Bug Summary

File:out/../deps/icu-small/source/i18n/number_decimalquantity.cpp
Warning:line 1197, column 27
The result of the right shift is undefined due to shifting by '64', which is greater or equal to the width of type 'uint64_t'

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-unknown-linux-gnu -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name number_decimalquantity.cpp -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -mrelocation-model pic -pic-level 2 -pic-is-pie -mframe-pointer=all -fmath-errno -ffp-contract=on -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -fcoverage-compilation-dir=/home/maurizio/node-v18.6.0/out -resource-dir /usr/local/lib/clang/16.0.0 -D V8_DEPRECATION_WARNINGS -D V8_IMMINENT_DEPRECATION_WARNINGS -D _GLIBCXX_USE_CXX11_ABI=1 -D NODE_OPENSSL_CONF_NAME=nodejs_conf -D NODE_OPENSSL_HAS_QUIC -D __STDC_FORMAT_MACROS -D OPENSSL_NO_PINSHARED -D OPENSSL_THREADS -D U_COMMON_IMPLEMENTATION=1 -D U_I18N_IMPLEMENTATION=1 -D U_IO_IMPLEMENTATION=1 -D U_TOOLUTIL_IMPLEMENTATION=1 -D U_ATTRIBUTE_DEPRECATED= -D _CRT_SECURE_NO_DEPRECATE= -D U_STATIC_IMPLEMENTATION=1 -D UCONFIG_NO_SERVICE=1 -D U_ENABLE_DYLOAD=0 -D U_HAVE_STD_STRING=1 -D UCONFIG_NO_BREAK_ITERATION=0 -I ../deps/icu-small/source/common -I ../deps/icu-small/source/i18n -I ../deps/icu-small/source/tools/toolutil -internal-isystem /usr/lib/gcc/x86_64-redhat-linux/8/../../../../include/c++/8 -internal-isystem /usr/lib/gcc/x86_64-redhat-linux/8/../../../../include/c++/8/x86_64-redhat-linux -internal-isystem /usr/lib/gcc/x86_64-redhat-linux/8/../../../../include/c++/8/backward -internal-isystem /usr/local/lib/clang/16.0.0/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-redhat-linux/8/../../../../x86_64-redhat-linux/include -internal-externc-isystem /include -internal-externc-isystem /usr/include -O3 -Wno-unused-parameter -Wno-deprecated-declarations -Wno-strict-aliasing -std=gnu++17 -fdeprecated-macro -fdebug-compilation-dir=/home/maurizio/node-v18.6.0/out -ferror-limit 19 -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -analyzer-output=html -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2022-08-22-142216-507842-1 -x c++ ../deps/icu-small/source/i18n/number_decimalquantity.cpp
1// © 2017 and later: Unicode, Inc. and others.
2// License & terms of use: http://www.unicode.org/copyright.html
3
4#include "unicode/utypes.h"
5
6#if !UCONFIG_NO_FORMATTING0
7
8#include <cstdlib>
9#include <cmath>
10#include <limits>
11#include <stdlib.h>
12
13#include "unicode/plurrule.h"
14#include "cmemory.h"
15#include "number_decnum.h"
16#include "putilimp.h"
17#include "number_decimalquantity.h"
18#include "number_roundingutils.h"
19#include "double-conversion.h"
20#include "charstr.h"
21#include "number_utils.h"
22#include "uassert.h"
23#include "util.h"
24
25using namespace icu;
26using namespace icu::number;
27using namespace icu::number::impl;
28
29using icu::double_conversion::DoubleToStringConverter;
30using icu::double_conversion::StringToDoubleConverter;
31
32namespace {
33
34int8_t NEGATIVE_FLAG = 1;
35int8_t INFINITY_FLAG = 2;
36int8_t NAN_FLAG = 4;
37
38/** Helper function for safe subtraction (no overflow). */
39inline int32_t safeSubtract(int32_t a, int32_t b) {
40 // Note: In C++, signed integer subtraction is undefined behavior.
