 9 * 2**24 */ | ||||
5787 | #endif | ||||
5788 | /* calculate the adjustment (exp(-a)*x-1) into b. This is a */ | ||||
5789 | /* catastrophic subtraction but it really is the difference */ | ||||
5790 | /* from 1 that is of interest. */ | ||||
5791 | /* Use the internal entry point to Exp as it allows the double */ | ||||
5792 | /* range for calculating exp(-a) when a is the tiniest subnormal. */ | ||||
5793 | a->bits^=DECNEG0x80; /* make -a */ | ||||
5794 | decExpOp(b, a, &bset, &ignore); /* b=exp(-a) */ | ||||
5795 | a->bits^=DECNEG0x80; /* restore sign of a */ | ||||
5796 | /* now multiply by rhs and subtract 1, at the wider precision */ | ||||
5797 | decMultiplyOp(b, b, rhs, &bset, &ignore); /* b=b*rhs */ | ||||
5798 | decAddOp(b, b, &numone, &bset, DECNEG0x80, &ignore); /* b=b-1 */ | ||||
5799 | |||||
5800 | /* the iteration ends when the adjustment cannot affect the */ | ||||
5801 | /* result by >=0.5 ulp (at the requested digits), which */ | ||||
5802 | /* is when its value is smaller than the accumulator by */ | ||||
5803 | /* set->digits+1 digits (or it is zero) -- this is a looser */ | ||||
5804 | /* requirement than for Exp because all that happens to the */ | ||||
5805 | /* accumulator after this is the final rounding (but note that */ | ||||
5806 | /* there must also be full precision in a, or a=0). */ | ||||
5807 | |||||
5808 | if (decNumberIsZero(b)(*(b)->lsu==0 && (b)->digits==1 && (((b )->bits&(0x40|0x20|0x10))==0)) || | ||||
5809 | (a->digits+a->exponent)>=(b->digits+b->exponent+set->digits+1)) { | ||||
5810 | if (a->digits==p) break; | ||||
5811 | if (decNumberIsZero(a)(*(a)->lsu==0 && (a)->digits==1 && (((a )->bits&(0x40|0x20|0x10))==0))) { | ||||
5812 | decCompareOp(&cmp, rhs, &numone, &aset, COMPARE0x01, &ignore); /* rhs=1 ? */ | ||||
5813 | if (cmp.lsu[0]==0) a->exponent=0; /* yes, exact 0 */ | ||||
5814 | else *status|=(DEC_Inexact0x00000020 | DEC_Rounded0x00000800); /* no, inexact */ | ||||
5815 | break; | ||||
5816 | } | ||||
5817 | /* force padding if adjustment has gone to 0 before full length */ | ||||
5818 | if (decNumberIsZero(b)(*(b)->lsu==0 && (b)->digits==1 && (((b )->bits&(0x40|0x20|0x10))==0))) b->exponent=a->exponent-p; | ||||
5819 | } | ||||
5820 | |||||
5821 | /* not done yet ... */ | ||||
5822 | decAddOp(a, a, b, &aset, 0, &ignore); /* a=a+b for next estimate */ | ||||
5823 | if (pp==p) continue; /* precision is at maximum */ | ||||
5824 | /* lengthen the next calculation */ | ||||
5825 | pp=pp*2; /* double precision */ | ||||
5826 | if (pp>p) pp=p; /* clamp to maximum */ | ||||
5827 | aset.digits=pp; /* working context */ | ||||
5828 | bset.digits=pp+rhs->digits; /* wider context */ | ||||
5829 | } /* Newton's iteration */ | ||||
5830 | |||||
5831 | #if DECCHECK0 | ||||
5832 | /* just a sanity check; remove the test to show always */ | ||||
5833 | if (iterations>24) | ||||
5834 | printf("Ln iterations=%ld, status=%08lx, p=%ld, d=%ld\n", | ||||
5835 | (LI)iterations, (LI)*status, (LI)p, (LI)rhs->digits); | ||||
5836 | #endif | ||||
5837 | |||||
5838 | /* Copy and round the result to res */ | ||||
5839 | residue=1; /* indicate dirt to right */ | ||||
5840 | if (ISZERO(a)(*(a)->lsu==0 && (a)->digits==1 && (((a )->bits&(0x40|0x20|0x10))==0))) residue=0; /* .. unless underflowed to 0 */ | ||||
5841 | aset.digits=set->digits; /* [use default rounding] */ | ||||
5842 | decCopyFit(res, a, &aset, &residue, status); /* copy & shorten */ | ||||
5843 | decFinish(res, set, &residue, status)decFinalize(res,set,&residue,status); /* cleanup/set flags */ | ||||
5844 | } while(0); /* end protected */ | ||||
5845 | |||||
5846 | if (allocbufa!=NULL__null) free(allocbufa)uprv_free_71(allocbufa); /* drop any storage used */ | ||||
5847 | if (allocbufb!=NULL__null) free(allocbufb)uprv_free_71(allocbufb); /* .. */ | ||||
5848 | /* [status is handled by caller] */ | ||||
5849 | return res; | ||||
5850 | } /* decLnOp */ | ||||
5851 | #if defined(__clang__1) || U_GCC_MAJOR_MINOR(4 * 100 + 2) >= 406 | ||||
5852 | #pragma GCC diagnostic pop | ||||
5853 | #endif | ||||
5854 | |||||
5855 | /* ------------------------------------------------------------------ */ | ||||
5856 | /* decQuantizeOp -- force exponent to requested value */ | ||||
5857 | /* */ | ||||
5858 | /* This computes C = op(A, B), where op adjusts the coefficient */ | ||||
5859 | /* of C (by rounding or shifting) such that the exponent (-scale) */ | ||||
5860 | /* of C has the value B or matches the exponent of B. */ | ||||
5861 | /* The numerical value of C will equal A, except for the effects of */ | ||||
5862 | /* any rounding that occurred. */ | ||||
5863 | /* */ | ||||
5864 | /* res is C, the result. C may be A or B */ | ||||
5865 | /* lhs is A, the number to adjust */ | ||||
5866 | /* rhs is B, the requested exponent */ | ||||
5867 | /* set is the context */ | ||||
5868 | /* quant is 1 for quantize or 0 for rescale */ | ||||
5869 | /* status is the status accumulator (this can be called without */ | ||||
5870 | /* risk of control loss) */ | ||||
5871 | /* */ | ||||
5872 | /* C must have space for set->digits digits. */ | ||||
5873 | /* */ | ||||
5874 | /* Unless there is an error or the result is infinite, the exponent */ | ||||
5875 | /* after the operation is guaranteed to be that requested. */ | ||||
5876 | /* ------------------------------------------------------------------ */ | ||||
5877 | static decNumber * decQuantizeOp(decNumber *res, const decNumber *lhs, | ||||
5878 | const decNumber *rhs, decContext *set, | ||||
5879 | Flaguint8_t quant, uIntuint32_t *status) { | ||||
5880 | #if DECSUBSET0 | ||||
5881 | decNumber *alloclhs=NULL__null; /* non-NULL if rounded lhs allocated */ | ||||
5882 | decNumber *allocrhs=NULL__null; /* .., rhs */ | ||||
5883 | #endif | ||||
5884 | const decNumber *inrhs=rhs; /* save original rhs */ | ||||
5885 | Intint32_t reqdigits=set->digits; /* requested DIGITS */ | ||||
5886 | Intint32_t reqexp; /* requested exponent [-scale] */ | ||||
5887 | Intint32_t residue=0; /* rounding residue */ | ||||
5888 | Intint32_t etiny=set->emin-(reqdigits-1); | ||||
5889 | |||||
5890 | #if DECCHECK0 | ||||
5891 | if (decCheckOperands(res, lhs, rhs, set)) return res; | ||||
5892 | #endif | ||||
5893 | |||||
5894 | do { /* protect allocated storage */ | ||||
5895 | #if DECSUBSET0 | ||||
5896 | if (!set->extended) { | ||||
5897 | /* reduce operands and set lostDigits status, as needed */ | ||||
5898 | if (lhs->digits>reqdigits) { | ||||
5899 | alloclhs=decRoundOperand(lhs, set, status); | ||||
5900 | if (alloclhs==NULL__null) break; | ||||
5901 | lhs=alloclhs; | ||||
5902 | } | ||||
5903 | if (rhs->digits>reqdigits) { /* [this only checks lostDigits] */ | ||||
5904 | allocrhs=decRoundOperand(rhs, set, status); | ||||
5905 | if (allocrhs==NULL__null) break; | ||||
5906 | rhs=allocrhs; | ||||
5907 | } | ||||
5908 | } | ||||
5909 | #endif | ||||
5910 | /* [following code does not require input rounding] */ | ||||
5911 | |||||
5912 | /* Handle special values */ | ||||
5913 | if (SPECIALARGS((lhs->bits | rhs->bits) & (0x40|0x20|0x10))) { | ||||
5914 | /* NaNs get usual processing */ | ||||
5915 | if (SPECIALARGS((lhs->bits | rhs->bits) & (0x40|0x20|0x10)) & (DECSNAN0x10 | DECNAN0x20)) | ||||
5916 | decNaNs(res, lhs, rhs, set, status); | ||||
5917 | /* one infinity but not both is bad */ | ||||
5918 | else if ((lhs->bits ^ rhs->bits) & DECINF0x40) | ||||
5919 | *status|=DEC_Invalid_operation0x00000080; | ||||
5920 | /* both infinity: return lhs */ | ||||
5921 | else uprv_decNumberCopyuprv_decNumberCopy_71(res, lhs); /* [nop if in place] */ | ||||
5922 | break; | ||||
5923 | } | ||||
5924 | |||||
5925 | /* set requested exponent */ | ||||
5926 | if (quant) reqexp=inrhs->exponent; /* quantize -- match exponents */ | ||||
5927 | else { /* rescale -- use value of rhs */ | ||||
5928 | /* Original rhs must be an integer that fits and is in range, */ | ||||
5929 | /* which could be from -1999999997 to +999999999, thanks to */ | ||||
5930 | /* subnormals */ | ||||
5931 | reqexp=decGetInt(inrhs); /* [cannot fail] */ | ||||
5932 | } | ||||
5933 | |||||
5934 | #if DECSUBSET0 | ||||
5935 | if (!set->extended) etiny=set->emin; /* no subnormals */ | ||||
5936 | #endif | ||||
5937 | |||||
5938 | if (reqexp==BADINT(int32_t)0x80000000 /* bad (rescale only) or .. */ | ||||
5939 | || reqexp==BIGODD(int32_t)0x80000003 || reqexp==BIGEVEN(int32_t)0x80000002 /* very big (ditto) or .. */ | ||||
5940 | || (reqexp<etiny) /* < lowest */ | ||||
5941 | || (reqexp>set->emax)) { /* > emax */ | ||||
5942 | *status|=DEC_Invalid_operation0x00000080; | ||||
5943 | break;} | ||||
5944 | |||||
5945 | /* the RHS has been processed, so it can be overwritten now if necessary */ | ||||
5946 | if (ISZERO(lhs)(*(lhs)->lsu==0 && (lhs)->digits==1 && ( ((lhs)->bits&(0x40|0x20|0x10))==0))) { /* zero coefficient unchanged */ | ||||
5947 | uprv_decNumberCopyuprv_decNumberCopy_71(res, lhs); /* [nop if in place] */ | ||||
5948 | res->exponent=reqexp; /* .. just set exponent */ | ||||
5949 | #if DECSUBSET0 | ||||
5950 | if (!set->extended) res->bits=0; /* subset specification; no -0 */ | ||||
5951 | #endif | ||||
5952 | } | ||||
5953 | else { /* non-zero lhs */ | ||||
5954 | Intint32_t adjust=reqexp-lhs->exponent; /* digit adjustment needed */ | ||||
5955 | /* if adjusted coefficient will definitely not fit, give up now */ | ||||
5956 | if ((lhs->digits-adjust)>reqdigits) { | ||||
5957 | *status|=DEC_Invalid_operation0x00000080; | ||||
5958 | break; | ||||
5959 | } | ||||
5960 | |||||
5961 | if (adjust>0) { /* increasing exponent */ | ||||
5962 | /* this will decrease the length of the coefficient by adjust */ | ||||
5963 | /* digits, and must round as it does so */ | ||||
5964 | decContext workset; /* work */ | ||||
5965 | workset=*set; /* clone rounding, etc. */ | ||||
5966 | workset.digits=lhs->digits-adjust; /* set requested length */ | ||||
5967 | /* [note that the latter can be <1, here] */ | ||||
5968 | decCopyFit(res, lhs, &workset, &residue, status); /* fit to result */ | ||||
5969 | decApplyRound(res, &workset, residue, status); /* .. and round */ | ||||
5970 | residue=0; /* [used] */ | ||||
5971 | /* If just rounded a 999s case, exponent will be off by one; */ | ||||
5972 | /* adjust back (after checking space), if so. */ | ||||
5973 | if (res->exponent>reqexp) { | ||||
5974 | /* re-check needed, e.g., for quantize(0.9999, 0.001) under */ | ||||
5975 | /* set->digits==3 */ | ||||
5976 | if (res->digits==reqdigits) { /* cannot shift by 1 */ | ||||
5977 | *status&=~(DEC_Inexact0x00000020 | DEC_Rounded0x00000800); /* [clean these] */ | ||||
5978 | *status|=DEC_Invalid_operation0x00000080; | ||||
5979 | break; | ||||
5980 | } | ||||
5981 | res->digits=decShiftToMost(res->lsu, res->digits, 1); /* shift */ | ||||
5982 | res->exponent--; /* (re)adjust the exponent. */ | ||||
5983 | } | ||||
5984 | #if DECSUBSET0 | ||||
5985 | if (ISZERO(res)(*(res)->lsu==0 && (res)->digits==1 && ( ((res)->bits&(0x40|0x20|0x10))==0)) && !set->extended) res->bits=0; /* subset; no -0 */ | ||||
5986 | #endif | ||||
5987 | } /* increase */ | ||||
5988 | else /* adjust<=0 */ { /* decreasing or = exponent */ | ||||
5989 | /* this will increase the length of the coefficient by -adjust */ | ||||
5990 | /* digits, by adding zero or more trailing zeros; this is */ | ||||
5991 | /* already checked for fit, above */ | ||||
5992 | uprv_decNumberCopyuprv_decNumberCopy_71(res, lhs); /* [it will fit] */ | ||||
5993 | /* if padding needed (adjust<0), add it now... */ | ||||
5994 | if (adjust<0) { | ||||
5995 | res->digits=decShiftToMost(res->lsu, res->digits, -adjust); | ||||
5996 | res->exponent+=adjust; /* adjust the exponent */ | ||||
5997 | } | ||||
5998 | } /* decrease */ | ||||
5999 | } /* non-zero */ | ||||
6000 | |||||
6001 | /* Check for overflow [do not use Finalize in this case, as an */ | ||||
6002 | /* overflow here is a "don't fit" situation] */ | ||||
6003 | if (res->exponent>set->emax-res->digits+1) { /* too big */ | ||||
6004 | *status|=DEC_Invalid_operation0x00000080; | ||||
6005 | break; | ||||
6006 | } | ||||
6007 | else { | ||||
6008 | decFinalize(res, set, &residue, status); /* set subnormal flags */ | ||||
6009 | *status&=~DEC_Underflow0x00002000; /* suppress Underflow [as per 754] */ | ||||
6010 | } | ||||
6011 | } while(0); /* end protected */ | ||||
6012 | |||||
6013 | #if DECSUBSET0 | ||||
6014 | if (allocrhs!=NULL__null) free(allocrhs)uprv_free_71(allocrhs); /* drop any storage used */ | ||||
6015 | if (alloclhs!=NULL__null) free(alloclhs)uprv_free_71(alloclhs); /* .. */ | ||||
6016 | #endif | ||||
6017 | return res; | ||||
6018 | } /* decQuantizeOp */ | ||||
6019 | |||||
6020 | /* ------------------------------------------------------------------ */ | ||||
6021 | /* decCompareOp -- compare, min, or max two Numbers */ | ||||
6022 | /* */ | ||||
6023 | /* This computes C = A ? B and carries out one of four operations: */ | ||||
6024 | /* COMPARE -- returns the signum (as a number) giving the */ | ||||
6025 | /* result of a comparison unless one or both */ | ||||
6026 | /* operands is a NaN (in which case a NaN results) */ | ||||
6027 | /* COMPSIG -- as COMPARE except that a quiet NaN raises */ | ||||
6028 | /* Invalid operation. */ | ||||
6029 | /* COMPMAX -- returns the larger of the operands, using the */ | ||||
6030 | /* 754 maxnum operation */ | ||||
6031 | /* COMPMAXMAG -- ditto, comparing absolute values */ | ||||
6032 | /* COMPMIN -- the 754 minnum operation */ | ||||
6033 | /* COMPMINMAG -- ditto, comparing absolute values */ | ||||
6034 | /* COMTOTAL -- returns the signum (as a number) giving the */ | ||||
6035 | /* result of a comparison using 754 total ordering */ | ||||
6036 | /* */ | ||||
6037 | /* res is C, the result. C may be A and/or B (e.g., X=X?X) */ | ||||
6038 | /* lhs is A */ | ||||
6039 | /* rhs is B */ | ||||
6040 | /* set is the context */ | ||||
6041 | /* op is the operation flag */ | ||||
6042 | /* status is the usual accumulator */ | ||||
6043 | /* */ | ||||
6044 | /* C must have space for one digit for COMPARE or set->digits for */ | ||||
6045 | /* COMPMAX, COMPMIN, COMPMAXMAG, or COMPMINMAG. */ | ||||
6046 | /* ------------------------------------------------------------------ */ | ||||
6047 | /* The emphasis here is on speed for common cases, and avoiding */ | ||||
6048 | /* coefficient comparison if possible. */ | ||||
6049 | /* ------------------------------------------------------------------ */ | ||||
6050 | static decNumber * decCompareOp(decNumber *res, const decNumber *lhs, | ||||
6051 | const decNumber *rhs, decContext *set, | ||||
6052 | Flaguint8_t op, uIntuint32_t *status) { | ||||
6053 | #if DECSUBSET0 | ||||
6054 | decNumber *alloclhs=NULL__null; /* non-NULL if rounded lhs allocated */ | ||||
6055 | decNumber *allocrhs=NULL__null; /* .., rhs */ | ||||
6056 | #endif | ||||
6057 | Intint32_t result=0; /* default result value */ | ||||
6058 | uByteuint8_t merged; /* work */ | ||||
6059 | |||||
6060 | #if DECCHECK0 | ||||
6061 | if (decCheckOperands(res, lhs, rhs, set)) return res; | ||||
6062 | #endif | ||||
6063 | |||||
6064 | do { /* protect allocated storage */ | ||||
6065 | #if DECSUBSET0 | ||||
6066 | if (!set->extended) { | ||||
6067 | /* reduce operands and set lostDigits status, as needed */ | ||||
6068 | if (lhs->digits>set->digits) { | ||||
6069 | alloclhs=decRoundOperand(lhs, set, status); | ||||