41 int32_t diff = static_cast<int32_t>(static_cast<uint32_t>(a) - static_cast<uint32_t>(b));
42 if (b < 0 && diff < a) { return INT32_MAX(2147483647); }
43 if (b > 0 && diff > a) { return INT32_MIN(-2147483647-1); }
44 return diff;
45}
46
47static double DOUBLE_MULTIPLIERS[] = {
48 1e0,
49 1e1,
50 1e2,
51 1e3,
52 1e4,
53 1e5,
54 1e6,
55 1e7,
56 1e8,
57 1e9,
58 1e10,
59 1e11,
60 1e12,
61 1e13,
62 1e14,
63 1e15,
64 1e16,
65 1e17,
66 1e18,
67 1e19,
68 1e20,
69 1e21};
70
71} // namespace
72
73icu::IFixedDecimal::~IFixedDecimal() = default;
74
75DecimalQuantity::DecimalQuantity() {
76 setBcdToZero();
77 flags = 0;
78}
79
80DecimalQuantity::~DecimalQuantity() {
81 if (usingBytes) {
82 uprv_freeuprv_free_71(fBCD.bcdBytes.ptr);
83 fBCD.bcdBytes.ptr = nullptr;
84 usingBytes = false;
85 }
86}
87
88DecimalQuantity::DecimalQuantity(const DecimalQuantity &other) {
89 *this = other;
90}
91
92DecimalQuantity::DecimalQuantity(DecimalQuantity&& src) U_NOEXCEPTnoexcept {
93 *this = std::move(src);
94}
95
96DecimalQuantity &DecimalQuantity::operator=(const DecimalQuantity &other) {
97 if (this == &other) {
98 return *this;
99 }
100 copyBcdFrom(other);
101 copyFieldsFrom(other);
102 return *this;
103}
104
105DecimalQuantity& DecimalQuantity::operator=(DecimalQuantity&& src) U_NOEXCEPTnoexcept {
106 if (this == &src) {
107 return *this;
108 }
109 moveBcdFrom(src);
110 copyFieldsFrom(src);
111 return *this;
112}
113
114void DecimalQuantity::copyFieldsFrom(const DecimalQuantity& other) {
115 bogus = other.bogus;
116 lReqPos = other.lReqPos;
117 rReqPos = other.rReqPos;
118 scale = other.scale;
119 precision = other.precision;
120 flags = other.flags;
121 origDouble = other.origDouble;
122 origDelta = other.origDelta;
123 isApproximate = other.isApproximate;
124 exponent = other.exponent;
125}
126
127void DecimalQuantity::clear() {
128 lReqPos = 0;
129 rReqPos = 0;
130 flags = 0;
131 setBcdToZero(); // sets scale, precision, hasDouble, origDouble, origDelta, and BCD data
132}
133
134void DecimalQuantity::setMinInteger(int32_t minInt) {
135 // Validation should happen outside of DecimalQuantity, e.g., in the Precision class.
136 U_ASSERT(minInt >= 0)(void)0;
137
138 // Special behavior: do not set minInt to be less than what is already set.
139 // This is so significant digits rounding can set the integer length.
140 if (minInt < lReqPos) {
141 minInt = lReqPos;
142 }
143
144 // Save values into internal state
145 lReqPos = minInt;
146}
147
148void DecimalQuantity::setMinFraction(int32_t minFrac) {
149 // Validation should happen outside of DecimalQuantity, e.g., in the Precision class.
150 U_ASSERT(minFrac >= 0)(void)0;
151
152 // Save values into internal state
153 // Negation is safe for minFrac/maxFrac because -Integer.MAX_VALUE > Integer.MIN_VALUE
154 rReqPos = -minFrac;
155}
156
157void DecimalQuantity::applyMaxInteger(int32_t maxInt) {
158 // Validation should happen outside of DecimalQuantity, e.g., in the Precision class.
159 U_ASSERT(maxInt >= 0)(void)0;
160
161 if (precision == 0) {
162 return;
163 }
164
165 if (maxInt <= scale) {
166 setBcdToZero();
167 return;
168 }
169
170 int32_t magnitude = getMagnitude();
171 if (maxInt <= magnitude) {
172 popFromLeft(magnitude - maxInt + 1);
173 compact();
174 }
175}
176
177uint64_t DecimalQuantity::getPositionFingerprint() const {
178 uint64_t fingerprint = 0;
179 fingerprint ^= (lReqPos << 16);
180 fingerprint ^= (static_cast<uint64_t>(rReqPos) << 32);
181 return fingerprint;
182}
183
184void DecimalQuantity::roundToIncrement(
185 uint64_t increment,
186 digits_t magnitude,
187 RoundingMode roundingMode,
188 UErrorCode& status) {
189 // Do not call this method with an increment having only a 1 or a 5 digit!
190 // Use a more efficient call to either roundToMagnitude() or roundToNickel().
191 // Check a few popular rounding increments; a more thorough check is in Java.
192 U_ASSERT(increment != 1)(void)0;
193 U_ASSERT(increment != 5)(void)0;
194
195 DecimalQuantity incrementDQ;
196 incrementDQ.setToLong(increment);
197 incrementDQ.adjustMagnitude(magnitude);
198 DecNum incrementDN;
199 incrementDQ.toDecNum(incrementDN, status);
200 if (U_FAILURE(status)) { return; }
201
202 // Divide this DecimalQuantity by the increment, round, then multiply back.
203 divideBy(incrementDN, status);
204 if (U_FAILURE(status)) { return; }
205 roundToMagnitude(0, roundingMode, status);
206 if (U_FAILURE(status)) { return; }
207 multiplyBy(incrementDN, status);
208 if (U_FAILURE(status)) { return; }
209}
210
211void DecimalQuantity::multiplyBy(const DecNum& multiplicand, UErrorCode& status) {
212 if (isZeroish()) {
213 return;
214 }
215 // Convert to DecNum, multiply, and convert back.
216 DecNum decnum;
217 toDecNum(decnum, status);
218 if (U_FAILURE(status)) { return; }
219 decnum.multiplyBy(multiplicand, status);
220 if (U_FAILURE(status)) { return; }
221 setToDecNum(decnum, status);
222}
223
224void DecimalQuantity::divideBy(const DecNum& divisor, UErrorCode& status) {
225 if (isZeroish()) {
226 return;
227 }
228 // Convert to DecNum, multiply, and convert back.
229 DecNum decnum;
230 toDecNum(decnum, status);
231 if (U_FAILURE(status)) { return; }
232 decnum.divideBy(divisor, status);
233 if (U_FAILURE(status)) { return; }
234 setToDecNum(decnum, status);
235}
236
237void DecimalQuantity::negate() {
238 flags ^= NEGATIVE_FLAG;
239}
240
241int32_t DecimalQuantity::getMagnitude() const {
242 U_ASSERT(precision != 0)(void)0;
243 return scale + precision - 1;
244}
245
246bool DecimalQuantity::adjustMagnitude(int32_t delta) {
247 if (precision != 0) {
248 // i.e., scale += delta; origDelta += delta
249 bool overflow = uprv_add32_overflowuprv_add32_overflow_71(scale, delta, &scale);
250 overflow = uprv_add32_overflowuprv_add32_overflow_71(origDelta, delta, &origDelta) || overflow;
251 // Make sure that precision + scale won't overflow, either
252 int32_t dummy;
253 overflow = overflow || uprv_add32_overflowuprv_add32_overflow_71(scale, precision, &dummy);
254 return overflow;
255 }
256 return false;
257}
258
259int32_t DecimalQuantity::adjustToZeroScale() {
260 int32_t retval = scale;
261 scale = 0;
262 return retval;
263}
264
265double DecimalQuantity::getPluralOperand(PluralOperand operand) const {
266 // If this assertion fails, you need to call roundToInfinity() or some other rounding method.
267 // See the comment at the top of this file explaining the "isApproximate" field.
268 U_ASSERT(!isApproximate)(void)0;
269
270 switch (operand) {
271 case PLURAL_OPERAND_I:
272 // Invert the negative sign if necessary
273 return static_cast<double>(isNegative() ? -toLong(true) : toLong(true));
274 case PLURAL_OPERAND_F:
275 return static_cast<double>(toFractionLong(true));
276 case PLURAL_OPERAND_T:
277 return static_cast<double>(toFractionLong(false));
278 case PLURAL_OPERAND_V:
279 return fractionCount();
280 case PLURAL_OPERAND_W:
281 return fractionCountWithoutTrailingZeros();
282 case PLURAL_OPERAND_E:
283 return static_cast<double>(getExponent());
284 case PLURAL_OPERAND_C:
285 // Plural operand `c` is currently an alias for `e`.