6070 | if (alloclhs==NULL__null) {result=BADINT(int32_t)0x80000000; break;} | ||||
6071 | lhs=alloclhs; | ||||
6072 | } | ||||
6073 | if (rhs->digits>set->digits) { | ||||
6074 | allocrhs=decRoundOperand(rhs, set, status); | ||||
6075 | if (allocrhs==NULL__null) {result=BADINT(int32_t)0x80000000; break;} | ||||
6076 | rhs=allocrhs; | ||||
6077 | } | ||||
6078 | } | ||||
6079 | #endif | ||||
6080 | /* [following code does not require input rounding] */ | ||||
6081 | |||||
6082 | /* If total ordering then handle differing signs 'up front' */ | ||||
6083 | if (op==COMPTOTAL0x04) { /* total ordering */ | ||||
6084 | if (decNumberIsNegative(lhs)(((lhs)->bits&0x80)!=0) && !decNumberIsNegative(rhs)(((rhs)->bits&0x80)!=0)) { | ||||
6085 | result=-1; | ||||
6086 | break; | ||||
6087 | } | ||||
6088 | if (!decNumberIsNegative(lhs)(((lhs)->bits&0x80)!=0) && decNumberIsNegative(rhs)(((rhs)->bits&0x80)!=0)) { | ||||
6089 | result=+1; | ||||
6090 | break; | ||||
6091 | } | ||||
6092 | } | ||||
6093 | |||||
6094 | /* handle NaNs specially; let infinities drop through */ | ||||
6095 | /* This assumes sNaN (even just one) leads to NaN. */ | ||||
6096 | merged=(lhs->bits | rhs->bits) & (DECSNAN0x10 | DECNAN0x20); | ||||
6097 | if (merged) { /* a NaN bit set */ | ||||
6098 | if (op==COMPARE0x01); /* result will be NaN */ | ||||
6099 | else if (op==COMPSIG0x06) /* treat qNaN as sNaN */ | ||||
6100 | *status|=DEC_Invalid_operation0x00000080 | DEC_sNaN0x40000000; | ||||
6101 | else if (op==COMPTOTAL0x04) { /* total ordering, always finite */ | ||||
6102 | /* signs are known to be the same; compute the ordering here */ | ||||
6103 | /* as if the signs are both positive, then invert for negatives */ | ||||
6104 | if (!decNumberIsNaN(lhs)(((lhs)->bits&(0x20|0x10))!=0)) result=-1; | ||||
6105 | else if (!decNumberIsNaN(rhs)(((rhs)->bits&(0x20|0x10))!=0)) result=+1; | ||||
6106 | /* here if both NaNs */ | ||||
6107 | else if (decNumberIsSNaN(lhs)(((lhs)->bits&(0x10))!=0) && decNumberIsQNaN(rhs)(((rhs)->bits&(0x20))!=0)) result=-1; | ||||
6108 | else if (decNumberIsQNaN(lhs)(((lhs)->bits&(0x20))!=0) && decNumberIsSNaN(rhs)(((rhs)->bits&(0x10))!=0)) result=+1; | ||||
6109 | else { /* both NaN or both sNaN */ | ||||
6110 | /* now it just depends on the payload */ | ||||
6111 | result=decUnitCompare(lhs->lsu, D2U(lhs->digits)((lhs->digits)<=49?d2utable[lhs->digits]:((lhs->digits )+1 -1)/1), | ||||
6112 | rhs->lsu, D2U(rhs->digits)((rhs->digits)<=49?d2utable[rhs->digits]:((rhs->digits )+1 -1)/1), 0); | ||||
6113 | /* [Error not possible, as these are 'aligned'] */ | ||||
6114 | } /* both same NaNs */ | ||||
6115 | if (decNumberIsNegative(lhs)(((lhs)->bits&0x80)!=0)) result=-result; | ||||
6116 | break; | ||||
6117 | } /* total order */ | ||||
6118 | |||||
6119 | else if (merged & DECSNAN0x10); /* sNaN -> qNaN */ | ||||
6120 | else { /* here if MIN or MAX and one or two quiet NaNs */ | ||||
6121 | /* min or max -- 754 rules ignore single NaN */ | ||||
6122 | if (!decNumberIsNaN(lhs)(((lhs)->bits&(0x20|0x10))!=0) || !decNumberIsNaN(rhs)(((rhs)->bits&(0x20|0x10))!=0)) { | ||||
6123 | /* just one NaN; force choice to be the non-NaN operand */ | ||||
6124 | op=COMPMAX0x02; | ||||
6125 | if (lhs->bits & DECNAN0x20) result=-1; /* pick rhs */ | ||||
6126 | else result=+1; /* pick lhs */ | ||||
6127 | break; | ||||
6128 | } | ||||
6129 | } /* max or min */ | ||||
6130 | op=COMPNAN0x05; /* use special path */ | ||||
6131 | decNaNs(res, lhs, rhs, set, status); /* propagate NaN */ | ||||
6132 | break; | ||||
6133 | } | ||||
6134 | /* have numbers */ | ||||
6135 | if (op==COMPMAXMAG0x07 || op==COMPMINMAG0x08) result=decCompare(lhs, rhs, 1); | ||||
6136 | else result=decCompare(lhs, rhs, 0); /* sign matters */ | ||||
6137 | } while(0); /* end protected */ | ||||
6138 | |||||
6139 | if (result==BADINT(int32_t)0x80000000) *status|=DEC_Insufficient_storage0x00000010; /* rare */ | ||||
6140 | else { | ||||
6141 | if (op==COMPARE0x01 || op==COMPSIG0x06 ||op==COMPTOTAL0x04) { /* returning signum */ | ||||
6142 | if (op==COMPTOTAL0x04 && result==0) { | ||||
6143 | /* operands are numerically equal or same NaN (and same sign, */ | ||||
6144 | /* tested first); if identical, leave result 0 */ | ||||
6145 | if (lhs->exponent!=rhs->exponent) { | ||||
6146 | if (lhs->exponent<rhs->exponent) result=-1; | ||||
6147 | else result=+1; | ||||
6148 | if (decNumberIsNegative(lhs)(((lhs)->bits&0x80)!=0)) result=-result; | ||||
6149 | } /* lexp!=rexp */ | ||||
6150 | } /* total-order by exponent */ | ||||
6151 | uprv_decNumberZerouprv_decNumberZero_71(res); /* [always a valid result] */ | ||||
6152 | if (result!=0) { /* must be -1 or +1 */ | ||||
6153 | *res->lsu=1; | ||||
6154 | if (result<0) res->bits=DECNEG0x80; | ||||
6155 | } | ||||
6156 | } | ||||
6157 | else if (op==COMPNAN0x05); /* special, drop through */ | ||||
6158 | else { /* MAX or MIN, non-NaN result */ | ||||
6159 | Intint32_t residue=0; /* rounding accumulator */ | ||||
6160 | /* choose the operand for the result */ | ||||
6161 | const decNumber *choice; | ||||
6162 | if (result==0) { /* operands are numerically equal */ | ||||
6163 | /* choose according to sign then exponent (see 754) */ | ||||
6164 | uByteuint8_t slhs=(lhs->bits & DECNEG0x80); | ||||
6165 | uByteuint8_t srhs=(rhs->bits & DECNEG0x80); | ||||
6166 | #if DECSUBSET0 | ||||
6167 | if (!set->extended) { /* subset: force left-hand */ | ||||
6168 | op=COMPMAX0x02; | ||||
6169 | result=+1; | ||||
6170 | } | ||||
6171 | else | ||||
6172 | #endif | ||||
6173 | if (slhs!=srhs) { /* signs differ */ | ||||
6174 | if (slhs) result=-1; /* rhs is max */ | ||||
6175 | else result=+1; /* lhs is max */ | ||||
6176 | } | ||||
6177 | else if (slhs && srhs) { /* both negative */ | ||||
6178 | if (lhs->exponent<rhs->exponent) result=+1; | ||||
6179 | else result=-1; | ||||
6180 | /* [if equal, use lhs, technically identical] */ | ||||
6181 | } | ||||
6182 | else { /* both positive */ | ||||
6183 | if (lhs->exponent>rhs->exponent) result=+1; | ||||
6184 | else result=-1; | ||||
6185 | /* [ditto] */ | ||||
6186 | } | ||||
6187 | } /* numerically equal */ | ||||
6188 | /* here result will be non-0; reverse if looking for MIN */ | ||||
6189 | if (op==COMPMIN0x03 || op==COMPMINMAG0x08) result=-result; | ||||
6190 | choice=(result>0 ? lhs : rhs); /* choose */ | ||||
6191 | /* copy chosen to result, rounding if need be */ | ||||
6192 | decCopyFit(res, choice, set, &residue, status); | ||||
6193 | decFinish(res, set, &residue, status)decFinalize(res,set,&residue,status); | ||||
6194 | } | ||||
6195 | } | ||||
6196 | #if DECSUBSET0 | ||||
6197 | if (allocrhs!=NULL__null) free(allocrhs)uprv_free_71(allocrhs); /* free any storage used */ | ||||
6198 | if (alloclhs!=NULL__null) free(alloclhs)uprv_free_71(alloclhs); /* .. */ | ||||
6199 | #endif | ||||
6200 | return res; | ||||
6201 | } /* decCompareOp */ | ||||
6202 | |||||
6203 | /* ------------------------------------------------------------------ */ | ||||
6204 | /* decCompare -- compare two decNumbers by numerical value */ | ||||
6205 | /* */ | ||||
6206 | /* This routine compares A ? B without altering them. */ | ||||
6207 | /* */ | ||||
6208 | /* Arg1 is A, a decNumber which is not a NaN */ | ||||
6209 | /* Arg2 is B, a decNumber which is not a NaN */ | ||||
6210 | /* Arg3 is 1 for a sign-independent compare, 0 otherwise */ | ||||
6211 | /* */ | ||||
6212 | /* returns -1, 0, or 1 for A<B, A==B, or A>B, or BADINT if failure */ | ||||
6213 | /* (the only possible failure is an allocation error) */ | ||||
6214 | /* ------------------------------------------------------------------ */ | ||||
6215 | static Intint32_t decCompare(const decNumber *lhs, const decNumber *rhs, | ||||
6216 | Flaguint8_t abs_c) { | ||||
6217 | Intint32_t result; /* result value */ | ||||
6218 | Intint32_t sigr; /* rhs signum */ | ||||
6219 | Intint32_t compare; /* work */ | ||||
6220 | |||||
6221 | result=1; /* assume signum(lhs) */ | ||||
6222 | if (ISZERO(lhs)(*(lhs)->lsu==0 && (lhs)->digits==1 && ( ((lhs)->bits&(0x40|0x20|0x10))==0))) result=0; | ||||
6223 | if (abs_c) { | ||||
6224 | if (ISZERO(rhs)(*(rhs)->lsu==0 && (rhs)->digits==1 && ( ((rhs)->bits&(0x40|0x20|0x10))==0))) return result; /* LHS wins or both 0 */ | ||||
6225 | /* RHS is non-zero */ | ||||
6226 | if (result==0) return -1; /* LHS is 0; RHS wins */ | ||||
6227 | /* [here, both non-zero, result=1] */ | ||||
6228 | } | ||||
6229 | else { /* signs matter */ | ||||
6230 | if (result && decNumberIsNegative(lhs)(((lhs)->bits&0x80)!=0)) result=-1; | ||||
6231 | sigr=1; /* compute signum(rhs) */ | ||||
6232 | if (ISZERO(rhs)(*(rhs)->lsu==0 && (rhs)->digits==1 && ( ((rhs)->bits&(0x40|0x20|0x10))==0))) sigr=0; | ||||
6233 | else if (decNumberIsNegative(rhs)(((rhs)->bits&0x80)!=0)) sigr=-1; | ||||
6234 | if (result > sigr) return +1; /* L > R, return 1 */ | ||||
6235 | if (result < sigr) return -1; /* L < R, return -1 */ | ||||
6236 | if (result==0) return 0; /* both 0 */ | ||||
6237 | } | ||||
6238 | |||||
6239 | /* signums are the same; both are non-zero */ | ||||
6240 | if ((lhs->bits | rhs->bits) & DECINF0x40) { /* one or more infinities */ | ||||
6241 | if (decNumberIsInfinite(rhs)(((rhs)->bits&0x40)!=0)) { | ||||
6242 | if (decNumberIsInfinite(lhs)(((lhs)->bits&0x40)!=0)) result=0;/* both infinite */ | ||||
6243 | else result=-result; /* only rhs infinite */ | ||||
6244 | } | ||||
6245 | return result; | ||||
6246 | } | ||||
6247 | /* must compare the coefficients, allowing for exponents */ | ||||
6248 | if (lhs->exponent>rhs->exponent) { /* LHS exponent larger */ | ||||
6249 | /* swap sides, and sign */ | ||||
6250 | const decNumber *temp=lhs; | ||||
6251 | lhs=rhs; | ||||
6252 | rhs=temp; | ||||
6253 | result=-result; | ||||
6254 | } | ||||
6255 | compare=decUnitCompare(lhs->lsu, D2U(lhs->digits)((lhs->digits)<=49?d2utable[lhs->digits]:((lhs->digits )+1 -1)/1), | ||||
6256 | rhs->lsu, D2U(rhs->digits)((rhs->digits)<=49?d2utable[rhs->digits]:((rhs->digits )+1 -1)/1), | ||||
6257 | rhs->exponent-lhs->exponent); | ||||
6258 | if (compare!=BADINT(int32_t)0x80000000) compare*=result; /* comparison succeeded */ | ||||
6259 | return compare; | ||||
6260 | } /* decCompare */ | ||||
6261 | |||||
6262 | /* ------------------------------------------------------------------ */ | ||||
6263 | /* decUnitCompare -- compare two >=0 integers in Unit arrays */ | ||||
6264 | /* */ | ||||
6265 | /* This routine compares A ? B*10**E where A and B are unit arrays */ | ||||
6266 | /* A is a plain integer */ | ||||
6267 | /* B has an exponent of E (which must be non-negative) */ | ||||
6268 | /* */ | ||||
6269 | /* Arg1 is A first Unit (lsu) */ | ||||
6270 | /* Arg2 is A length in Units */ | ||||
6271 | /* Arg3 is B first Unit (lsu) */ | ||||
6272 | /* Arg4 is B length in Units */ | ||||
6273 | /* Arg5 is E (0 if the units are aligned) */ | ||||
6274 | /* */ | ||||
6275 | /* returns -1, 0, or 1 for A<B, A==B, or A>B, or BADINT if failure */ | ||||
6276 | /* (the only possible failure is an allocation error, which can */ | ||||
6277 | /* only occur if E!=0) */ | ||||
6278 | /* ------------------------------------------------------------------ */ | ||||
6279 | static Intint32_t decUnitCompare(const Unituint8_t *a, Intint32_t alength, | ||||
6280 | const Unituint8_t *b, Intint32_t blength, Intint32_t exp) { | ||||
6281 | Unituint8_t *acc; /* accumulator for result */ | ||||
6282 | Unituint8_t accbuff[SD2U(DECBUFFER*2+1)(((36*2+1)+1 -1)/1)]; /* local buffer */ | ||||
6283 | Unituint8_t *allocacc=NULL__null; /* -> allocated acc buffer, iff allocated */ | ||||
6284 | Intint32_t accunits, need; /* units in use or needed for acc */ | ||||
6285 | const Unituint8_t *l, *r, *u; /* work */ | ||||
6286 | Intint32_t expunits, exprem, result; /* .. */ | ||||
6287 | |||||
6288 | if (exp==0) { /* aligned; fastpath */ | ||||
6289 | if (alength>blength) return 1; | ||||
6290 | if (alength<blength) return -1; | ||||
6291 | /* same number of units in both -- need unit-by-unit compare */ | ||||
6292 | l=a+alength-1; | ||||
6293 | r=b+alength-1; | ||||
6294 | for (;l>=a; l--, r--) { | ||||
6295 | if (*l>*r) return 1; | ||||
6296 | if (*l<*r) return -1; | ||||
6297 | } | ||||
6298 | return 0; /* all units match */ | ||||
6299 | } /* aligned */ | ||||
6300 | |||||
6301 | /* Unaligned. If one is >1 unit longer than the other, padded */ | ||||
6302 | /* approximately, then can return easily */ | ||||
6303 | if (alength>blength+(Intint32_t)D2U(exp)((exp)<=49?d2utable[exp]:((exp)+1 -1)/1)) return 1; | ||||
6304 | if (alength+1<blength+(Intint32_t)D2U(exp)((exp)<=49?d2utable[exp]:((exp)+1 -1)/1)) return -1; | ||||
6305 | |||||
6306 | /* Need to do a real subtract. For this, a result buffer is needed */ | ||||
6307 | /* even though only the sign is of interest. Its length needs */ | ||||
6308 | /* to be the larger of alength and padded blength, +2 */ | ||||
6309 | need=blength+D2U(exp)((exp)<=49?d2utable[exp]:((exp)+1 -1)/1); /* maximum real length of B */ | ||||
6310 | if (need<alength) need=alength; | ||||
6311 | need+=2; | ||||
6312 | acc=accbuff; /* assume use local buffer */ | ||||
6313 | if (need*sizeof(Unituint8_t)>sizeof(accbuff)) { | ||||
6314 | allocacc=(Unituint8_t *)malloc(need*sizeof(Unit))uprv_malloc_71(need*sizeof(uint8_t)); | ||||
6315 | if (allocacc==NULL__null) return BADINT(int32_t)0x80000000; /* hopeless -- abandon */ | ||||
6316 | acc=allocacc; | ||||
6317 | } | ||||
6318 | /* Calculate units and remainder from exponent. */ | ||||
6319 | expunits=exp/DECDPUN1; | ||||
6320 | exprem=exp%DECDPUN1; | ||||
6321 | /* subtract [A+B*(-m)] */ | ||||
6322 | accunits=decUnitAddSub(a, alength, b, blength, expunits, acc, | ||||
6323 | -(Intint32_t)powersDECPOWERS[exprem]); | ||||
6324 | /* [UnitAddSub result may have leading zeros, even on zero] */ | ||||
6325 | if (accunits<0) result=-1; /* negative result */ | ||||
6326 | else { /* non-negative result */ | ||||
6327 | /* check units of the result before freeing any storage */ | ||||
6328 | for (u=acc; u<acc+accunits-1 && *u==0;) u++; | ||||
6329 | result=(*u==0 ? 0 : +1); | ||||
6330 | } | ||||
6331 | /* clean up and return the result */ | ||||
6332 | if (allocacc!=NULL__null) free(allocacc)uprv_free_71(allocacc); /* drop any storage used */ | ||||
6333 | return result; | ||||
6334 | } /* decUnitCompare */ | ||||
6335 | |||||
6336 | /* ------------------------------------------------------------------ */ | ||||
6337 | /* decUnitAddSub -- add or subtract two >=0 integers in Unit arrays */ | ||||
6338 | /* */ | ||||
6339 | /* This routine performs the calculation: */ | ||||
6340 | /* */ | ||||
6341 | /* C=A+(B*M) */ | ||||
6342 | /* */ | ||||
6343 | /* Where M is in the range -DECDPUNMAX through +DECDPUNMAX. */ | ||||
6344 | /* */ | ||||
6345 | /* A may be shorter or longer than B. */ | ||||
6346 | /* */ | ||||
6347 | /* Leading zeros are not removed after a calculation. The result is */ | ||||
6348 | /* either the same length as the longer of A and B (adding any */ | ||||
6349 | /* shift), or one Unit longer than that (if a Unit carry occurred). */ | ||||
6350 | /* */ | ||||
6351 | /* A and B content are not altered unless C is also A or B. */ | ||||
6352 | /* C may be the same array as A or B, but only if no zero padding is */ | ||||
6353 | /* requested (that is, C may be B only if bshift==0). */ | ||||
6354 | /* C is filled from the lsu; only those units necessary to complete */ | ||||
6355 | /* the calculation are referenced. */ | ||||
6356 | /* */ | ||||
6357 | /* Arg1 is A first Unit (lsu) */ | ||||
6358 | /* Arg2 is A length in Units */ | ||||
6359 | /* Arg3 is B first Unit (lsu) */ | ||||
6360 | /* Arg4 is B length in Units */ | ||||
6361 | /* Arg5 is B shift in Units (>=0; pads with 0 units if positive) */ | ||||
6362 | /* Arg6 is C first Unit (lsu) */ | ||||
6363 | /* Arg7 is M, the multiplier */ | ||||
6364 | /* */ | ||||
6365 | /* returns the count of Units written to C, which will be non-zero */ | ||||
6366 | /* and negated if the result is negative. That is, the sign of the */ | ||||
6367 | /* returned Int is the sign of the result (positive for zero) and */ | ||||
6368 | /* the absolute value of the Int is the count of Units. */ | ||||
6369 | /* */ | ||||
6370 | /* It is the caller's responsibility to make sure that C size is */ | ||||
6371 | /* safe, allowing space if necessary for a one-Unit carry. */ | ||||
6372 | /* */ | ||||
6373 | /* This routine is severely performance-critical; *any* change here */ | ||||
6374 | /* must be measured (timed) to assure no performance degradation. */ | ||||
6375 | /* In particular, trickery here tends to be counter-productive, as */ | ||||
6376 | /* increased complexity of code hurts register optimizations on */ | ||||
6377 | /* register-poor architectures. Avoiding divisions is nearly */ | ||||
6378 | /* always a Good Idea, however. */ | ||||
6379 | /* */ | ||||
6380 | /* Special thanks to Rick McGuire (IBM Cambridge, MA) and Dave Clark */ | ||||
6381 | /* (IBM Warwick, UK) for some of the ideas used in this routine. */ | ||||
6382 | /* ------------------------------------------------------------------ */ | ||||
6383 | static Intint32_t decUnitAddSub(const Unituint8_t *a, Intint32_t alength, | ||||
6384 | const Unituint8_t *b, Intint32_t blength, Intint32_t bshift, | ||||
6385 | Unituint8_t *c, Intint32_t m) { | ||||
6386 | const Unituint8_t *alsu=a; /* A lsu [need to remember it] */ | ||||
6387 | Unituint8_t *clsu=c; /* C ditto */ | ||||
6388 | Unituint8_t *minC; /* low water mark for C */ | ||||
6389 | Unituint8_t *maxC; /* high water mark for C */ | ||||
6390 | eIntint32_t carry=0; /* carry integer (could be Long) */ | ||||
6391 | Intint32_t add; /* work */ | ||||
6392 | #if DECDPUN1<=4 /* myriadal, millenary, etc. */ | ||||
6393 | Intint32_t est; /* estimated quotient */ | ||||
6394 | #endif | ||||
6395 | |||||
6396 | #if DECTRACE0 | ||||
6397 | if (alength<1 || blength<1) | ||||
6398 | printf("decUnitAddSub: alen blen m %ld %ld [%ld]\n", alength, blength, m); | ||||
6399 | #endif | ||||
6400 | |||||
6401 | maxC=c+alength; /* A is usually the longer */ | ||||
6402 | minC=c+blength; /* .. and B the shorter */ | ||||
6403 | if (bshift!=0) { /* B is shifted; low As copy across */ | ||||
6404 | minC+=bshift; | ||||
6405 | /* if in place [common], skip copy unless there's a gap [rare] */ | ||||
6406 | if (a==c && bshift<=alength) { | ||||
6407 | c+=bshift; | ||||
6408 | a+=bshift; | ||||
6409 | } | ||||
6410 | else for (; c<clsu+bshift; a++, c++) { /* copy needed */ | ||||
6411 | if (a<alsu+alength) *c=*a; | ||||
6412 | else *c=0; | ||||
6413 | } | ||||
6414 | } | ||||
6415 | if (minC>maxC) { /* swap */ | ||||
6416 | Unituint8_t *hold=minC; | ||||
6417 | minC=maxC; | ||||
6418 | maxC=hold; | ||||
6419 | } | ||||
6420 | |||||
6421 | /* For speed, do the addition as two loops; the first where both A */ | ||||
6422 | /* and B contribute, and the second (if necessary) where only one or */ | ||||
6423 | /* other of the numbers contribute. */ | ||||
6424 | /* Carry handling is the same (i.e., duplicated) in each case. */ | ||||
6425 | for (; c<minC; c++) { | ||||
6426 | carry+=*a; | ||||
6427 | a++; | ||||
6428 | carry+=((eIntint32_t)*b)*m; /* [special-casing m=1/-1 */ | ||||
6429 | b++; /* here is not a win] */ | ||||
6430 | /* here carry is new Unit of digits; it could be +ve or -ve */ | ||||
6431 | if ((ueIntuint32_t)carry<=DECDPUNMAX9) { /* fastpath 0-DECDPUNMAX */ | ||||
6432 | *c=(Unituint8_t)carry; | ||||
6433 | carry=0; | ||||
6434 | continue; | ||||
6435 | } | ||||
6436 | #if DECDPUN1==4 /* use divide-by-multiply */ | ||||
6437 | if (carry>=0) { | ||||
6438 | est=(((ueIntuint32_t)carry>>11)*53687)>>18; | ||||
6439 | *c=(Unituint8_t)(carry-est*(DECDPUNMAX9+1)); /* remainder */ | ||||
6440 | carry=est; /* likely quotient [89%] */ | ||||
6441 | if (*c<DECDPUNMAX9+1) continue; /* estimate was correct */ | ||||
6442 | carry++; | ||||
6443 | *c-=DECDPUNMAX9+1; | ||||
6444 | continue; | ||||
6445 | } | ||||
6446 | /* negative case */ | ||||
6447 | carry=carry+(eIntint32_t)(DECDPUNMAX9+1)*(DECDPUNMAX9+1); /* make positive */ | ||||
6448 | est=(((ueIntuint32_t)carry>>11)*53687)>>18; | ||||
6449 | *c=(Unituint8_t)(carry-est*(DECDPUNMAX9+1)); | ||||
6450 | carry=est-(DECDPUNMAX9+1); /* correctly negative */ | ||||
6451 | if (*c<DECDPUNMAX9+1) continue; /* was OK */ | ||||
6452 | carry++; | ||||
6453 | *c-=DECDPUNMAX9+1; | ||||
6454 | #elif DECDPUN1==3 | ||||
6455 | if (carry>=0) { | ||||
6456 | est=(((ueIntuint32_t)carry>>3)*16777)>>21; | ||||
6457 | *c=(Unituint8_t)(carry-est*(DECDPUNMAX9+1)); /* remainder */ | ||||
6458 | carry=est; /* likely quotient [99%] */ | ||||
6459 | if (*c<DECDPUNMAX9+1) continue; /* estimate was correct */ | ||||
6460 | carry++; | ||||
6461 | *c-=DECDPUNMAX9+1; | ||||
6462 | continue; | ||||
6463 | } | ||||
6464 | /* negative case */ | ||||
6465 | carry=carry+(eIntint32_t)(DECDPUNMAX9+1)*(DECDPUNMAX9+1); /* make positive */ | ||||
6466 | est=(((ueIntuint32_t)carry>>3)*16777)>>21; | ||||
6467 | *c=(Unituint8_t)(carry-est*(DECDPUNMAX9+1)); | ||||
6468 | carry=est-(DECDPUNMAX9+1); /* correctly negative */ | ||||
6469 | if (*c<DECDPUNMAX9+1) continue; /* was OK */ | ||||
6470 | carry++; | ||||
6471 | *c-=DECDPUNMAX9+1; | ||||
6472 | #elif DECDPUN1<=2 | ||||
6473 | /* Can use QUOT10 as carry <= 4 digits */ | ||||
6474 | if (carry>=0) { | ||||
6475 | est=QUOT10(carry, DECDPUN)((((uint32_t)(carry)>>(1))*multies[1])>>17); | ||||
6476 | *c=(Unituint8_t)(carry-est*(DECDPUNMAX9+1)); /* remainder */ | ||||
6477 | carry=est; /* quotient */ | ||||
6478 | continue; | ||||
6479 | } | ||||
6480 | /* negative case */ | ||||
6481 | carry=carry+(eIntint32_t)(DECDPUNMAX9+1)*(DECDPUNMAX9+1); /* make positive */ | ||||
6482 | est=QUOT10(carry, DECDPUN)((((uint32_t)(carry)>>(1))*multies[1])>>17); | ||||
6483 | *c=(Unituint8_t)(carry-est*(DECDPUNMAX9+1)); | ||||
6484 | carry=est-(DECDPUNMAX9+1); /* correctly negative */ | ||||
6485 | #else | ||||
6486 | /* remainder operator is undefined if negative, so must test */ | ||||
6487 | if ((ueIntuint32_t)carry<(DECDPUNMAX9+1)*2) { /* fastpath carry +1 */ | ||||
6488 | *c=(Unituint8_t)(carry-(DECDPUNMAX9+1)); /* [helps additions] */ | ||||
6489 | carry=1; | ||||
6490 | continue; | ||||
6491 | } | ||||
6492 | if (carry>=0) { | ||||
6493 | *c=(Unituint8_t)(carry%(DECDPUNMAX9+1)); | ||||
6494 | carry=carry/(DECDPUNMAX9+1); | ||||
6495 | continue; | ||||
6496 | } | ||||
6497 | /* negative case */ | ||||
6498 | carry=carry+(eIntint32_t)(DECDPUNMAX9+1)*(DECDPUNMAX9+1); /* make positive */ | ||||
6499 | *c=(Unituint8_t)(carry%(DECDPUNMAX9+1)); | ||||
6500 | carry=carry/(DECDPUNMAX9+1)-(DECDPUNMAX9+1); | ||||
6501 | #endif | ||||
6502 | } /* c */ | ||||
6503 | |||||
6504 | /* now may have one or other to complete */ | ||||
6505 | /* [pretest to avoid loop setup/shutdown] */ | ||||
6506 | if (c<maxC) for (; c<maxC; c++) { | ||||
6507 | if (a<alsu+alength) { /* still in A */ | ||||
6508 | carry+=*a; | ||||
6509 | a++; | ||||
6510 | } | ||||
6511 | else { /* inside B */ | ||||
6512 | carry+=((eIntint32_t)*b)*m; | ||||
6513 | b++; | ||||
6514 | } | ||||
6515 | /* here carry is new Unit of digits; it could be +ve or -ve and */ | ||||
6516 | /* magnitude up to DECDPUNMAX squared */ | ||||
6517 | if ((ueIntuint32_t)carry<=DECDPUNMAX9) { /* fastpath 0-DECDPUNMAX */ | ||||
6518 | *c=(Unituint8_t)carry; | ||||
6519 | carry=0; | ||||
6520 | continue; | ||||
6521 | } | ||||
6522 | /* result for this unit is negative or >DECDPUNMAX */ | ||||
6523 | #if DECDPUN1==4 /* use divide-by-multiply */ | ||||
6524 | if (carry>=0) { | ||||
6525 | est=(((ueIntuint32_t)carry>>11)*53687)>>18; | ||||
6526 | *c=(Unituint8_t)(carry-est*(DECDPUNMAX9+1)); /* remainder */ | ||||
6527 | carry=est; /* likely quotient [79.7%] */ | ||||
6528 | if (*c<DECDPUNMAX9+1) continue; /* estimate was correct */ | ||||
6529 | carry++; | ||||
6530 | *c-=DECDPUNMAX9+1; | ||||
6531 | continue; | ||||
6532 | } | ||||
6533 | /* negative case */ | ||||
6534 | carry=carry+(eIntint32_t)(DECDPUNMAX9+1)*(DECDPUNMAX9+1); /* make positive */ | ||||
6535 | est=(((ueIntuint32_t)carry>>11)*53687)>>18; | ||||
6536 | *c=(Unituint8_t)(carry-est*(DECDPUNMAX9+1)); | ||||
6537 | carry=est-(DECDPUNMAX9+1); /* correctly negative */ | ||||
6538 | if (*c<DECDPUNMAX9+1) continue; /* was OK */ | ||||
6539 | carry++; | ||||
6540 | *c-=DECDPUNMAX9+1; | ||||
6541 | #elif DECDPUN1==3 | ||||
6542 | if (carry>=0) { | ||||
6543 | est=(((ueIntuint32_t)carry>>3)*16777)>>21; | ||||
6544 | *c=(Unituint8_t)(carry-est*(DECDPUNMAX9+1)); /* remainder */ | ||||
6545 | carry=est; /* likely quotient [99%] */ | ||||
6546 | if (*c<DECDPUNMAX9+1) continue; /* estimate was correct */ | ||||
6547 | carry++; | ||||
6548 | *c-=DECDPUNMAX9+1; | ||||
6549 | continue; | ||||
6550 | } | ||||
6551 | /* negative case */ | ||||
6552 | carry=carry+(eIntint32_t)(DECDPUNMAX9+1)*(DECDPUNMAX9+1); /* make positive */ | ||||
6553 | est=(((ueIntuint32_t)carry>>3)*16777)>>21; | ||||
6554 | *c=(Unituint8_t)(carry-est*(DECDPUNMAX9+1)); | ||||
6555 | carry=est-(DECDPUNMAX9+1); /* correctly negative */ | ||||
6556 | if (*c<DECDPUNMAX9+1) continue; /* was OK */ | ||||
6557 | carry++; | ||||
6558 | *c-=DECDPUNMAX9+1; | ||||
6559 | #elif DECDPUN1<=2 | ||||
6560 | if (carry>=0) { | ||||
6561 | est=QUOT10(carry, DECDPUN)((((uint32_t)(carry)>>(1))*multies[1])>>17); | ||||
6562 | *c=(Unituint8_t)(carry-est*(DECDPUNMAX9+1)); /* remainder */ | ||||
6563 | carry=est; /* quotient */ | ||||
6564 | continue; | ||||
6565 | } | ||||
6566 | /* negative case */ | ||||
6567 | carry=carry+(eIntint32_t)(DECDPUNMAX9+1)*(DECDPUNMAX9+1); /* make positive */ | ||||
6568 | est=QUOT10(carry, DECDPUN)((((uint32_t)(carry)>>(1))*multies[1])>>17); | ||||
6569 | *c=(Unituint8_t)(carry-est*(DECDPUNMAX9+1)); | ||||
6570 | carry=est-(DECDPUNMAX9+1); /* correctly negative */ | ||||
6571 | #else | ||||
6572 | if ((ueIntuint32_t)carry<(DECDPUNMAX9+1)*2){ /* fastpath carry 1 */ | ||||
6573 | *c=(Unituint8_t)(carry-(DECDPUNMAX9+1)); | ||||
6574 | carry=1; | ||||
6575 | continue; | ||||
6576 | } | ||||
6577 | /* remainder operator is undefined if negative, so must test */ | ||||
6578 | if (carry>=0) { | ||||
6579 | *c=(Unituint8_t)(carry%(DECDPUNMAX9+1)); | ||||
6580 | carry=carry/(DECDPUNMAX9+1); | ||||
6581 | continue; | ||||
6582 | } | ||||
6583 | /* negative case */ | ||||
6584 | carry=carry+(eIntint32_t)(DECDPUNMAX9+1)*(DECDPUNMAX9+1); /* make positive */ | ||||
6585 | *c=(Unituint8_t)(carry%(DECDPUNMAX9+1)); | ||||
6586 | carry=carry/(DECDPUNMAX9+1)-(DECDPUNMAX9+1); | ||||
6587 | #endif | ||||
6588 | } /* c */ | ||||
6589 | |||||
6590 | /* OK, all A and B processed; might still have carry or borrow */ | ||||
6591 | /* return number of Units in the result, negated if a borrow */ | ||||
6592 | if (carry==0) return static_cast<int32_t>(c-clsu); /* no carry, so no more to do */ | ||||
6593 | if (carry>0) { /* positive carry */ | ||||
6594 | *c=(Unituint8_t)carry; /* place as new unit */ | ||||
6595 | c++; /* .. */ | ||||
6596 | return static_cast<int32_t>(c-clsu); | ||||
6597 | } | ||||
6598 | /* -ve carry: it's a borrow; complement needed */ | ||||
6599 | add=1; /* temporary carry... */ | ||||
6600 | for (c=clsu; c<maxC; c++) { | ||||
6601 | add=DECDPUNMAX9+add-*c; | ||||
6602 | if (add<=DECDPUNMAX9) { | ||||
6603 | *c=(Unituint8_t)add; | ||||
6604 | add=0; | ||||
6605 | } | ||||
6606 | else { | ||||
6607 | *c=0; | ||||
6608 | add=1; | ||||
6609 | } | ||||
6610 | } | ||||
6611 | /* add an extra unit iff it would be non-zero */ | ||||
6612 | #if DECTRACE0 | ||||
6613 | printf("UAS borrow: add %ld, carry %ld\n", add, carry); | ||||
6614 | #endif | ||||
6615 | if ((add-carry-1)!=0) { | ||||
6616 | *c=(Unituint8_t)(add-carry-1); | ||||
6617 | c++; /* interesting, include it */ | ||||
6618 | } | ||||
6619 | return static_cast<int32_t>(clsu-c); /* -ve result indicates borrowed */ | ||||
6620 | } /* decUnitAddSub */ | ||||
6621 | |||||
6622 | /* ------------------------------------------------------------------ */ | ||||
6623 | /* decTrim -- trim trailing zeros or normalize */ | ||||
6624 | /* */ | ||||
6625 | /* dn is the number to trim or normalize */ | ||||
6626 | /* set is the context to use to check for clamp */ | ||||
6627 | /* all is 1 to remove all trailing zeros, 0 for just fraction ones */ | ||||
6628 | /* noclamp is 1 to unconditional (unclamped) trim */ | ||||
6629 | /* dropped returns the number of discarded trailing zeros */ | ||||
6630 | /* returns dn */ | ||||
6631 | /* */ | ||||
6632 | /* If clamp is set in the context then the number of zeros trimmed */ | ||||
6633 | /* may be limited if the exponent is high. */ | ||||
6634 | /* All fields are updated as required. This is a utility operation, */ | ||||
6635 | /* so special values are unchanged and no error is possible. */ | ||||
6636 | /* ------------------------------------------------------------------ */ | ||||
6637 | static decNumber * decTrim(decNumber *dn, decContext *set, Flaguint8_t all, | ||||
6638 | Flaguint8_t noclamp, Intint32_t *dropped) { | ||||
6639 | Intint32_t d, exp; /* work */ | ||||
6640 | uIntuint32_t cut; /* .. */ | ||||
6641 | Unituint8_t *up; /* -> current Unit */ | ||||
6642 | |||||
6643 | #if DECCHECK0 | ||||
6644 | if (decCheckOperands(dn, DECUNUSED, DECUNUSED, DECUNCONT)) return dn; | ||||
6645 | #endif | ||||
6646 | |||||
6647 | *dropped=0; /* assume no zeros dropped */ | ||||
6648 | if ((dn->bits & DECSPECIAL(0x40|0x20|0x10)) /* fast exit if special .. */ | ||||
6649 | || (*dn->lsu & 0x01)) return dn; /* .. or odd */ | ||||
6650 | if (ISZERO(dn)(*(dn)->lsu==0 && (dn)->digits==1 && (( (dn)->bits&(0x40|0x20|0x10))==0))) { /* .. or 0 */ | ||||
6651 | dn->exponent=0; /* (sign is preserved) */ | ||||
6652 | return dn; | ||||
6653 | } | ||||
6654 | |||||
6655 | /* have a finite number which is even */ | ||||
6656 | exp=dn->exponent; | ||||
6657 | cut=1; /* digit (1-DECDPUN) in Unit */ | ||||
6658 | up=dn->lsu; /* -> current Unit */ | ||||
6659 | for (d=0; d<dn->digits-1; d++) { /* [don't strip the final digit] */ | ||||
6660 | /* slice by powers */ | ||||
6661 | #if DECDPUN1<=4 | ||||
6662 | uIntuint32_t quot=QUOT10(*up, cut)((((uint32_t)(*up)>>(cut))*multies[cut])>>17); | ||||
6663 | if ((*up-quot*powersDECPOWERS[cut])!=0) break; /* found non-0 digit */ | ||||
6664 | #else | ||||
6665 | if (*up%powersDECPOWERS[cut]!=0) break; /* found non-0 digit */ | ||||
6666 | #endif | ||||
6667 | /* have a trailing 0 */ | ||||
6668 | if (!all) { /* trimming */ | ||||
6669 | /* [if exp>0 then all trailing 0s are significant for trim] */ | ||||
6670 | if (exp<=0) { /* if digit might be significant */ | ||||
6671 | if (exp==0) break; /* then quit */ | ||||
6672 | exp++; /* next digit might be significant */ | ||||
6673 | } | ||||
6674 | } | ||||