286 return static_cast<double>(getExponent());
287 default:
288 return std::abs(toDouble());
289 }
290}
291
292int32_t DecimalQuantity::getExponent() const {
293 return exponent;
294}
295
296void DecimalQuantity::adjustExponent(int delta) {
297 exponent = exponent + delta;
298}
299
300void DecimalQuantity::resetExponent() {
301 adjustMagnitude(exponent);
302 exponent = 0;
303}
304
305bool DecimalQuantity::hasIntegerValue() const {
306 return scale >= 0;
307}
308
309int32_t DecimalQuantity::getUpperDisplayMagnitude() const {
310 // If this assertion fails, you need to call roundToInfinity() or some other rounding method.
311 // See the comment in the header file explaining the "isApproximate" field.
312 U_ASSERT(!isApproximate)(void)0;
313
314 int32_t magnitude = scale + precision;
315 int32_t result = (lReqPos > magnitude) ? lReqPos : magnitude;
316 return result - 1;
317}
318
319int32_t DecimalQuantity::getLowerDisplayMagnitude() const {
320 // If this assertion fails, you need to call roundToInfinity() or some other rounding method.
321 // See the comment in the header file explaining the "isApproximate" field.
322 U_ASSERT(!isApproximate)(void)0;
323
324 int32_t magnitude = scale;
325 int32_t result = (rReqPos < magnitude) ? rReqPos : magnitude;
326 return result;
327}
328
329int8_t DecimalQuantity::getDigit(int32_t magnitude) const {
330 // If this assertion fails, you need to call roundToInfinity() or some other rounding method.
331 // See the comment at the top of this file explaining the "isApproximate" field.
332 U_ASSERT(!isApproximate)(void)0;
333
334 return getDigitPos(magnitude - scale);
335}
336
337int32_t DecimalQuantity::fractionCount() const {
338 int32_t fractionCountWithExponent = -getLowerDisplayMagnitude() - exponent;
339 return fractionCountWithExponent > 0 ? fractionCountWithExponent : 0;
340}
341
342int32_t DecimalQuantity::fractionCountWithoutTrailingZeros() const {
343 int32_t fractionCountWithExponent = -scale - exponent;
344 return fractionCountWithExponent > 0 ? fractionCountWithExponent : 0; // max(-fractionCountWithExponent, 0)
345}
346
347bool DecimalQuantity::isNegative() const {
348 return (flags & NEGATIVE_FLAG) != 0;
349}
350
351Signum DecimalQuantity::signum() const {
352 bool isZero = (isZeroish() && !isInfinite());
353 bool isNeg = isNegative();
354 if (isZero && isNeg) {
355 return SIGNUM_NEG_ZERO;
356 } else if (isZero) {
357 return SIGNUM_POS_ZERO;
358 } else if (isNeg) {
359 return SIGNUM_NEG;
360 } else {
361 return SIGNUM_POS;
362 }
363}
364
365bool DecimalQuantity::isInfinite() const {
366 return (flags & INFINITY_FLAG) != 0;
367}
368
369bool DecimalQuantity::isNaN() const {
370 return (flags & NAN_FLAG) != 0;
371}
372
373bool DecimalQuantity::isZeroish() const {
374 return precision == 0;
375}
376
377DecimalQuantity &DecimalQuantity::setToInt(int32_t n) {
378 setBcdToZero();
379 flags = 0;
380 if (n == INT32_MIN(-2147483647-1)) {
381 flags |= NEGATIVE_FLAG;
382 // leave as INT32_MIN; handled below in _setToInt()
383 } else if (n < 0) {
384 flags |= NEGATIVE_FLAG;
385 n = -n;
386 }
387 if (n != 0) {
388 _setToInt(n);
389 compact();
390 }
391 return *this;
392}
393
394void DecimalQuantity::_setToInt(int32_t n) {
395 if (n == INT32_MIN(-2147483647-1)) {
396 readLongToBcd(-static_cast<int64_t>(n));
397 } else {
398 readIntToBcd(n);
399 }
400}
401