6675 | cut++; /* next power */ | ||||
6676 | if (cut>DECDPUN1) { /* need new Unit */ | ||||
6677 | up++; | ||||
6678 | cut=1; | ||||
6679 | } | ||||
6680 | } /* d */ | ||||
6681 | if (d==0) return dn; /* none to drop */ | ||||
6682 | |||||
6683 | /* may need to limit drop if clamping */ | ||||
6684 | if (set->clamp && !noclamp) { | ||||
6685 | Intint32_t maxd=set->emax-set->digits+1-dn->exponent; | ||||
6686 | if (maxd<=0) return dn; /* nothing possible */ | ||||
6687 | if (d>maxd) d=maxd; | ||||
6688 | } | ||||
6689 | |||||
6690 | /* effect the drop */ | ||||
6691 | decShiftToLeast(dn->lsu, D2U(dn->digits)((dn->digits)<=49?d2utable[dn->digits]:((dn->digits )+1 -1)/1), d); | ||||
6692 | dn->exponent+=d; /* maintain numerical value */ | ||||
6693 | dn->digits-=d; /* new length */ | ||||
6694 | *dropped=d; /* report the count */ | ||||
6695 | return dn; | ||||
6696 | } /* decTrim */ | ||||
6697 | |||||
6698 | /* ------------------------------------------------------------------ */ | ||||
6699 | /* decReverse -- reverse a Unit array in place */ | ||||
6700 | /* */ | ||||
6701 | /* ulo is the start of the array */ | ||||
6702 | /* uhi is the end of the array (highest Unit to include) */ | ||||
6703 | /* */ | ||||
6704 | /* The units ulo through uhi are reversed in place (if the number */ | ||||
6705 | /* of units is odd, the middle one is untouched). Note that the */ | ||||
6706 | /* digit(s) in each unit are unaffected. */ | ||||
6707 | /* ------------------------------------------------------------------ */ | ||||
6708 | static void decReverse(Unituint8_t *ulo, Unituint8_t *uhi) { | ||||
6709 | Unituint8_t temp; | ||||
6710 | for (; ulo<uhi; ulo++, uhi--) { | ||||
6711 | temp=*ulo; | ||||
6712 | *ulo=*uhi; | ||||
6713 | *uhi=temp; | ||||
6714 | } | ||||
6715 | return; | ||||
6716 | } /* decReverse */ | ||||
6717 | |||||
6718 | /* ------------------------------------------------------------------ */ | ||||
6719 | /* decShiftToMost -- shift digits in array towards most significant */ | ||||
6720 | /* */ | ||||
6721 | /* uar is the array */ | ||||
6722 | /* digits is the count of digits in use in the array */ | ||||
6723 | /* shift is the number of zeros to pad with (least significant); */ | ||||
6724 | /* it must be zero or positive */ | ||||
6725 | /* */ | ||||
6726 | /* returns the new length of the integer in the array, in digits */ | ||||
6727 | /* */ | ||||
6728 | /* No overflow is permitted (that is, the uar array must be known to */ | ||||
6729 | /* be large enough to hold the result, after shifting). */ | ||||
6730 | /* ------------------------------------------------------------------ */ | ||||
6731 | static Intint32_t decShiftToMost(Unituint8_t *uar, Intint32_t digits, Intint32_t shift) { | ||||
6732 | Unituint8_t *target, *source, *first; /* work */ | ||||
6733 | Intint32_t cut; /* odd 0's to add */ | ||||
6734 | uIntuint32_t next; /* work */ | ||||
6735 | |||||
6736 | if (shift==0) return digits; /* [fastpath] nothing to do */ | ||||
6737 | if ((digits+shift)<=DECDPUN1) { /* [fastpath] single-unit case */ | ||||
6738 | *uar=(Unituint8_t)(*uar*powersDECPOWERS[shift]); | ||||
6739 | return digits+shift; | ||||
6740 | } | ||||
6741 | |||||
6742 | next=0; /* all paths */ | ||||
6743 | source=uar+D2U(digits)((digits)<=49?d2utable[digits]:((digits)+1 -1)/1)-1; /* where msu comes from */ | ||||
6744 | target=source+D2U(shift)((shift)<=49?d2utable[shift]:((shift)+1 -1)/1); /* where upper part of first cut goes */ | ||||
6745 | cut=DECDPUN1-MSUDIGITS(shift)((shift)-(((shift)<=49?d2utable[shift]:((shift)+1 -1)/1)-1 )*1); /* where to slice */ | ||||
6746 | if (cut==0) { /* unit-boundary case */ | ||||
6747 | for (; source>=uar; source--, target--) *target=*source; | ||||
6748 | } | ||||
6749 | else { | ||||
6750 | first=uar+D2U(digits+shift)((digits+shift)<=49?d2utable[digits+shift]:((digits+shift) +1 -1)/1)-1; /* where msu of source will end up */ | ||||
6751 | for (; source>=uar; source--, target--) { | ||||
6752 | /* split the source Unit and accumulate remainder for next */ | ||||
6753 | #if DECDPUN1<=4 | ||||
6754 | uIntuint32_t quot=QUOT10(*source, cut)((((uint32_t)(*source)>>(cut))*multies[cut])>>17); | ||||
6755 | uIntuint32_t rem=*source-quot*powersDECPOWERS[cut]; | ||||
6756 | next+=quot; | ||||
6757 | #else | ||||
6758 | uIntuint32_t rem=*source%powersDECPOWERS[cut]; | ||||
6759 | next+=*source/powersDECPOWERS[cut]; | ||||
6760 | #endif | ||||
6761 | if (target<=first) *target=(Unituint8_t)next; /* write to target iff valid */ | ||||
6762 | next=rem*powersDECPOWERS[DECDPUN1-cut]; /* save remainder for next Unit */ | ||||
6763 | } | ||||
6764 | } /* shift-move */ | ||||
6765 | |||||
6766 | /* propagate any partial unit to one below and clear the rest */ | ||||
6767 | for (; target>=uar; target--) { | ||||
6768 | *target=(Unituint8_t)next; | ||||
6769 | next=0; | ||||
6770 | } | ||||
6771 | return digits+shift; | ||||
6772 | } /* decShiftToMost */ | ||||
6773 | |||||
6774 | /* ------------------------------------------------------------------ */ | ||||
6775 | /* decShiftToLeast -- shift digits in array towards least significant */ | ||||
6776 | /* */ | ||||
6777 | /* uar is the array */ | ||||
6778 | /* units is length of the array, in units */ | ||||
6779 | /* shift is the number of digits to remove from the lsu end; it */ | ||||
6780 | /* must be zero or positive and <= than units*DECDPUN. */ | ||||
6781 | /* */ | ||||
6782 | /* returns the new length of the integer in the array, in units */ | ||||
6783 | /* */ | ||||
6784 | /* Removed digits are discarded (lost). Units not required to hold */ | ||||
6785 | /* the final result are unchanged. */ | ||||
6786 | /* ------------------------------------------------------------------ */ | ||||
6787 | static Intint32_t decShiftToLeast(Unituint8_t *uar, Intint32_t units, Intint32_t shift) { | ||||
6788 | Unituint8_t *target, *up; /* work */ | ||||
6789 | Intint32_t cut, count; /* work */ | ||||
6790 | Intint32_t quot, rem; /* for division */ | ||||
6791 | |||||
6792 | if (shift==0) return units; /* [fastpath] nothing to do */ | ||||
6793 | if (shift==units*DECDPUN1) { /* [fastpath] little to do */ | ||||
6794 | *uar=0; /* all digits cleared gives zero */ | ||||
6795 | return 1; /* leaves just the one */ | ||||
6796 | } | ||||
6797 | |||||
6798 | target=uar; /* both paths */ | ||||
6799 | cut=MSUDIGITS(shift)((shift)-(((shift)<=49?d2utable[shift]:((shift)+1 -1)/1)-1 )*1); | ||||
6800 | if (cut==DECDPUN1) { /* unit-boundary case; easy */ | ||||
6801 | up=uar+D2U(shift)((shift)<=49?d2utable[shift]:((shift)+1 -1)/1); | ||||
6802 | for (; up<uar+units; target++, up++) *target=*up; | ||||
6803 | return static_cast<int32_t>(target-uar); | ||||
6804 | } | ||||
6805 | |||||
6806 | /* messier */ | ||||
6807 | up=uar+D2U(shift-cut)((shift-cut)<=49?d2utable[shift-cut]:((shift-cut)+1 -1)/1); /* source; correct to whole Units */ | ||||
6808 | count=units*DECDPUN1-shift; /* the maximum new length */ | ||||
6809 | #if DECDPUN1<=4 | ||||
6810 | quot=QUOT10(*up, cut)((((uint32_t)(*up)>>(cut))*multies[cut])>>17); | ||||
6811 | #else | ||||
6812 | quot=*up/powersDECPOWERS[cut]; | ||||
6813 | #endif | ||||
6814 | for (; ; target++) { | ||||
6815 | *target=(Unituint8_t)quot; | ||||
6816 | count-=(DECDPUN1-cut); | ||||
6817 | if (count<=0) break; | ||||
6818 | up++; | ||||
6819 | quot=*up; | ||||
6820 | #if DECDPUN1<=4 | ||||
6821 | quot=QUOT10(quot, cut)((((uint32_t)(quot)>>(cut))*multies[cut])>>17); | ||||
6822 | rem=*up-quot*powersDECPOWERS[cut]; | ||||
6823 | #else | ||||
6824 | rem=quot%powersDECPOWERS[cut]; | ||||
6825 | quot=quot/powersDECPOWERS[cut]; | ||||
6826 | #endif | ||||
6827 | *target=(Unituint8_t)(*target+rem*powersDECPOWERS[DECDPUN1-cut]); | ||||
6828 | count-=cut; | ||||
6829 | if (count<=0) break; | ||||
6830 | } | ||||
6831 | return static_cast<int32_t>(target-uar+1); | ||||
6832 | } /* decShiftToLeast */ | ||||
6833 | |||||
6834 | #if DECSUBSET0 | ||||
6835 | /* ------------------------------------------------------------------ */ | ||||
6836 | /* decRoundOperand -- round an operand [used for subset only] */ | ||||
6837 | /* */ | ||||
6838 | /* dn is the number to round (dn->digits is > set->digits) */ | ||||
6839 | /* set is the relevant context */ | ||||
6840 | /* status is the status accumulator */ | ||||
6841 | /* */ | ||||
6842 | /* returns an allocated decNumber with the rounded result. */ | ||||
6843 | /* */ | ||||
6844 | /* lostDigits and other status may be set by this. */ | ||||
6845 | /* */ | ||||
6846 | /* Since the input is an operand, it must not be modified. */ | ||||
6847 | /* Instead, return an allocated decNumber, rounded as required. */ | ||||
6848 | /* It is the caller's responsibility to free the allocated storage. */ | ||||
6849 | /* */ | ||||
6850 | /* If no storage is available then the result cannot be used, so NULL */ | ||||
6851 | /* is returned. */ | ||||
6852 | /* ------------------------------------------------------------------ */ | ||||
6853 | static decNumber *decRoundOperand(const decNumber *dn, decContext *set, | ||||
6854 | uIntuint32_t *status) { | ||||
6855 | decNumber *res; /* result structure */ | ||||
6856 | uIntuint32_t newstatus=0; /* status from round */ | ||||
6857 | Intint32_t residue=0; /* rounding accumulator */ | ||||
6858 | |||||
6859 | /* Allocate storage for the returned decNumber, big enough for the */ | ||||
6860 | /* length specified by the context */ | ||||
6861 | res=(decNumber *)malloc(sizeof(decNumber)uprv_malloc_71(sizeof(decNumber) +(((set->digits)<=49?d2utable [set->digits]:((set->digits)+1 -1)/1)-1)*sizeof(uint8_t )) | ||||
6862 | +(D2U(set->digits)-1)*sizeof(Unit))uprv_malloc_71(sizeof(decNumber) +(((set->digits)<=49?d2utable [set->digits]:((set->digits)+1 -1)/1)-1)*sizeof(uint8_t )); | ||||
6863 | if (res==NULL__null) { | ||||
6864 | *status|=DEC_Insufficient_storage0x00000010; | ||||
6865 | return NULL__null; | ||||
6866 | } | ||||
6867 | decCopyFit(res, dn, set, &residue, &newstatus); | ||||
6868 | decApplyRound(res, set, residue, &newstatus); | ||||
6869 | |||||
6870 | /* If that set Inexact then "lost digits" is raised... */ | ||||
6871 | if (newstatus & DEC_Inexact0x00000020) newstatus|=DEC_Lost_digits; | ||||
6872 | *status|=newstatus; | ||||
6873 | return res; | ||||
6874 | } /* decRoundOperand */ | ||||
6875 | #endif | ||||
6876 | |||||
6877 | /* ------------------------------------------------------------------ */ | ||||
6878 | /* decCopyFit -- copy a number, truncating the coefficient if needed */ | ||||
6879 | /* */ | ||||
6880 | /* dest is the target decNumber */ | ||||
6881 | /* src is the source decNumber */ | ||||
6882 | /* set is the context [used for length (digits) and rounding mode] */ | ||||
6883 | /* residue is the residue accumulator */ | ||||
6884 | /* status contains the current status to be updated */ | ||||
6885 | /* */ | ||||
6886 | /* (dest==src is allowed and will be a no-op if fits) */ | ||||
6887 | /* All fields are updated as required. */ | ||||
6888 | /* ------------------------------------------------------------------ */ | ||||
6889 | static void decCopyFit(decNumber *dest, const decNumber *src, | ||||
6890 | decContext *set, Intint32_t *residue, uIntuint32_t *status) { | ||||
6891 | dest->bits=src->bits; | ||||
6892 | dest->exponent=src->exponent; | ||||
6893 | decSetCoeff(dest, set, src->lsu, src->digits, residue, status); | ||||
6894 | } /* decCopyFit */ | ||||
6895 | |||||
6896 | /* ------------------------------------------------------------------ */ | ||||
6897 | /* decSetCoeff -- set the coefficient of a number */ | ||||
6898 | /* */ | ||||
6899 | /* dn is the number whose coefficient array is to be set. */ | ||||
6900 | /* It must have space for set->digits digits */ | ||||
6901 | /* set is the context [for size] */ | ||||
6902 | /* lsu -> lsu of the source coefficient [may be dn->lsu] */ | ||||
6903 | /* len is digits in the source coefficient [may be dn->digits] */ | ||||
6904 | /* residue is the residue accumulator. This has values as in */ | ||||
6905 | /* decApplyRound, and will be unchanged unless the */ | ||||
6906 | /* target size is less than len. In this case, the */ | ||||
6907 | /* coefficient is truncated and the residue is updated to */ | ||||
6908 | /* reflect the previous residue and the dropped digits. */ | ||||
6909 | /* status is the status accumulator, as usual */ | ||||
6910 | /* */ | ||||
6911 | /* The coefficient may already be in the number, or it can be an */ | ||||
6912 | /* external intermediate array. If it is in the number, lsu must == */ | ||||
6913 | /* dn->lsu and len must == dn->digits. */ | ||||
6914 | /* */ | ||||
6915 | /* Note that the coefficient length (len) may be < set->digits, and */ | ||||
6916 | /* in this case this merely copies the coefficient (or is a no-op */ | ||||
6917 | /* if dn->lsu==lsu). */ | ||||
6918 | /* */ | ||||
6919 | /* Note also that (only internally, from decQuantizeOp and */ | ||||
6920 | /* decSetSubnormal) the value of set->digits may be less than one, */ | ||||
6921 | /* indicating a round to left. This routine handles that case */ | ||||
6922 | /* correctly; caller ensures space. */ | ||||
6923 | /* */ | ||||
6924 | /* dn->digits, dn->lsu (and as required), and dn->exponent are */ | ||||
6925 | /* updated as necessary. dn->bits (sign) is unchanged. */ | ||||
6926 | /* */ | ||||
6927 | /* DEC_Rounded status is set if any digits are discarded. */ | ||||
6928 | /* DEC_Inexact status is set if any non-zero digits are discarded, or */ | ||||
6929 | /* incoming residue was non-0 (implies rounded) */ | ||||
6930 | /* ------------------------------------------------------------------ */ | ||||
6931 | /* mapping array: maps 0-9 to canonical residues, so that a residue */ | ||||
6932 | /* can be adjusted in the range [-1, +1] and achieve correct rounding */ | ||||
6933 | /* 0 1 2 3 4 5 6 7 8 9 */ | ||||
6934 | static const uByteuint8_t resmap[10]={0, 3, 3, 3, 3, 5, 7, 7, 7, 7}; | ||||
6935 | static void decSetCoeff(decNumber *dn, decContext *set, const Unituint8_t *lsu, | ||||
6936 | Intint32_t len, Intint32_t *residue, uIntuint32_t *status) { | ||||
6937 | Intint32_t discard; /* number of digits to discard */ | ||||
6938 | uIntuint32_t cut; /* cut point in Unit */ | ||||
6939 | const Unituint8_t *up; /* work */ | ||||
6940 | Unituint8_t *target; /* .. */ | ||||
6941 | Intint32_t count; /* .. */ | ||||
6942 | #if DECDPUN1<=4 | ||||
6943 | uIntuint32_t temp; /* .. */ | ||||
6944 | #endif | ||||
6945 | |||||
6946 | discard=len-set->digits; /* digits to discard */ | ||||
6947 | if (discard<=0) { /* no digits are being discarded */ | ||||
6948 | if (dn->lsu!=lsu) { /* copy needed */ | ||||
6949 | /* copy the coefficient array to the result number; no shift needed */ | ||||
6950 | count=len; /* avoids D2U */ | ||||
6951 | up=lsu; | ||||
6952 | for (target=dn->lsu; count>0; target++, up++, count-=DECDPUN1) | ||||
6953 | *target=*up; | ||||
6954 | dn->digits=len; /* set the new length */ | ||||
6955 | } | ||||
6956 | /* dn->exponent and residue are unchanged, record any inexactitude */ | ||||
6957 | if (*residue!=0) *status|=(DEC_Inexact0x00000020 | DEC_Rounded0x00000800); | ||||
6958 | return; | ||||
6959 | } | ||||
6960 | |||||
6961 | /* some digits must be discarded ... */ | ||||
6962 | dn->exponent+=discard; /* maintain numerical value */ | ||||
6963 | *status|=DEC_Rounded0x00000800; /* accumulate Rounded status */ | ||||
6964 | if (*residue>1) *residue=1; /* previous residue now to right, so reduce */ | ||||
6965 | |||||
6966 | if (discard>len) { /* everything, +1, is being discarded */ | ||||
6967 | /* guard digit is 0 */ | ||||
6968 | /* residue is all the number [NB could be all 0s] */ | ||||
6969 | if (*residue<=0) { /* not already positive */ | ||||
6970 | count=len; /* avoids D2U */ | ||||
6971 | for (up=lsu; count>0; up++, count-=DECDPUN1) if (*up!=0) { /* found non-0 */ | ||||
6972 | *residue=1; | ||||
6973 | break; /* no need to check any others */ | ||||
6974 | } | ||||
6975 | } | ||||
6976 | if (*residue!=0) *status|=DEC_Inexact0x00000020; /* record inexactitude */ | ||||
6977 | *dn->lsu=0; /* coefficient will now be 0 */ | ||||
6978 | dn->digits=1; /* .. */ | ||||
6979 | return; | ||||
6980 | } /* total discard */ | ||||
6981 | |||||
6982 | /* partial discard [most common case] */ | ||||
6983 | /* here, at least the first (most significant) discarded digit exists */ | ||||
6984 | |||||
6985 | /* spin up the number, noting residue during the spin, until get to */ | ||||
6986 | /* the Unit with the first discarded digit. When reach it, extract */ | ||||
6987 | /* it and remember its position */ | ||||
6988 | count=0; | ||||
6989 | for (up=lsu;; up++) { | ||||
6990 | count+=DECDPUN1; | ||||
6991 | if (count>=discard) break; /* full ones all checked */ | ||||
6992 | if (*up!=0) *residue=1; | ||||
6993 | } /* up */ | ||||
6994 | |||||
6995 | /* here up -> Unit with first discarded digit */ | ||||
6996 | cut=discard-(count-DECDPUN1)-1; | ||||
6997 | if (cut==DECDPUN1-1) { /* unit-boundary case (fast) */ | ||||
6998 | Unituint8_t half=(Unituint8_t)powersDECPOWERS[DECDPUN1]>>1; | ||||
6999 | /* set residue directly */ | ||||
7000 | if (*up>=half) { | ||||
7001 | if (*up>half) *residue=7; | ||||
7002 | else *residue+=5; /* add sticky bit */ | ||||
7003 | } | ||||
7004 | else { /* <half */ | ||||
7005 | if (*up!=0) *residue=3; /* [else is 0, leave as sticky bit] */ | ||||
7006 | } | ||||
7007 | if (set->digits<=0) { /* special for Quantize/Subnormal :-( */ | ||||
7008 | *dn->lsu=0; /* .. result is 0 */ | ||||
7009 | dn->digits=1; /* .. */ | ||||
7010 | } | ||||
7011 | else { /* shift to least */ | ||||
7012 | count=set->digits; /* now digits to end up with */ | ||||
7013 | dn->digits=count; /* set the new length */ | ||||
7014 | up++; /* move to next */ | ||||
7015 | /* on unit boundary, so shift-down copy loop is simple */ | ||||
7016 | for (target=dn->lsu; count>0; target++, up++, count-=DECDPUN1) | ||||
7017 | *target=*up; | ||||
7018 | } | ||||
7019 | } /* unit-boundary case */ | ||||
7020 | |||||
7021 | else { /* discard digit is in low digit(s), and not top digit */ | ||||
7022 | uIntuint32_t discard1; /* first discarded digit */ | ||||
7023 | uIntuint32_t quot, rem; /* for divisions */ | ||||
7024 | if (cut==0) quot=*up; /* is at bottom of unit */ | ||||
7025 | else /* cut>0 */ { /* it's not at bottom of unit */ | ||||
7026 | #if DECDPUN1<=4 | ||||
7027 | U_ASSERT(/* cut >= 0 &&*/ cut <= 4)(void)0; | ||||
7028 | quot=QUOT10(*up, cut)((((uint32_t)(*up)>>(cut))*multies[cut])>>17); | ||||
7029 | rem=*up-quot*powersDECPOWERS[cut]; | ||||
7030 | #else | ||||
7031 | rem=*up%powersDECPOWERS[cut]; | ||||
7032 | quot=*up/powersDECPOWERS[cut]; | ||||
7033 | #endif | ||||
7034 | if (rem!=0) *residue=1; | ||||
7035 | } | ||||
7036 | /* discard digit is now at bottom of quot */ | ||||
7037 | #if DECDPUN1<=4 | ||||
7038 | temp=(quot*6554)>>16; /* fast /10 */ | ||||
7039 | /* Vowels algorithm here not a win (9 instructions) */ | ||||
7040 | discard1=quot-X10(temp)(((temp)<<1)+((temp)<<3)); | ||||
7041 | quot=temp; | ||||
7042 | #else | ||||
7043 | discard1=quot%10; | ||||
7044 | quot=quot/10; | ||||
7045 | #endif | ||||
7046 | /* here, discard1 is the guard digit, and residue is everything */ | ||||
7047 | /* else [use mapping array to accumulate residue safely] */ | ||||
7048 | *residue+=resmap[discard1]; | ||||
7049 | cut++; /* update cut */ | ||||
7050 | /* here: up -> Unit of the array with bottom digit */ | ||||
7051 | /* cut is the division point for each Unit */ | ||||
7052 | /* quot holds the uncut high-order digits for the current unit */ | ||||
7053 | if (set->digits<=0) { /* special for Quantize/Subnormal :-( */ | ||||
7054 | *dn->lsu=0; /* .. result is 0 */ | ||||
7055 | dn->digits=1; /* .. */ | ||||
7056 | } | ||||
7057 | else { /* shift to least needed */ | ||||
7058 | count=set->digits; /* now digits to end up with */ | ||||
7059 | dn->digits=count; /* set the new length */ | ||||
7060 | /* shift-copy the coefficient array to the result number */ | ||||
7061 | for (target=dn->lsu; ; target++) { | ||||
7062 | *target=(Unituint8_t)quot; | ||||
7063 | count-=(DECDPUN1-cut); | ||||
7064 | if (count<=0) break; | ||||
7065 | up++; | ||||
7066 | quot=*up; | ||||
7067 | #if DECDPUN1<=4 | ||||
7068 | quot=QUOT10(quot, cut)((((uint32_t)(quot)>>(cut))*multies[cut])>>17); | ||||
7069 | rem=*up-quot*powersDECPOWERS[cut]; | ||||
7070 | #else | ||||
7071 | rem=quot%powersDECPOWERS[cut]; | ||||
7072 | quot=quot/powersDECPOWERS[cut]; | ||||
7073 | #endif | ||||
7074 | *target=(Unituint8_t)(*target+rem*powersDECPOWERS[DECDPUN1-cut]); | ||||
7075 | count-=cut; | ||||
7076 | if (count<=0) break; | ||||
7077 | } /* shift-copy loop */ | ||||
7078 | } /* shift to least */ | ||||
7079 | } /* not unit boundary */ | ||||
7080 | |||||
7081 | if (*residue!=0) *status|=DEC_Inexact0x00000020; /* record inexactitude */ | ||||
7082 | return; | ||||
7083 | } /* decSetCoeff */ | ||||
7084 | |||||
7085 | /* ------------------------------------------------------------------ */ | ||||
7086 | /* decApplyRound -- apply pending rounding to a number */ | ||||
7087 | /* */ | ||||
7088 | /* dn is the number, with space for set->digits digits */ | ||||
7089 | /* set is the context [for size and rounding mode] */ | ||||
7090 | /* residue indicates pending rounding, being any accumulated */ | ||||
7091 | /* guard and sticky information. It may be: */ | ||||
7092 | /* 6-9: rounding digit is >5 */ | ||||
7093 | /* 5: rounding digit is exactly half-way */ | ||||
7094 | /* 1-4: rounding digit is <5 and >0 */ | ||||
7095 | /* 0: the coefficient is exact */ | ||||
7096 | /* -1: as 1, but the hidden digits are subtractive, that */ | ||||
7097 | /* is, of the opposite sign to dn. In this case the */ | ||||
7098 | /* coefficient must be non-0. This case occurs when */ | ||||
7099 | /* subtracting a small number (which can be reduced to */ | ||||
7100 | /* a sticky bit); see decAddOp. */ | ||||
7101 | /* status is the status accumulator, as usual */ | ||||
7102 | /* */ | ||||
7103 | /* This routine applies rounding while keeping the length of the */ | ||||
7104 | /* coefficient constant. The exponent and status are unchanged */ | ||||
7105 | /* except if: */ | ||||
7106 | /* */ | ||||
7107 | /* -- the coefficient was increased and is all nines (in which */ | ||||
7108 | /* case Overflow could occur, and is handled directly here so */ | ||||
7109 | /* the caller does not need to re-test for overflow) */ | ||||
7110 | /* */ | ||||
7111 | /* -- the coefficient was decreased and becomes all nines (in which */ | ||||
7112 | /* case Underflow could occur, and is also handled directly). */ | ||||
7113 | /* */ | ||||
7114 | /* All fields in dn are updated as required. */ | ||||
7115 | /* */ | ||||
7116 | /* ------------------------------------------------------------------ */ | ||||
7117 | static void decApplyRound(decNumber *dn, decContext *set, Intint32_t residue, | ||||
7118 | uIntuint32_t *status) { | ||||
7119 | Intint32_t bump; /* 1 if coefficient needs to be incremented */ | ||||
7120 | /* -1 if coefficient needs to be decremented */ | ||||
7121 | |||||
7122 | if (residue==0) return; /* nothing to apply */ | ||||
7123 | |||||
7124 | bump=0; /* assume a smooth ride */ | ||||
7125 | |||||
7126 | /* now decide whether, and how, to round, depending on mode */ | ||||
7127 | switch (set->round) { | ||||
7128 | case DEC_ROUND_05UP: { /* round zero or five up (for reround) */ | ||||
7129 | /* This is the same as DEC_ROUND_DOWN unless there is a */ | ||||
7130 | /* positive residue and the lsd of dn is 0 or 5, in which case */ | ||||
7131 | /* it is bumped; when residue is <0, the number is therefore */ | ||||
7132 | /* bumped down unless the final digit was 1 or 6 (in which */ | ||||
7133 | /* case it is bumped down and then up -- a no-op) */ | ||||
7134 | Intint32_t lsd5=*dn->lsu%5; /* get lsd and quintate */ | ||||
7135 | if (residue<0 && lsd5!=1) bump=-1; | ||||
7136 | else if (residue>0 && lsd5==0) bump=1; | ||||
7137 | /* [bump==1 could be applied directly; use common path for clarity] */ | ||||
7138 | break;} /* r-05 */ | ||||
7139 | |||||
7140 | case DEC_ROUND_DOWN: { | ||||
7141 | /* no change, except if negative residue */ | ||||
7142 | if (residue<0) bump=-1; | ||||
7143 | break;} /* r-d */ | ||||
7144 | |||||
7145 | case DEC_ROUND_HALF_DOWN: { | ||||
7146 | if (residue>5) bump=1; | ||||
7147 | break;} /* r-h-d */ | ||||
7148 | |||||
7149 | case DEC_ROUND_HALF_EVEN: { | ||||
7150 | if (residue>5) bump=1; /* >0.5 goes up */ | ||||
7151 | else if (residue==5) { /* exactly 0.5000... */ | ||||
7152 | /* 0.5 goes up iff [new] lsd is odd */ | ||||
7153 | if (*dn->lsu & 0x01) bump=1; | ||||
7154 | } | ||||
7155 | break;} /* r-h-e */ | ||||
7156 | |||||
7157 | case DEC_ROUND_HALF_UP: { | ||||
7158 | if (residue>=5) bump=1; | ||||
7159 | break;} /* r-h-u */ | ||||
7160 | |||||
7161 | case DEC_ROUND_UP: { | ||||
7162 | if (residue>0) bump=1; | ||||
7163 | break;} /* r-u */ | ||||
7164 | |||||
7165 | case DEC_ROUND_CEILING: { | ||||
7166 | /* same as _UP for positive numbers, and as _DOWN for negatives */ | ||||
7167 | /* [negative residue cannot occur on 0] */ | ||||
7168 | if (decNumberIsNegative(dn)(((dn)->bits&0x80)!=0)) { | ||||
7169 | if (residue<0) bump=-1; | ||||
7170 | } | ||||
7171 | else { | ||||
7172 | if (residue>0) bump=1; | ||||
7173 | } | ||||
7174 | break;} /* r-c */ | ||||
7175 | |||||
7176 | case DEC_ROUND_FLOOR: { | ||||
7177 | /* same as _UP for negative numbers, and as _DOWN for positive */ | ||||
7178 | /* [negative residue cannot occur on 0] */ | ||||
7179 | if (!decNumberIsNegative(dn)(((dn)->bits&0x80)!=0)) { | ||||
7180 | if (residue<0) bump=-1; | ||||
7181 | } | ||||
7182 | else { | ||||
7183 | if (residue>0) bump=1; | ||||
7184 | } | ||||
7185 | break;} /* r-f */ | ||||
7186 | |||||
7187 | default: { /* e.g., DEC_ROUND_MAX */ | ||||
7188 | *status|=DEC_Invalid_context0x00000040; | ||||
7189 | #if DECTRACE0 || (DECCHECK0 && DECVERB1) | ||||
7190 | printf("Unknown rounding mode: %d\n", set->round); | ||||
7191 | #endif | ||||
7192 | break;} | ||||
7193 | } /* switch */ | ||||
7194 | |||||
7195 | /* now bump the number, up or down, if need be */ | ||||
7196 | if (bump==0) return; /* no action required */ | ||||
7197 | |||||
7198 | /* Simply use decUnitAddSub unless bumping up and the number is */ | ||||
7199 | /* all nines. In this special case set to 100... explicitly */ | ||||
7200 | /* and adjust the exponent by one (as otherwise could overflow */ | ||||
7201 | /* the array) */ | ||||
7202 | /* Similarly handle all-nines result if bumping down. */ | ||||
7203 | if (bump>0) { | ||||
7204 | Unituint8_t *up; /* work */ | ||||
7205 | uIntuint32_t count=dn->digits; /* digits to be checked */ | ||||
7206 | for (up=dn->lsu; ; up++) { | ||||
7207 | if (count<=DECDPUN1) { | ||||
7208 | /* this is the last Unit (the msu) */ | ||||
7209 | if (*up!=powersDECPOWERS[count]-1) break; /* not still 9s */ | ||||
7210 | /* here if it, too, is all nines */ | ||||
7211 | *up=(Unituint8_t)powersDECPOWERS[count-1]; /* here 999 -> 100 etc. */ | ||||
7212 | for (up=up-1; up>=dn->lsu; up--) *up=0; /* others all to 0 */ | ||||
7213 | dn->exponent++; /* and bump exponent */ | ||||
7214 | /* [which, very rarely, could cause Overflow...] */ | ||||
7215 | if ((dn->exponent+dn->digits)>set->emax+1) { | ||||
7216 | decSetOverflow(dn, set, status); | ||||
7217 | } | ||||
7218 | return; /* done */ | ||||
7219 | } | ||||
7220 | /* a full unit to check, with more to come */ | ||||
7221 | if (*up!=DECDPUNMAX9) break; /* not still 9s */ | ||||
7222 | count-=DECDPUN1; | ||||
7223 | } /* up */ | ||||
7224 | } /* bump>0 */ | ||||
7225 | else { /* -1 */ | ||||
7226 | /* here checking for a pre-bump of 1000... (leading 1, all */ | ||||
7227 | /* other digits zero) */ | ||||
7228 | Unituint8_t *up, *sup; /* work */ | ||||
7229 | uIntuint32_t count=dn->digits; /* digits to be checked */ | ||||
7230 | for (up=dn->lsu; ; up++) { | ||||
7231 | if (count<=DECDPUN1) { | ||||
7232 | /* this is the last Unit (the msu) */ | ||||
7233 | if (*up!=powersDECPOWERS[count-1]) break; /* not 100.. */ | ||||
7234 | /* here if have the 1000... case */ | ||||
7235 | sup=up; /* save msu pointer */ | ||||
7236 | *up=(Unituint8_t)powersDECPOWERS[count]-1; /* here 100 in msu -> 999 */ | ||||
7237 | /* others all to all-nines, too */ | ||||
7238 | for (up=up-1; up>=dn->lsu; up--) *up=(Unituint8_t)powersDECPOWERS[DECDPUN1]-1; | ||||
7239 | dn->exponent--; /* and bump exponent */ | ||||
7240 | |||||
7241 | /* iff the number was at the subnormal boundary (exponent=etiny) */ | ||||
7242 | /* then the exponent is now out of range, so it will in fact get */ | ||||
7243 | /* clamped to etiny and the final 9 dropped. */ | ||||
7244 | /* printf(">> emin=%d exp=%d sdig=%d\n", set->emin, */ | ||||
7245 | /* dn->exponent, set->digits); */ | ||||
7246 | if (dn->exponent+1==set->emin-set->digits+1) { | ||||
7247 | if (count==1 && dn->digits==1) *sup=0; /* here 9 -> 0[.9] */ | ||||
7248 | else { | ||||
7249 | *sup=(Unituint8_t)powersDECPOWERS[count-1]-1; /* here 999.. in msu -> 99.. */ | ||||
7250 | dn->digits--; | ||||
7251 | } | ||||
7252 | dn->exponent++; | ||||
7253 | *status|=DEC_Underflow0x00002000 | DEC_Subnormal0x00001000 | DEC_Inexact0x00000020 | DEC_Rounded0x00000800; | ||||
7254 | } | ||||
7255 | return; /* done */ | ||||
7256 | } | ||||
7257 | |||||
7258 | /* a full unit to check, with more to come */ | ||||
7259 | if (*up!=0) break; /* not still 0s */ | ||||
7260 | count-=DECDPUN1; | ||||
7261 | } /* up */ | ||||
7262 | |||||
7263 | } /* bump<0 */ | ||||
7264 | |||||
7265 | /* Actual bump needed. Do it. */ | ||||
7266 | decUnitAddSub(dn->lsu, D2U(dn->digits)((dn->digits)<=49?d2utable[dn->digits]:((dn->digits )+1 -1)/1), uarrone, 1, 0, dn->lsu, bump); | ||||
7267 | } /* decApplyRound */ | ||||
7268 | |||||
7269 | #if DECSUBSET0 | ||||
7270 | /* ------------------------------------------------------------------ */ | ||||
7271 | /* decFinish -- finish processing a number */ | ||||
7272 | /* */ | ||||
7273 | /* dn is the number */ | ||||
7274 | /* set is the context */ | ||||
7275 | /* residue is the rounding accumulator (as in decApplyRound) */ | ||||
7276 | /* status is the accumulator */ | ||||
7277 | /* */ | ||||
7278 | /* This finishes off the current number by: */ | ||||
7279 | /* 1. If not extended: */ | ||||
7280 | /* a. Converting a zero result to clean '0' */ | ||||
7281 | /* b. Reducing positive exponents to 0, if would fit in digits */ | ||||
7282 | /* 2. Checking for overflow and subnormals (always) */ | ||||
7283 | /* Note this is just Finalize when no subset arithmetic. */ | ||||
7284 | /* All fields are updated as required. */ | ||||