402DecimalQuantity &DecimalQuantity::setToLong(int64_t n) {
403 setBcdToZero();
404 flags = 0;
405 if (n < 0 && n > INT64_MIN(-9223372036854775807L -1)) {
406 flags |= NEGATIVE_FLAG;
407 n = -n;
408 }
409 if (n != 0) {
410 _setToLong(n);
411 compact();
412 }
413 return *this;
414}
415
416void DecimalQuantity::_setToLong(int64_t n) {
417 if (n == INT64_MIN(-9223372036854775807L -1)) {
16
Assuming the condition is false
17
Taking false branch
418 DecNum decnum;
419 UErrorCode localStatus = U_ZERO_ERROR;
420 decnum.setTo("9.223372036854775808E+18", localStatus);
421 if (U_FAILURE(localStatus)) { return; } // unexpected
422 flags |= NEGATIVE_FLAG;
423 readDecNumberToBcd(decnum);
424 } else if (n <= INT32_MAX(2147483647)) {
18
Assuming 'n' is <= INT32_MAX
19
Taking true branch
425 readIntToBcd(static_cast<int32_t>(n));
20
Calling 'DecimalQuantity::readIntToBcd'
426 } else {
427 readLongToBcd(n);
428 }
429}
430
431DecimalQuantity &DecimalQuantity::setToDouble(double n) {
432 setBcdToZero();
433 flags = 0;
434 // signbit() from <math.h> handles +0.0 vs -0.0
435 if (std::signbit(n)) {
1
Assuming the condition is false
2
Taking false branch
436 flags |= NEGATIVE_FLAG;
437 n = -n;
438 }
439 if (std::isnan(n) != 0) {
3
Assuming the condition is false
4
Taking false branch
440 flags |= NAN_FLAG;
441 } else if (std::isfinite(n) == 0) {
5
Assuming the condition is false
6
Taking false branch
442 flags |= INFINITY_FLAG;
443 } else if (n != 0) {
7
Assuming 'n' is not equal to 0
8
Taking true branch
444 _setToDoubleFast(n);
9
Calling 'DecimalQuantity::_setToDoubleFast'
445 compact();
446 }
447 return *this;
448}
449
450void DecimalQuantity::_setToDoubleFast(double n) {
451 isApproximate = true;
452 origDouble = n;
453 origDelta = 0;
454
455 // Make sure the double is an IEEE 754 double. If not, fall back to the slow path right now.
456 // TODO: Make a fast path for other types of doubles.
457 if (!std::numeric_limits<double>::is_iec559
9.1
'is_iec559' is true
) {
10
Taking false branch
458 convertToAccurateDouble();
459 return;
460 }
461
462 // To get the bits from the double, use memcpy, which takes care of endianness.
463 uint64_t ieeeBits;
464 uprv_memcpy(&ieeeBits, &n, sizeof(n))do { clang diagnostic push clang diagnostic ignored "-Waddress"
(void)0; (void)0; clang diagnostic pop :: memcpy(&ieeeBits
, &n, sizeof(n)); } while (false)
;
11
Loop condition is false. Exiting loop
465 int32_t exponent = static_cast<int32_t>((ieeeBits & 0x7ff0000000000000L) >> 52) - 0x3ff;
466
467 // Not all integers can be represented exactly for exponent > 52
468 if (exponent <= 52 && static_cast<int64_t>(n) == n) {
12
Assuming 'exponent' is <= 52
13
Assuming 'n' is equal to 'n'
14
Taking true branch
469 _setToLong(static_cast<int64_t>(n));
15
Calling 'DecimalQuantity::_setToLong'
470 return;
471 }
472
473 if (exponent == -1023 || exponent == 1024) {
474 // The extreme values of exponent are special; use slow path.
475 convertToAccurateDouble();
476 return;
477 }
478
479 // 3.3219... is log2(10)
480 auto fracLength = static_cast<int32_t> ((52 - exponent) / 3.32192809488736234787031942948939017586);
481 if (fracLength >= 0) {
482 int32_t i = fracLength;
483 // 1e22 is the largest exact double.
484 for (; i >= 22; i -= 22) n *= 1e22;
485 n *= DOUBLE_MULTIPLIERS[i];
486 } else {
487 int32_t i = fracLength;
488 // 1e22 is the largest exact double.