7285 | /* ------------------------------------------------------------------ */ | ||||
7286 | static void decFinish(decNumber *dn, decContext *set, Int *residue,decFinalize(decNumber *dn,decContext *set,int32_t *residue,uint32_t *status) | ||||
7287 | uInt *status)decFinalize(decNumber *dn,decContext *set,int32_t *residue,uint32_t *status) { | ||||
7288 | if (!set->extended) { | ||||
7289 | if ISZERO(dn)(*(dn)->lsu==0 && (dn)->digits==1 && (( (dn)->bits&(0x40|0x20|0x10))==0)) { /* value is zero */ | ||||
7290 | dn->exponent=0; /* clean exponent .. */ | ||||
7291 | dn->bits=0; /* .. and sign */ | ||||
7292 | return; /* no error possible */ | ||||
7293 | } | ||||
7294 | if (dn->exponent>=0) { /* non-negative exponent */ | ||||
7295 | /* >0; reduce to integer if possible */ | ||||
7296 | if (set->digits >= (dn->exponent+dn->digits)) { | ||||
7297 | dn->digits=decShiftToMost(dn->lsu, dn->digits, dn->exponent); | ||||
7298 | dn->exponent=0; | ||||
7299 | } | ||||
7300 | } | ||||
7301 | } /* !extended */ | ||||
7302 | |||||
7303 | decFinalize(dn, set, residue, status); | ||||
7304 | } /* decFinish */ | ||||
7305 | #endif | ||||
7306 | |||||
7307 | /* ------------------------------------------------------------------ */ | ||||
7308 | /* decFinalize -- final check, clamp, and round of a number */ | ||||
7309 | /* */ | ||||
7310 | /* dn is the number */ | ||||
7311 | /* set is the context */ | ||||
7312 | /* residue is the rounding accumulator (as in decApplyRound) */ | ||||
7313 | /* status is the status accumulator */ | ||||
7314 | /* */ | ||||
7315 | /* This finishes off the current number by checking for subnormal */ | ||||
7316 | /* results, applying any pending rounding, checking for overflow, */ | ||||
7317 | /* and applying any clamping. */ | ||||
7318 | /* Underflow and overflow conditions are raised as appropriate. */ | ||||
7319 | /* All fields are updated as required. */ | ||||
7320 | /* ------------------------------------------------------------------ */ | ||||
7321 | static void decFinalize(decNumber *dn, decContext *set, Intint32_t *residue, | ||||
7322 | uIntuint32_t *status) { | ||||
7323 | Intint32_t shift; /* shift needed if clamping */ | ||||
7324 | Intint32_t tinyexp=set->emin-dn->digits+1; /* precalculate subnormal boundary */ | ||||
7325 | |||||
7326 | /* Must be careful, here, when checking the exponent as the */ | ||||
7327 | /* adjusted exponent could overflow 31 bits [because it may already */ | ||||
7328 | /* be up to twice the expected]. */ | ||||
7329 | |||||
7330 | /* First test for subnormal. This must be done before any final */ | ||||
7331 | /* round as the result could be rounded to Nmin or 0. */ | ||||
7332 | if (dn->exponent<=tinyexp) { /* prefilter */ | ||||
7333 | Intint32_t comp; | ||||
7334 | decNumber nmin; | ||||
7335 | /* A very nasty case here is dn == Nmin and residue<0 */ | ||||
7336 | if (dn->exponent<tinyexp) { | ||||
7337 | /* Go handle subnormals; this will apply round if needed. */ | ||||
7338 | decSetSubnormal(dn, set, residue, status); | ||||
7339 | return; | ||||
7340 | } | ||||
7341 | /* Equals case: only subnormal if dn=Nmin and negative residue */ | ||||
7342 | uprv_decNumberZerouprv_decNumberZero_71(&nmin); | ||||
7343 | nmin.lsu[0]=1; | ||||
7344 | nmin.exponent=set->emin; | ||||
7345 | comp=decCompare(dn, &nmin, 1); /* (signless compare) */ | ||||
7346 | if (comp==BADINT(int32_t)0x80000000) { /* oops */ | ||||
7347 | *status|=DEC_Insufficient_storage0x00000010; /* abandon... */ | ||||
7348 | return; | ||||
7349 | } | ||||
7350 | if (*residue<0 && comp==0) { /* neg residue and dn==Nmin */ | ||||
7351 | decApplyRound(dn, set, *residue, status); /* might force down */ | ||||
7352 | decSetSubnormal(dn, set, residue, status); | ||||
7353 | return; | ||||
7354 | } | ||||
7355 | } | ||||
7356 | |||||
7357 | /* now apply any pending round (this could raise overflow). */ | ||||
7358 | if (*residue!=0) decApplyRound(dn, set, *residue, status); | ||||
7359 | |||||
7360 | /* Check for overflow [redundant in the 'rare' case] or clamp */ | ||||
7361 | if (dn->exponent<=set->emax-set->digits+1) return; /* neither needed */ | ||||
7362 | |||||
7363 | |||||
7364 | /* here when might have an overflow or clamp to do */ | ||||
7365 | if (dn->exponent>set->emax-dn->digits+1) { /* too big */ | ||||
7366 | decSetOverflow(dn, set, status); | ||||
7367 | return; | ||||
7368 | } | ||||
7369 | /* here when the result is normal but in clamp range */ | ||||
7370 | if (!set->clamp) return; | ||||
7371 | |||||
7372 | /* here when need to apply the IEEE exponent clamp (fold-down) */ | ||||
7373 | shift=dn->exponent-(set->emax-set->digits+1); | ||||
7374 | |||||
7375 | /* shift coefficient (if non-zero) */ | ||||
7376 | if (!ISZERO(dn)(*(dn)->lsu==0 && (dn)->digits==1 && (( (dn)->bits&(0x40|0x20|0x10))==0))) { | ||||
7377 | dn->digits=decShiftToMost(dn->lsu, dn->digits, shift); | ||||
7378 | } | ||||
7379 | dn->exponent-=shift; /* adjust the exponent to match */ | ||||
7380 | *status|=DEC_Clamped0x00000400; /* and record the dirty deed */ | ||||
7381 | return; | ||||
7382 | } /* decFinalize */ | ||||
7383 | |||||
7384 | /* ------------------------------------------------------------------ */ | ||||
7385 | /* decSetOverflow -- set number to proper overflow value */ | ||||
7386 | /* */ | ||||
7387 | /* dn is the number (used for sign [only] and result) */ | ||||
7388 | /* set is the context [used for the rounding mode, etc.] */ | ||||
7389 | /* status contains the current status to be updated */ | ||||
7390 | /* */ | ||||
7391 | /* This sets the sign of a number and sets its value to either */ | ||||
7392 | /* Infinity or the maximum finite value, depending on the sign of */ | ||||
7393 | /* dn and the rounding mode, following IEEE 754 rules. */ | ||||
7394 | /* ------------------------------------------------------------------ */ | ||||
7395 | static void decSetOverflow(decNumber *dn, decContext *set, uIntuint32_t *status) { | ||||
7396 | Flaguint8_t needmax=0; /* result is maximum finite value */ | ||||
7397 | uByteuint8_t sign=dn->bits&DECNEG0x80; /* clean and save sign bit */ | ||||
7398 | |||||
7399 | if (ISZERO(dn)(*(dn)->lsu==0 && (dn)->digits==1 && (( (dn)->bits&(0x40|0x20|0x10))==0))) { /* zero does not overflow magnitude */ | ||||
7400 | Intint32_t emax=set->emax; /* limit value */ | ||||
7401 | if (set->clamp) emax-=set->digits-1; /* lower if clamping */ | ||||
7402 | if (dn->exponent>emax) { /* clamp required */ | ||||
7403 | dn->exponent=emax; | ||||
7404 | *status|=DEC_Clamped0x00000400; | ||||
7405 | } | ||||
7406 | return; | ||||
7407 | } | ||||
7408 | |||||
7409 | uprv_decNumberZerouprv_decNumberZero_71(dn); | ||||
7410 | switch (set->round) { | ||||
7411 | case DEC_ROUND_DOWN: { | ||||
7412 | needmax=1; /* never Infinity */ | ||||
7413 | break;} /* r-d */ | ||||
7414 | case DEC_ROUND_05UP: { | ||||
7415 | needmax=1; /* never Infinity */ | ||||
7416 | break;} /* r-05 */ | ||||
7417 | case DEC_ROUND_CEILING: { | ||||
7418 | if (sign) needmax=1; /* Infinity if non-negative */ | ||||
7419 | break;} /* r-c */ | ||||
7420 | case DEC_ROUND_FLOOR: { | ||||
7421 | if (!sign) needmax=1; /* Infinity if negative */ | ||||
7422 | break;} /* r-f */ | ||||
7423 | default: break; /* Infinity in all other cases */ | ||||
7424 | } | ||||
7425 | if (needmax) { | ||||
7426 | decSetMaxValue(dn, set); | ||||
7427 | dn->bits=sign; /* set sign */ | ||||
7428 | } | ||||
7429 | else dn->bits=sign|DECINF0x40; /* Value is +/-Infinity */ | ||||
7430 | *status|=DEC_Overflow0x00000200 | DEC_Inexact0x00000020 | DEC_Rounded0x00000800; | ||||
7431 | } /* decSetOverflow */ | ||||
7432 | |||||
7433 | /* ------------------------------------------------------------------ */ | ||||
7434 | /* decSetMaxValue -- set number to +Nmax (maximum normal value) */ | ||||
7435 | /* */ | ||||
7436 | /* dn is the number to set */ | ||||
7437 | /* set is the context [used for digits and emax] */ | ||||
7438 | /* */ | ||||
7439 | /* This sets the number to the maximum positive value. */ | ||||
7440 | /* ------------------------------------------------------------------ */ | ||||
7441 | static void decSetMaxValue(decNumber *dn, decContext *set) { | ||||
7442 | Unituint8_t *up; /* work */ | ||||
7443 | Intint32_t count=set->digits; /* nines to add */ | ||||
7444 | dn->digits=count; | ||||
7445 | /* fill in all nines to set maximum value */ | ||||
7446 | for (up=dn->lsu; ; up++) { | ||||
7447 | if (count>DECDPUN1) *up=DECDPUNMAX9; /* unit full o'nines */ | ||||
7448 | else { /* this is the msu */ | ||||
7449 | *up=(Unituint8_t)(powersDECPOWERS[count]-1); | ||||
7450 | break; | ||||
7451 | } | ||||
7452 | count-=DECDPUN1; /* filled those digits */ | ||||
7453 | } /* up */ | ||||
7454 | dn->bits=0; /* + sign */ | ||||
7455 | dn->exponent=set->emax-set->digits+1; | ||||
7456 | } /* decSetMaxValue */ | ||||
7457 | |||||
7458 | /* ------------------------------------------------------------------ */ | ||||
7459 | /* decSetSubnormal -- process value whose exponent is <Emin */ | ||||
7460 | /* */ | ||||
7461 | /* dn is the number (used as input as well as output; it may have */ | ||||
7462 | /* an allowed subnormal value, which may need to be rounded) */ | ||||
7463 | /* set is the context [used for the rounding mode] */ | ||||
7464 | /* residue is any pending residue */ | ||||
7465 | /* status contains the current status to be updated */ | ||||
7466 | /* */ | ||||
7467 | /* If subset mode, set result to zero and set Underflow flags. */ | ||||
7468 | /* */ | ||||
7469 | /* Value may be zero with a low exponent; this does not set Subnormal */ | ||||
7470 | /* but the exponent will be clamped to Etiny. */ | ||||
7471 | /* */ | ||||
7472 | /* Otherwise ensure exponent is not out of range, and round as */ | ||||
7473 | /* necessary. Underflow is set if the result is Inexact. */ | ||||
7474 | /* ------------------------------------------------------------------ */ | ||||
7475 | static void decSetSubnormal(decNumber *dn, decContext *set, Intint32_t *residue, | ||||
7476 | uIntuint32_t *status) { | ||||
7477 | decContext workset; /* work */ | ||||
7478 | Intint32_t etiny, adjust; /* .. */ | ||||
7479 | |||||
7480 | #if DECSUBSET0 | ||||
7481 | /* simple set to zero and 'hard underflow' for subset */ | ||||
7482 | if (!set->extended) { | ||||
7483 | uprv_decNumberZerouprv_decNumberZero_71(dn); | ||||
7484 | /* always full overflow */ | ||||
7485 | *status|=DEC_Underflow0x00002000 | DEC_Subnormal0x00001000 | DEC_Inexact0x00000020 | DEC_Rounded0x00000800; | ||||
7486 | return; | ||||
7487 | } | ||||
7488 | #endif | ||||
7489 | |||||
7490 | /* Full arithmetic -- allow subnormals, rounded to minimum exponent */ | ||||
7491 | /* (Etiny) if needed */ | ||||
7492 | etiny=set->emin-(set->digits-1); /* smallest allowed exponent */ | ||||
7493 | |||||
7494 | if ISZERO(dn)(*(dn)->lsu==0 && (dn)->digits==1 && (( (dn)->bits&(0x40|0x20|0x10))==0)) { /* value is zero */ | ||||
7495 | /* residue can never be non-zero here */ | ||||
7496 | #if DECCHECK0 | ||||
7497 | if (*residue!=0) { | ||||
7498 | printf("++ Subnormal 0 residue %ld\n", (LI)*residue); | ||||
7499 | *status|=DEC_Invalid_operation0x00000080; | ||||
7500 | } | ||||
7501 | #endif | ||||
7502 | if (dn->exponent<etiny) { /* clamp required */ | ||||
7503 | dn->exponent=etiny; | ||||
7504 | *status|=DEC_Clamped0x00000400; | ||||
7505 | } | ||||
7506 | return; | ||||
7507 | } | ||||
7508 | |||||
7509 | *status|=DEC_Subnormal0x00001000; /* have a non-zero subnormal */ | ||||
7510 | adjust=etiny-dn->exponent; /* calculate digits to remove */ | ||||
7511 | if (adjust<=0) { /* not out of range; unrounded */ | ||||
7512 | /* residue can never be non-zero here, except in the Nmin-residue */ | ||||
7513 | /* case (which is a subnormal result), so can take fast-path here */ | ||||
7514 | /* it may already be inexact (from setting the coefficient) */ | ||||
7515 | if (*status&DEC_Inexact0x00000020) *status|=DEC_Underflow0x00002000; | ||||
7516 | return; | ||||
7517 | } | ||||
7518 | |||||
7519 | /* adjust>0, so need to rescale the result so exponent becomes Etiny */ | ||||
7520 | /* [this code is similar to that in rescale] */ | ||||
7521 | workset=*set; /* clone rounding, etc. */ | ||||
7522 | workset.digits=dn->digits-adjust; /* set requested length */ | ||||
7523 | workset.emin-=adjust; /* and adjust emin to match */ | ||||
7524 | /* [note that the latter can be <1, here, similar to Rescale case] */ | ||||
7525 | decSetCoeff(dn, &workset, dn->lsu, dn->digits, residue, status); | ||||
7526 | decApplyRound(dn, &workset, *residue, status); | ||||
7527 | |||||
7528 | /* Use 754 default rule: Underflow is set iff Inexact */ | ||||
7529 | /* [independent of whether trapped] */ | ||||
7530 | if (*status&DEC_Inexact0x00000020) *status|=DEC_Underflow0x00002000; | ||||
7531 | |||||
7532 | /* if rounded up a 999s case, exponent will be off by one; adjust */ | ||||
7533 | /* back if so [it will fit, because it was shortened earlier] */ | ||||
7534 | if (dn->exponent>etiny) { | ||||
7535 | dn->digits=decShiftToMost(dn->lsu, dn->digits, 1); | ||||
7536 | dn->exponent--; /* (re)adjust the exponent. */ | ||||
7537 | } | ||||
7538 | |||||
7539 | /* if rounded to zero, it is by definition clamped... */ | ||||
7540 | if (ISZERO(dn)(*(dn)->lsu==0 && (dn)->digits==1 && (( (dn)->bits&(0x40|0x20|0x10))==0))) *status|=DEC_Clamped0x00000400; | ||||
7541 | } /* decSetSubnormal */ | ||||
7542 | |||||
7543 | /* ------------------------------------------------------------------ */ | ||||
7544 | /* decCheckMath - check entry conditions for a math function */ | ||||
7545 | /* */ | ||||
7546 | /* This checks the context and the operand */ | ||||
7547 | /* */ | ||||
7548 | /* rhs is the operand to check */ | ||||
7549 | /* set is the context to check */ | ||||
7550 | /* status is unchanged if both are good */ | ||||
7551 | /* */ | ||||
7552 | /* returns non-zero if status is changed, 0 otherwise */ | ||||
7553 | /* */ | ||||
7554 | /* Restrictions enforced: */ | ||||
7555 | /* */ | ||||
7556 | /* digits, emax, and -emin in the context must be less than */ | ||||
7557 | /* DEC_MAX_MATH (999999), and A must be within these bounds if */ | ||||
7558 | /* non-zero. Invalid_operation is set in the status if a */ | ||||
7559 | /* restriction is violated. */ | ||||
7560 | /* ------------------------------------------------------------------ */ | ||||
7561 | static uIntuint32_t decCheckMath(const decNumber *rhs, decContext *set, | ||||
7562 | uIntuint32_t *status) { | ||||
7563 | uIntuint32_t save=*status; /* record */ | ||||
7564 | if (set->digits>DEC_MAX_MATH999999 | ||||
7565 | || set->emax>DEC_MAX_MATH999999 | ||||
7566 | || -set->emin>DEC_MAX_MATH999999) *status|=DEC_Invalid_context0x00000040; | ||||
7567 | else if ((rhs->digits>DEC_MAX_MATH999999 | ||||
7568 | || rhs->exponent+rhs->digits>DEC_MAX_MATH999999+1 | ||||
7569 | || rhs->exponent+rhs->digits<2*(1-DEC_MAX_MATH999999)) | ||||
7570 | && !ISZERO(rhs)(*(rhs)->lsu==0 && (rhs)->digits==1 && ( ((rhs)->bits&(0x40|0x20|0x10))==0))) *status|=DEC_Invalid_operation0x00000080; | ||||
7571 | return (*status!=save); | ||||
7572 | } /* decCheckMath */ | ||||
7573 | |||||
7574 | /* ------------------------------------------------------------------ */ | ||||
7575 | /* decGetInt -- get integer from a number */ | ||||
7576 | /* */ | ||||
7577 | /* dn is the number [which will not be altered] */ | ||||
7578 | /* */ | ||||
7579 | /* returns one of: */ | ||||
7580 | /* BADINT if there is a non-zero fraction */ | ||||
7581 | /* the converted integer */ | ||||
7582 | /* BIGEVEN if the integer is even and magnitude > 2*10**9 */ | ||||
7583 | /* BIGODD if the integer is odd and magnitude > 2*10**9 */ | ||||
7584 | /* */ | ||||
7585 | /* This checks and gets a whole number from the input decNumber. */ | ||||
7586 | /* The sign can be determined from dn by the caller when BIGEVEN or */ | ||||
7587 | /* BIGODD is returned. */ | ||||
7588 | /* ------------------------------------------------------------------ */ | ||||
7589 | static Intint32_t decGetInt(const decNumber *dn) { | ||||
7590 | Intint32_t theInt; /* result accumulator */ | ||||
7591 | const Unituint8_t *up; /* work */ | ||||
7592 | Intint32_t got; /* digits (real or not) processed */ | ||||
7593 | Intint32_t ilength=dn->digits+dn->exponent; /* integral length */ | ||||
7594 | Flaguint8_t neg=decNumberIsNegative(dn)(((dn)->bits&0x80)!=0); /* 1 if -ve */ | ||||
7595 | |||||
7596 | /* The number must be an integer that fits in 10 digits */ | ||||
7597 | /* Assert, here, that 10 is enough for any rescale Etiny */ | ||||
7598 | #if DEC_MAX_EMAX999999999 > 999999999 | ||||
7599 | #error GetInt may need updating [for Emax] | ||||
7600 | #endif | ||||
7601 | #if DEC_MIN_EMIN-999999999 < -999999999 | ||||
7602 | #error GetInt may need updating [for Emin] | ||||
7603 | #endif | ||||
7604 | if (ISZERO(dn)(*(dn)->lsu==0 && (dn)->digits==1 && (( (dn)->bits&(0x40|0x20|0x10))==0))) return 0; /* zeros are OK, with any exponent */ | ||||
7605 | |||||
7606 | up=dn->lsu; /* ready for lsu */ | ||||
7607 | theInt=0; /* ready to accumulate */ | ||||
7608 | if (dn->exponent>=0) { /* relatively easy */ | ||||
7609 | /* no fractional part [usual]; allow for positive exponent */ | ||||
7610 | got=dn->exponent; | ||||
7611 | } | ||||
7612 | else { /* -ve exponent; some fractional part to check and discard */ | ||||
7613 | Intint32_t count=-dn->exponent; /* digits to discard */ | ||||
7614 | /* spin up whole units until reach the Unit with the unit digit */ | ||||
7615 | for (; count>=DECDPUN1; up++) { | ||||
7616 | if (*up!=0) return BADINT(int32_t)0x80000000; /* non-zero Unit to discard */ | ||||
7617 | count-=DECDPUN1; | ||||
7618 | } | ||||
7619 | if (count==0) got=0; /* [a multiple of DECDPUN] */ | ||||
7620 | else { /* [not multiple of DECDPUN] */ | ||||
7621 | Intint32_t rem; /* work */ | ||||
7622 | /* slice off fraction digits and check for non-zero */ | ||||
7623 | #if DECDPUN1<=4 | ||||
7624 | theInt=QUOT10(*up, count)((((uint32_t)(*up)>>(count))*multies[count])>>17); | ||||
7625 | rem=*up-theInt*powersDECPOWERS[count]; | ||||
7626 | #else | ||||
7627 | rem=*up%powersDECPOWERS[count]; /* slice off discards */ | ||||
7628 | theInt=*up/powersDECPOWERS[count]; | ||||
7629 | #endif | ||||
7630 | if (rem!=0) return BADINT(int32_t)0x80000000; /* non-zero fraction */ | ||||
7631 | /* it looks good */ | ||||
7632 | got=DECDPUN1-count; /* number of digits so far */ | ||||
7633 | up++; /* ready for next */ | ||||
7634 | } | ||||
7635 | } | ||||
7636 | /* now it's known there's no fractional part */ | ||||
7637 | |||||
7638 | /* tricky code now, to accumulate up to 9.3 digits */ | ||||
7639 | if (got==0) {theInt=*up; got+=DECDPUN1; up++;} /* ensure lsu is there */ | ||||
7640 | |||||
7641 | if (ilength<11) { | ||||
7642 | Intint32_t save=theInt; | ||||
7643 | /* collect any remaining unit(s) */ | ||||
7644 | for (; got<ilength; up++) { | ||||
7645 | theInt+=*up*powersDECPOWERS[got]; | ||||
7646 | got+=DECDPUN1; | ||||
7647 | } | ||||
7648 | if (ilength==10) { /* need to check for wrap */ | ||||
7649 | if (theInt/(Intint32_t)powersDECPOWERS[got-DECDPUN1]!=(Intint32_t)*(up-1)) ilength=11; | ||||
7650 | /* [that test also disallows the BADINT result case] */ | ||||
7651 | else if (neg && theInt>1999999997) ilength=11; | ||||
7652 | else if (!neg && theInt>999999999) ilength=11; | ||||
7653 | if (ilength==11) theInt=save; /* restore correct low bit */ | ||||
7654 | } | ||||
7655 | } | ||||
7656 | |||||
7657 | if (ilength>10) { /* too big */ | ||||
7658 | if (theInt&1) return BIGODD(int32_t)0x80000003; /* bottom bit 1 */ | ||||
7659 | return BIGEVEN(int32_t)0x80000002; /* bottom bit 0 */ | ||||
7660 | } | ||||
7661 | |||||
7662 | if (neg) theInt=-theInt; /* apply sign */ | ||||
7663 | return theInt; | ||||
7664 | } /* decGetInt */ | ||||
7665 | |||||
7666 | /* ------------------------------------------------------------------ */ | ||||
7667 | /* decDecap -- decapitate the coefficient of a number */ | ||||
7668 | /* */ | ||||
7669 | /* dn is the number to be decapitated */ | ||||
7670 | /* drop is the number of digits to be removed from the left of dn; */ | ||||
7671 | /* this must be <= dn->digits (if equal, the coefficient is */ | ||||
7672 | /* set to 0) */ | ||||
7673 | /* */ | ||||
7674 | /* Returns dn; dn->digits will be <= the initial digits less drop */ | ||||
7675 | /* (after removing drop digits there may be leading zero digits */ | ||||
7676 | /* which will also be removed). Only dn->lsu and dn->digits change. */ | ||||
7677 | /* ------------------------------------------------------------------ */ | ||||
7678 | static decNumber *decDecap(decNumber *dn, Intint32_t drop) { | ||||
7679 | Unituint8_t *msu; /* -> target cut point */ | ||||
7680 | Intint32_t cut; /* work */ | ||||
7681 | if (drop>=dn->digits) { /* losing the whole thing */ | ||||
7682 | #if DECCHECK0 | ||||
7683 | if (drop>dn->digits) | ||||
7684 | printf("decDecap called with drop>digits [%ld>%ld]\n", | ||||
7685 | (LI)drop, (LI)dn->digits); | ||||
7686 | #endif | ||||
7687 | dn->lsu[0]=0; | ||||
7688 | dn->digits=1; | ||||
7689 | return dn; | ||||
7690 | } | ||||
7691 | msu=dn->lsu+D2U(dn->digits-drop)((dn->digits-drop)<=49?d2utable[dn->digits-drop]:((dn ->digits-drop)+1 -1)/1)-1; /* -> likely msu */ | ||||
7692 | cut=MSUDIGITS(dn->digits-drop)((dn->digits-drop)-(((dn->digits-drop)<=49?d2utable[ dn->digits-drop]:((dn->digits-drop)+1 -1)/1)-1)*1); /* digits to be in use in msu */ | ||||
7693 | if (cut!=DECDPUN1) *msu%=powersDECPOWERS[cut]; /* clear left digits */ | ||||
7694 | /* that may have left leading zero digits, so do a proper count... */ | ||||
7695 | dn->digits=decGetDigits(dn->lsu, static_cast<int32_t>(msu-dn->lsu+1)); | ||||
7696 | return dn; | ||||
7697 | } /* decDecap */ | ||||
7698 | |||||
7699 | /* ------------------------------------------------------------------ */ | ||||
7700 | /* decBiStr -- compare string with pairwise options */ | ||||
7701 | /* */ | ||||
7702 | /* targ is the string to compare */ | ||||
7703 | /* str1 is one of the strings to compare against (length may be 0) */ | ||||
7704 | /* str2 is the other; it must be the same length as str1 */ | ||||
7705 | /* */ | ||||
7706 | /* returns 1 if strings compare equal, (that is, it is the same */ | ||||
7707 | /* length as str1 and str2, and each character of targ is in either */ | ||||
7708 | /* str1 or str2 in the corresponding position), or 0 otherwise */ | ||||
7709 | /* */ | ||||
7710 | /* This is used for generic caseless compare, including the awkward */ | ||||
7711 | /* case of the Turkish dotted and dotless Is. Use as (for example): */ | ||||
7712 | /* if (decBiStr(test, "mike", "MIKE")) ... */ | ||||
7713 | /* ------------------------------------------------------------------ */ | ||||
7714 | static Flaguint8_t decBiStr(const char *targ, const char *str1, const char *str2) { | ||||
7715 | for (;;targ++, str1++, str2++) { | ||||
7716 | if (*targ!=*str1 && *targ!=*str2) return 0; | ||||
7717 | /* *targ has a match in one (or both, if terminator) */ | ||||
7718 | if (*targ=='\0') break; | ||||
7719 | } /* forever */ | ||||
7720 | return 1; | ||||
7721 | } /* decBiStr */ | ||||
7722 | |||||
7723 | /* ------------------------------------------------------------------ */ | ||||
7724 | /* decNaNs -- handle NaN operand or operands */ | ||||
7725 | /* */ | ||||
7726 | /* res is the result number */ | ||||
7727 | /* lhs is the first operand */ | ||||
7728 | /* rhs is the second operand, or NULL if none */ | ||||
7729 | /* context is used to limit payload length */ | ||||
7730 | /* status contains the current status */ | ||||
7731 | /* returns res in case convenient */ | ||||
7732 | /* */ | ||||
7733 | /* Called when one or both operands is a NaN, and propagates the */ | ||||
7734 | /* appropriate result to res. When an sNaN is found, it is changed */ | ||||
7735 | /* to a qNaN and Invalid operation is set. */ | ||||
7736 | /* ------------------------------------------------------------------ */ | ||||
7737 | static decNumber * decNaNs(decNumber *res, const decNumber *lhs, | ||||
7738 | const decNumber *rhs, decContext *set, | ||||
7739 | uIntuint32_t *status) { | ||||
7740 | /* This decision tree ends up with LHS being the source pointer, */ | ||||
7741 | /* and status updated if need be */ | ||||
7742 | if (lhs->bits & DECSNAN0x10) | ||||
7743 | *status|=DEC_Invalid_operation0x00000080 | DEC_sNaN0x40000000; | ||||
7744 | else if (rhs==NULL__null); | ||||
7745 | else if (rhs->bits & DECSNAN0x10) { | ||||
7746 | lhs=rhs; | ||||
7747 | *status|=DEC_Invalid_operation0x00000080 | DEC_sNaN0x40000000; | ||||
7748 | } | ||||
7749 | else if (lhs->bits & DECNAN0x20); | ||||
7750 | else lhs=rhs; | ||||
7751 | |||||
7752 | /* propagate the payload */ | ||||
7753 | if (lhs->digits<=set->digits) uprv_decNumberCopyuprv_decNumberCopy_71(res, lhs); /* easy */ | ||||
7754 | else { /* too long */ | ||||
7755 | const Unituint8_t *ul; | ||||
7756 | Unituint8_t *ur, *uresp1; | ||||
7757 | /* copy safe number of units, then decapitate */ | ||||
7758 | res->bits=lhs->bits; /* need sign etc. */ | ||||
7759 | uresp1=res->lsu+D2U(set->digits)((set->digits)<=49?d2utable[set->digits]:((set->digits )+1 -1)/1); | ||||
7760 | for (ur=res->lsu, ul=lhs->lsu; ur<uresp1; ur++, ul++) *ur=*ul; | ||||
7761 | res->digits=D2U(set->digits)((set->digits)<=49?d2utable[set->digits]:((set->digits )+1 -1)/1)*DECDPUN1; | ||||
7762 | /* maybe still too long */ | ||||
7763 | if (res->digits>set->digits) decDecap(res, res->digits-set->digits); | ||||
7764 | } | ||||
7765 | |||||
7766 | res->bits&=~DECSNAN0x10; /* convert any sNaN to NaN, while */ | ||||
7767 | res->bits|=DECNAN0x20; /* .. preserving sign */ | ||||
7768 | res->exponent=0; /* clean exponent */ | ||||
7769 | /* [coefficient was copied/decapitated] */ | ||||
7770 | return res; | ||||
7771 | } /* decNaNs */ | ||||
7772 | |||||
7773 | /* ------------------------------------------------------------------ */ | ||||
7774 | /* decStatus -- apply non-zero status */ | ||||
7775 | /* */ | ||||
7776 | /* dn is the number to set if error */ | ||||
7777 | /* status contains the current status (not yet in context) */ | ||||
7778 | /* set is the context */ | ||||
7779 | /* */ | ||||
7780 | /* If the status is an error status, the number is set to a NaN, */ | ||||
7781 | /* unless the error was an overflow, divide-by-zero, or underflow, */ | ||||
7782 | /* in which case the number will have already been set. */ | ||||
7783 | /* */ | ||||
7784 | /* The context status is then updated with the new status. Note that */ | ||||
7785 | /* this may raise a signal, so control may never return from this */ | ||||
7786 | /* routine (hence resources must be recovered before it is called). */ | ||||
7787 | /* ------------------------------------------------------------------ */ | ||||
7788 | static void decStatus(decNumber *dn, uIntuint32_t status, decContext *set) { | ||||
7789 | if (status & DEC_NaNs(0x00000001 | 0x00000004 | 0x00000008 | 0x00000010 | 0x00000040 | 0x00000080)) { /* error status -> NaN */ | ||||
7790 | /* if cause was an sNaN, clear and propagate [NaN is already set up] */ | ||||
7791 | if (status & DEC_sNaN0x40000000) status&=~DEC_sNaN0x40000000; | ||||
7792 | else { | ||||
7793 | uprv_decNumberZerouprv_decNumberZero_71(dn); /* other error: clean throughout */ | ||||
7794 | dn->bits=DECNAN0x20; /* and make a quiet NaN */ | ||||
7795 | } | ||||
7796 | } | ||||
7797 | uprv_decContextSetStatusuprv_decContextSetStatus_71(set, status); /* [may not return] */ | ||||
7798 | return; | ||||
7799 | } /* decStatus */ | ||||
7800 | |||||
7801 | /* ------------------------------------------------------------------ */ | ||||
7802 | /* decGetDigits -- count digits in a Units array */ | ||||
7803 | /* */ | ||||
7804 | /* uar is the Unit array holding the number (this is often an */ | ||||
7805 | /* accumulator of some sort) */ | ||||
7806 | /* len is the length of the array in units [>=1] */ | ||||
7807 | /* */ | ||||
7808 | /* returns the number of (significant) digits in the array */ | ||||
7809 | /* */ | ||||
7810 | /* All leading zeros are excluded, except the last if the array has */ | ||||
7811 | /* only zero Units. */ | ||||
7812 | /* ------------------------------------------------------------------ */ | ||||
7813 | /* This may be called twice during some operations. */ | ||||
7814 | static Intint32_t decGetDigits(Unituint8_t *uar, Intint32_t len) { | ||||
7815 | Unituint8_t *up=uar+(len-1); /* -> msu */ | ||||
7816 | Intint32_t digits=(len-1)*DECDPUN1+1; /* possible digits excluding msu */ | ||||
7817 | #if DECDPUN1>4 | ||||
7818 | uIntuint32_t const *pow; /* work */ | ||||
7819 | #endif | ||||
7820 | /* (at least 1 in final msu) */ | ||||
7821 | #if DECCHECK0 | ||||
7822 | if (len<1) printf("decGetDigits called with len<1 [%ld]\n", (LI)len); | ||||
7823 | #endif | ||||
7824 | |||||
7825 | for (; up>=uar; up--) { | ||||
7826 | if (*up==0) { /* unit is all 0s */ | ||||
7827 | if (digits==1) break; /* a zero has one digit */ | ||||
7828 | digits-=DECDPUN1; /* adjust for 0 unit */ | ||||
7829 | continue;} | ||||
7830 | /* found the first (most significant) non-zero Unit */ | ||||
7831 | #if DECDPUN1>1 /* not done yet */ | ||||
7832 | if (*up<10) break; /* is 1-9 */ | ||||
7833 | digits++; | ||||
7834 | #if DECDPUN1>2 /* not done yet */ | ||||
7835 | if (*up<100) break; /* is 10-99 */ | ||||
7836 | digits++; | ||||
7837 | #if DECDPUN1>3 /* not done yet */ | ||||
7838 | if (*up<1000) break; /* is 100-999 */ | ||||
7839 | digits++; | ||||
7840 | #if DECDPUN1>4 /* count the rest ... */ | ||||
7841 | for (pow=&powersDECPOWERS[4]; *up>=*pow; pow++) digits++; | ||||
7842 | #endif | ||||
7843 | #endif | ||||
7844 | #endif | ||||
7845 | #endif | ||||
7846 | break; | ||||
7847 | } /* up */ | ||||
7848 | return digits; | ||||
7849 | } /* decGetDigits */ | ||||
7850 | |||||
7851 | #if DECTRACE0 | DECCHECK0 | ||||
7852 | /* ------------------------------------------------------------------ */ | ||||
7853 | /* decNumberShow -- display a number [debug aid] */ | ||||
7854 | /* dn is the number to show */ | ||||
7855 | /* */ | ||||
7856 | /* Shows: sign, exponent, coefficient (msu first), digits */ | ||||
7857 | /* or: sign, special-value */ | ||||
7858 | /* ------------------------------------------------------------------ */ | ||||
7859 | /* this is public so other modules can use it */ | ||||
7860 | void uprv_decNumberShow(const decNumber *dn) { | ||||
7861 | const Unituint8_t *up; /* work */ | ||||
7862 | uIntuint32_t u, d; /* .. */ | ||||
7863 | Intint32_t cut; /* .. */ | ||||
7864 | char isign='+'; /* main sign */ | ||||
7865 | if (dn==NULL__null) { | ||||
7866 | printf("NULL\n"); | ||||
7867 | return;} | ||||