489 for (; i <= -22; i += 22) n /= 1e22;
490 n /= DOUBLE_MULTIPLIERS[-i];
491 }
492 auto result = static_cast<int64_t>(uprv_rounduprv_round_71(n));
493 if (result != 0) {
494 _setToLong(result);
495 scale -= fracLength;
496 }
497}
498
499void DecimalQuantity::convertToAccurateDouble() {
500 U_ASSERT(origDouble != 0)(void)0;
501 int32_t delta = origDelta;
502
503 // Call the slow oracle function (Double.toString in Java, DoubleToAscii in C++).
504 char buffer[DoubleToStringConverter::kBase10MaximalLength + 1];
505 bool sign; // unused; always positive
506 int32_t length;
507 int32_t point;
508 DoubleToStringConverter::DoubleToAscii(
509 origDouble,
510 DoubleToStringConverter::DtoaMode::SHORTEST,
511 0,
512 buffer,
513 sizeof(buffer),
514 &sign,
515 &length,
516 &point
517 );
518
519 setBcdToZero();
520 readDoubleConversionToBcd(buffer, length, point);
521 scale += delta;
522 explicitExactDouble = true;
523}
524
525DecimalQuantity &DecimalQuantity::setToDecNumber(StringPiece n, UErrorCode& status) {
526 setBcdToZero();
527 flags = 0;
528
529 // Compute the decNumber representation
530 DecNum decnum;
531 decnum.setTo(n, status);
532
533 _setToDecNum(decnum, status);
534 return *this;
535}
536
537DecimalQuantity& DecimalQuantity::setToDecNum(const DecNum& decnum, UErrorCode& status) {
538 setBcdToZero();
539 flags = 0;
540
541 _setToDecNum(decnum, status);
542 return *this;
543}
544
545void DecimalQuantity::_setToDecNum(const DecNum& decnum, UErrorCode& status) {
546 if (U_FAILURE(status)) { return; }
547 if (decnum.isNegative()) {
548 flags |= NEGATIVE_FLAG;
549 }
550 if (decnum.isNaN()) {
551 flags |= NAN_FLAG;
552 } else if (decnum.isInfinity()) {
553 flags |= INFINITY_FLAG;
554 } else if (!decnum.isZero()) {
555 readDecNumberToBcd(decnum);
556 compact();
557 }
558}
559
560DecimalQuantity DecimalQuantity::fromExponentString(UnicodeString num, UErrorCode& status) {
561 if (num.indexOf(u'e') >= 0 || num.indexOf(u'c') >= 0
562 || num.indexOf(u'E') >= 0 || num.indexOf(u'C') >= 0) {
563 int32_t ePos = num.lastIndexOf('e');
564 if (ePos < 0) {
565 ePos = num.lastIndexOf('c');
566 }
567 if (ePos < 0) {
568 ePos = num.lastIndexOf('E');
569 }
570 if (ePos < 0) {
571 ePos = num.lastIndexOf('C');
572 }
573 int32_t expNumPos = ePos + 1;
574 UnicodeString exponentStr = num.tempSubString(expNumPos, num.length() - expNumPos);
575
576 // parse exponentStr into exponent, but note that parseAsciiInteger doesn't handle the minus sign
577 bool isExpStrNeg = num[expNumPos] == u'-';
578 int32_t exponentParsePos = isExpStrNeg ? 1 : 0;
579 int32_t exponent = ICU_Utility::parseAsciiInteger(exponentStr, exponentParsePos);
580 exponent = isExpStrNeg ? -exponent : exponent;
581
582 // Compute the decNumber representation
583 UnicodeString fractionStr = num.tempSubString(0, ePos);
584 CharString fracCharStr = CharString();
585 fracCharStr.appendInvariantChars(fractionStr, status);
586 DecNum decnum;
587 decnum.setTo(fracCharStr.toStringPiece(), status);
588
589 // Clear and set this DecimalQuantity instance
590 DecimalQuantity dq;
591 dq.setToDecNum(decnum, status);
592 int32_t numFracDigit = getVisibleFractionCount(fractionStr);
593 dq.setMinFraction(numFracDigit);
594 dq.adjustExponent(exponent);
595
596 return dq;
597 } else {
598 DecimalQuantity dq;
599 int numFracDigit = getVisibleFractionCount(num);
600
601 CharString numCharStr = CharString();
602 numCharStr.appendInvariantChars(num, status);
603 dq.setToDecNumber(numCharStr.toStringPiece(), status);
604
605 dq.setMinFraction(numFracDigit);
606 return dq;
607 }
608}
609
610int32_t DecimalQuantity::getVisibleFractionCount(UnicodeString value) {
611 int decimalPos = value.indexOf('.') + 1;
612 if (decimalPos == 0) {
613 return 0;
614 } else {
615 return value.length() - decimalPos;
616 }
617}
618
619int64_t DecimalQuantity::toLong(bool truncateIfOverflow) const {
620 // NOTE: Call sites should be guarded by fitsInLong(), like this:
621 // if (dq.fitsInLong()) { /* use dq.toLong() */ } else { /* use some fallback */ }
622 // Fallback behavior upon truncateIfOverflow is to truncate at 17 digits.