7868 | if (decNumberIsNegative(dn)(((dn)->bits&0x80)!=0)) isign='-'; | ||||
7869 | printf(" >> %c ", isign); | ||||
7870 | if (dn->bits&DECSPECIAL(0x40|0x20|0x10)) { /* Is a special value */ | ||||
7871 | if (decNumberIsInfinite(dn)(((dn)->bits&0x40)!=0)) printf("Infinity"); | ||||
7872 | else { /* a NaN */ | ||||
7873 | if (dn->bits&DECSNAN0x10) printf("sNaN"); /* signalling NaN */ | ||||
7874 | else printf("NaN"); | ||||
7875 | } | ||||
7876 | /* if coefficient and exponent are 0, no more to do */ | ||||
7877 | if (dn->exponent==0 && dn->digits==1 && *dn->lsu==0) { | ||||
7878 | printf("\n"); | ||||
7879 | return;} | ||||
7880 | /* drop through to report other information */ | ||||
7881 | printf(" "); | ||||
7882 | } | ||||
7883 | |||||
7884 | /* now carefully display the coefficient */ | ||||
7885 | up=dn->lsu+D2U(dn->digits)((dn->digits)<=49?d2utable[dn->digits]:((dn->digits )+1 -1)/1)-1; /* msu */ | ||||
7886 | printf("%ld", (LI)*up); | ||||
7887 | for (up=up-1; up>=dn->lsu; up--) { | ||||
7888 | u=*up; | ||||
7889 | printf(":"); | ||||
7890 | for (cut=DECDPUN1-1; cut>=0; cut--) { | ||||
7891 | d=u/powersDECPOWERS[cut]; | ||||
7892 | u-=d*powersDECPOWERS[cut]; | ||||
7893 | printf("%ld", (LI)d); | ||||
7894 | } /* cut */ | ||||
7895 | } /* up */ | ||||
7896 | if (dn->exponent!=0) { | ||||
7897 | char esign='+'; | ||||
7898 | if (dn->exponent<0) esign='-'; | ||||
7899 | printf(" E%c%ld", esign, (LI)abs(dn->exponent)); | ||||
7900 | } | ||||
7901 | printf(" [%ld]\n", (LI)dn->digits); | ||||
7902 | } /* decNumberShow */ | ||||
7903 | #endif | ||||
7904 | |||||
7905 | #if DECTRACE0 || DECCHECK0 | ||||
7906 | /* ------------------------------------------------------------------ */ | ||||
7907 | /* decDumpAr -- display a unit array [debug/check aid] */ | ||||
7908 | /* name is a single-character tag name */ | ||||
7909 | /* ar is the array to display */ | ||||
7910 | /* len is the length of the array in Units */ | ||||
7911 | /* ------------------------------------------------------------------ */ | ||||
7912 | static void decDumpAr(char name, const Unituint8_t *ar, Intint32_t len) { | ||||
7913 | Intint32_t i; | ||||
7914 | const char *spec; | ||||
7915 | #if DECDPUN1==9 | ||||
7916 | spec="%09d "; | ||||
7917 | #elif DECDPUN1==8 | ||||
7918 | spec="%08d "; | ||||
7919 | #elif DECDPUN1==7 | ||||
7920 | spec="%07d "; | ||||
7921 | #elif DECDPUN1==6 | ||||
7922 | spec="%06d "; | ||||
7923 | #elif DECDPUN1==5 | ||||
7924 | spec="%05d "; | ||||
7925 | #elif DECDPUN1==4 | ||||
7926 | spec="%04d "; | ||||
7927 | #elif DECDPUN1==3 | ||||
7928 | spec="%03d "; | ||||
7929 | #elif DECDPUN1==2 | ||||
7930 | spec="%02d "; | ||||
7931 | #else | ||||
7932 | spec="%d "; | ||||
7933 | #endif | ||||
7934 | printf(" :%c: ", name); | ||||
7935 | for (i=len-1; i>=0; i--) { | ||||
7936 | if (i==len-1) printf("%ld ", (LI)ar[i]); | ||||
7937 | else printf(spec, ar[i]); | ||||
7938 | } | ||||
7939 | printf("\n"); | ||||
7940 | return;} | ||||
7941 | #endif | ||||
7942 | |||||
7943 | #if DECCHECK0 | ||||
7944 | /* ------------------------------------------------------------------ */ | ||||
7945 | /* decCheckOperands -- check operand(s) to a routine */ | ||||
7946 | /* res is the result structure (not checked; it will be set to */ | ||||
7947 | /* quiet NaN if error found (and it is not NULL)) */ | ||||
7948 | /* lhs is the first operand (may be DECUNRESU) */ | ||||
7949 | /* rhs is the second (may be DECUNUSED) */ | ||||
7950 | /* set is the context (may be DECUNCONT) */ | ||||
7951 | /* returns 0 if both operands, and the context are clean, or 1 */ | ||||
7952 | /* otherwise (in which case the context will show an error, */ | ||||
7953 | /* unless NULL). Note that res is not cleaned; caller should */ | ||||
7954 | /* handle this so res=NULL case is safe. */ | ||||
7955 | /* The caller is expected to abandon immediately if 1 is returned. */ | ||||
7956 | /* ------------------------------------------------------------------ */ | ||||
7957 | static Flaguint8_t decCheckOperands(decNumber *res, const decNumber *lhs, | ||||
7958 | const decNumber *rhs, decContext *set) { | ||||
7959 | Flaguint8_t bad=0; | ||||
7960 | if (set==NULL__null) { /* oops; hopeless */ | ||||
7961 | #if DECTRACE0 || DECVERB1 | ||||
7962 | printf("Reference to context is NULL.\n"); | ||||
7963 | #endif | ||||
7964 | bad=1; | ||||
7965 | return 1;} | ||||
7966 | else if (set!=DECUNCONT | ||||
7967 | && (set->digits<1 || set->round>=DEC_ROUND_MAX)) { | ||||
7968 | bad=1; | ||||
7969 | #if DECTRACE0 || DECVERB1 | ||||
7970 | printf("Bad context [digits=%ld round=%ld].\n", | ||||
7971 | (LI)set->digits, (LI)set->round); | ||||
7972 | #endif | ||||
7973 | } | ||||
7974 | else { | ||||
7975 | if (res==NULL__null) { | ||||
7976 | bad=1; | ||||
7977 | #if DECTRACE0 | ||||
7978 | /* this one not DECVERB as standard tests include NULL */ | ||||
7979 | printf("Reference to result is NULL.\n"); | ||||
7980 | #endif | ||||
7981 | } | ||||
7982 | if (!bad && lhs!=DECUNUSED) bad=(decCheckNumber(lhs)); | ||||
7983 | if (!bad && rhs!=DECUNUSED) bad=(decCheckNumber(rhs)); | ||||
7984 | } | ||||
7985 | if (bad) { | ||||
7986 | if (set!=DECUNCONT) uprv_decContextSetStatusuprv_decContextSetStatus_71(set, DEC_Invalid_operation0x00000080); | ||||
7987 | if (res!=DECUNRESU && res!=NULL__null) { | ||||
7988 | uprv_decNumberZerouprv_decNumberZero_71(res); | ||||
7989 | res->bits=DECNAN0x20; /* qNaN */ | ||||
7990 | } | ||||
7991 | } | ||||
7992 | return bad; | ||||
7993 | } /* decCheckOperands */ | ||||
7994 | |||||
7995 | /* ------------------------------------------------------------------ */ | ||||
7996 | /* decCheckNumber -- check a number */ | ||||
7997 | /* dn is the number to check */ | ||||
7998 | /* returns 0 if the number is clean, or 1 otherwise */ | ||||
7999 | /* */ | ||||
8000 | /* The number is considered valid if it could be a result from some */ | ||||
8001 | /* operation in some valid context. */ | ||||
8002 | /* ------------------------------------------------------------------ */ | ||||
8003 | static Flaguint8_t decCheckNumber(const decNumber *dn) { | ||||
8004 | const Unituint8_t *up; /* work */ | ||||
8005 | uIntuint32_t maxuint; /* .. */ | ||||
8006 | Intint32_t ae, d, digits; /* .. */ | ||||
8007 | Intint32_t emin, emax; /* .. */ | ||||
8008 | |||||
8009 | if (dn==NULL__null) { /* hopeless */ | ||||
8010 | #if DECTRACE0 | ||||
8011 | /* this one not DECVERB as standard tests include NULL */ | ||||
8012 | printf("Reference to decNumber is NULL.\n"); | ||||
8013 | #endif | ||||
8014 | return 1;} | ||||
8015 | |||||
8016 | /* check special values */ | ||||
8017 | if (dn->bits & DECSPECIAL(0x40|0x20|0x10)) { | ||||
8018 | if (dn->exponent!=0) { | ||||
8019 | #if DECTRACE0 || DECVERB1 | ||||
8020 | printf("Exponent %ld (not 0) for a special value [%02x].\n", | ||||
8021 | (LI)dn->exponent, dn->bits); | ||||
8022 | #endif | ||||
8023 | return 1;} | ||||
8024 | |||||
8025 | /* 2003.09.08: NaNs may now have coefficients, so next tests Inf only */ | ||||
8026 | if (decNumberIsInfinite(dn)(((dn)->bits&0x40)!=0)) { | ||||
8027 | if (dn->digits!=1) { | ||||
8028 | #if DECTRACE0 || DECVERB1 | ||||
8029 | printf("Digits %ld (not 1) for an infinity.\n", (LI)dn->digits); | ||||
8030 | #endif | ||||
8031 | return 1;} | ||||
8032 | if (*dn->lsu!=0) { | ||||
8033 | #if DECTRACE0 || DECVERB1 | ||||
8034 | printf("LSU %ld (not 0) for an infinity.\n", (LI)*dn->lsu); | ||||
8035 | #endif | ||||
8036 | decDumpAr('I', dn->lsu, D2U(dn->digits)((dn->digits)<=49?d2utable[dn->digits]:((dn->digits )+1 -1)/1)); | ||||
8037 | return 1;} | ||||
8038 | } /* Inf */ | ||||
8039 | /* 2002.12.26: negative NaNs can now appear through proposed IEEE */ | ||||
8040 | /* concrete formats (decimal64, etc.). */ | ||||
8041 | return 0; | ||||
8042 | } | ||||
8043 | |||||
8044 | /* check the coefficient */ | ||||
8045 | if (dn->digits<1 || dn->digits>DECNUMMAXP999999999) { | ||||
8046 | #if DECTRACE0 || DECVERB1 | ||||
8047 | printf("Digits %ld in number.\n", (LI)dn->digits); | ||||
8048 | #endif | ||||
8049 | return 1;} | ||||
8050 | |||||
8051 | d=dn->digits; | ||||
8052 | |||||
8053 | for (up=dn->lsu; d>0; up++) { | ||||
8054 | if (d>DECDPUN1) maxuint=DECDPUNMAX9; | ||||
8055 | else { /* reached the msu */ | ||||
8056 | maxuint=powersDECPOWERS[d]-1; | ||||
8057 | if (dn->digits>1 && *up<powersDECPOWERS[d-1]) { | ||||
8058 | #if DECTRACE0 || DECVERB1 | ||||
8059 | printf("Leading 0 in number.\n"); | ||||
8060 | uprv_decNumberShow(dn); | ||||
8061 | #endif | ||||
8062 | return 1;} | ||||
8063 | } | ||||
8064 | if (*up>maxuint) { | ||||
8065 | #if DECTRACE0 || DECVERB1 | ||||
8066 | printf("Bad Unit [%08lx] in %ld-digit number at offset %ld [maxuint %ld].\n", | ||||
8067 | (LI)*up, (LI)dn->digits, (LI)(up-dn->lsu), (LI)maxuint); | ||||
8068 | #endif | ||||
8069 | return 1;} | ||||
8070 | d-=DECDPUN1; | ||||
8071 | } | ||||
8072 | |||||
8073 | /* check the exponent. Note that input operands can have exponents */ | ||||
8074 | /* which are out of the set->emin/set->emax and set->digits range */ | ||||
8075 | /* (just as they can have more digits than set->digits). */ | ||||
8076 | ae=dn->exponent+dn->digits-1; /* adjusted exponent */ | ||||
8077 | emax=DECNUMMAXE999999999; | ||||
8078 | emin=DECNUMMINE-999999999; | ||||
8079 | digits=DECNUMMAXP999999999; | ||||
8080 | if (ae<emin-(digits-1)) { | ||||
8081 | #if DECTRACE0 || DECVERB1 | ||||
8082 | printf("Adjusted exponent underflow [%ld].\n", (LI)ae); | ||||
8083 | uprv_decNumberShow(dn); | ||||
8084 | #endif | ||||
8085 | return 1;} | ||||
8086 | if (ae>+emax) { | ||||
8087 | #if DECTRACE0 || DECVERB1 | ||||
8088 | printf("Adjusted exponent overflow [%ld].\n", (LI)ae); | ||||
8089 | uprv_decNumberShow(dn); | ||||
8090 | #endif | ||||
8091 | return 1;} | ||||
8092 | |||||
8093 | return 0; /* it's OK */ | ||||
8094 | } /* decCheckNumber */ | ||||
8095 | |||||
8096 | /* ------------------------------------------------------------------ */ | ||||
8097 | /* decCheckInexact -- check a normal finite inexact result has digits */ | ||||
8098 | /* dn is the number to check */ | ||||
8099 | /* set is the context (for status and precision) */ | ||||
8100 | /* sets Invalid operation, etc., if some digits are missing */ | ||||
8101 | /* [this check is not made for DECSUBSET compilation or when */ | ||||
8102 | /* subnormal is not set] */ | ||||
8103 | /* ------------------------------------------------------------------ */ | ||||
8104 | static void decCheckInexact(const decNumber *dn, decContext *set) { | ||||
8105 | #if !DECSUBSET0 && DECEXTFLAG1 | ||||
8106 | if ((set->status & (DEC_Inexact0x00000020|DEC_Subnormal0x00001000))==DEC_Inexact0x00000020 | ||||
8107 | && (set->digits!=dn->digits) && !(dn->bits & DECSPECIAL(0x40|0x20|0x10))) { | ||||
8108 | #if DECTRACE0 || DECVERB1 | ||||
8109 | printf("Insufficient digits [%ld] on normal Inexact result.\n", | ||||
8110 | (LI)dn->digits); | ||||
8111 | uprv_decNumberShow(dn); | ||||
8112 | #endif | ||||
8113 | uprv_decContextSetStatusuprv_decContextSetStatus_71(set, DEC_Invalid_operation0x00000080); | ||||
8114 | } | ||||
8115 | #else | ||||
8116 | /* next is a noop for quiet compiler */ | ||||
8117 | if (dn!=NULL__null && dn->digits==0) set->status|=DEC_Invalid_operation0x00000080; | ||||
8118 | #endif | ||||
8119 | return; | ||||
8120 | } /* decCheckInexact */ | ||||
8121 | #endif | ||||
8122 | |||||
8123 | #if DECALLOC0 | ||||
8124 | #undef malloc | ||||
8125 | #undef free | ||||
8126 | /* ------------------------------------------------------------------ */ | ||||
8127 | /* decMalloc -- accountable allocation routine */ | ||||
8128 | /* n is the number of bytes to allocate */ | ||||
8129 | /* */ | ||||
8130 | /* Semantics is the same as the stdlib malloc routine, but bytes */ | ||||
8131 | /* allocated are accounted for globally, and corruption fences are */ | ||||
8132 | /* added before and after the 'actual' storage. */ | ||||
8133 | /* ------------------------------------------------------------------ */ | ||||
8134 | /* This routine allocates storage with an extra twelve bytes; 8 are */ | ||||
8135 | /* at the start and hold: */ | ||||
8136 | /* 0-3 the original length requested */ | ||||
8137 | /* 4-7 buffer corruption detection fence (DECFENCE, x4) */ | ||||
8138 | /* The 4 bytes at the end also hold a corruption fence (DECFENCE, x4) */ | ||||
8139 | /* ------------------------------------------------------------------ */ | ||||
8140 | static void *decMalloc(size_t n) { | ||||
8141 | uIntuint32_t size=n+12; /* true size */ | ||||
8142 | void *alloc; /* -> allocated storage */ | ||||
8143 | uByteuint8_t *b, *b0; /* work */ | ||||
8144 | uIntuint32_t uiwork; /* for macros */ | ||||
8145 | |||||
8146 | alloc=malloc(size)uprv_malloc_71(size); /* -> allocated storage */ | ||||
8147 | if (alloc==NULL__null) return NULL__null; /* out of strorage */ | ||||
8148 | b0=(uByteuint8_t *)alloc; /* as bytes */ | ||||
8149 | decAllocBytes+=n; /* account for storage */ | ||||
8150 | UBFROMUI(alloc, n)(uiwork=(n), memcpy(alloc, (void *)&uiwork, 4), uiwork); /* save n */ | ||||
8151 | /* printf(" alloc ++ dAB: %ld (%ld)\n", (LI)decAllocBytes, (LI)n); */ | ||||
8152 | for (b=b0+4; b<b0+8; b++) *b=DECFENCE; | ||||
8153 | for (b=b0+n+8; b<b0+n+12; b++) *b=DECFENCE; | ||||
8154 | return b0+8; /* -> play area */ | ||||
8155 | } /* decMalloc */ | ||||
8156 | |||||
8157 | /* ------------------------------------------------------------------ */ | ||||
8158 | /* decFree -- accountable free routine */ | ||||
8159 | /* alloc is the storage to free */ | ||||
8160 | /* */ | ||||
8161 | /* Semantics is the same as the stdlib malloc routine, except that */ | ||||
8162 | /* the global storage accounting is updated and the fences are */ | ||||
8163 | /* checked to ensure that no routine has written 'out of bounds'. */ | ||||
8164 | /* ------------------------------------------------------------------ */ | ||||
8165 | /* This routine first checks that the fences have not been corrupted. */ | ||||
8166 | /* It then frees the storage using the 'truw' storage address (that */ | ||||
8167 | /* is, offset by 8). */ | ||||
8168 | /* ------------------------------------------------------------------ */ | ||||
8169 | static void decFree(void *alloc) { | ||||
8170 | uIntuint32_t n; /* original length */ | ||||
8171 | uByteuint8_t *b, *b0; /* work */ | ||||
8172 | uIntuint32_t uiwork; /* for macros */ | ||||
8173 | |||||
8174 | if (alloc==NULL__null) return; /* allowed; it's a nop */ | ||||
8175 | b0=(uByteuint8_t *)alloc; /* as bytes */ | ||||
8176 | b0-=8; /* -> true start of storage */ | ||||
8177 | n=UBTOUI(b0)(memcpy((void *)&uiwork, b0, 4), uiwork); /* lift length */ | ||||
8178 | for (b=b0+4; b<b0+8; b++) if (*b!=DECFENCE) | ||||
8179 | printf("=== Corrupt byte [%02x] at offset %d from %ld ===\n", *b, | ||||
8180 | b-b0-8, (LI)b0); | ||||
8181 | for (b=b0+n+8; b<b0+n+12; b++) if (*b!=DECFENCE) | ||||
8182 | printf("=== Corrupt byte [%02x] at offset +%d from %ld, n=%ld ===\n", *b, | ||||
8183 | b-b0-8, (LI)b0, (LI)n); | ||||
8184 | free(b0)uprv_free_71(b0); /* drop the storage */ | ||||
8185 | decAllocBytes-=n; /* account for storage */ | ||||
8186 | /* printf(" free -- dAB: %d (%d)\n", decAllocBytes, -n); */ | ||||
8187 | } /* decFree */ | ||||
8188 | #define malloc(a)uprv_malloc_71(a) decMalloc(a) | ||||
8189 | #define free(a)uprv_free_71(a) decFree(a) | ||||
8190 | #endif |