623 uint64_t result = 0L;
624 int32_t upperMagnitude = exponent + scale + precision - 1;
625 if (truncateIfOverflow) {
626 upperMagnitude = std::min(upperMagnitude, 17);
627 }
628 for (int32_t magnitude = upperMagnitude; magnitude >= 0; magnitude--) {
629 result = result * 10 + getDigitPos(magnitude - scale - exponent);
630 }
631 if (isNegative()) {
632 return static_cast<int64_t>(0LL - result); // i.e., -result
633 }
634 return static_cast<int64_t>(result);
635}
636
637uint64_t DecimalQuantity::toFractionLong(bool includeTrailingZeros) const {
638 uint64_t result = 0L;
639 int32_t magnitude = -1 - exponent;
640 int32_t lowerMagnitude = scale;
641 if (includeTrailingZeros) {
642 lowerMagnitude = std::min(lowerMagnitude, rReqPos);
643 }
644 for (; magnitude >= lowerMagnitude && result <= 1e18L; magnitude--) {
645 result = result * 10 + getDigitPos(magnitude - scale);
646 }
647 // Remove trailing zeros; this can happen during integer overflow cases.
648 if (!includeTrailingZeros) {
649 while (result > 0 && (result % 10) == 0) {
650 result /= 10;
651 }
652 }
653 return result;
654}
655
656bool DecimalQuantity::fitsInLong(bool ignoreFraction) const {
657 if (isInfinite() || isNaN()) {
658 return false;
659 }
660 if (isZeroish()) {
661 return true;
662 }
663 if (exponent + scale < 0 && !ignoreFraction) {
664 return false;
665 }
666 int magnitude = getMagnitude();
667 if (magnitude < 18) {
668 return true;
669 }
670 if (magnitude > 18) {
671 return false;
672 }
673 // Hard case: the magnitude is 10^18.
674 // The largest int64 is: 9,223,372,036,854,775,807
675 for (int p = 0; p < precision; p++) {
676 int8_t digit = getDigit(18 - p);
677 static int8_t INT64_BCD[] = { 9, 2, 2, 3, 3, 7, 2, 0, 3, 6, 8, 5, 4, 7, 7, 5, 8, 0, 8 };
678 if (digit < INT64_BCD[p]) {
679 return true;
680 } else if (digit > INT64_BCD[p]) {
681 return false;
682 }
683 }
684 // Exactly equal to max long plus one.
685 return isNegative();
686}
687
688double DecimalQuantity::toDouble() const {
689 // If this assertion fails, you need to call roundToInfinity() or some other rounding method.
690 // See the comment in the header file explaining the "isApproximate" field.
691 U_ASSERT(!isApproximate)(void)0;
692
693 if (isNaN()) {
694 return NAN(__builtin_nanf (""));
695 } else if (isInfinite()) {
696 return isNegative() ? -INFINITY(__builtin_inff ()) : INFINITY(__builtin_inff ());
697 }
698
699 // We are processing well-formed input, so we don't need any special options to StringToDoubleConverter.
700 StringToDoubleConverter converter(0, 0, 0, "", "");
701 UnicodeString numberString = this->toScientificString();
702 int32_t count;
703 return converter.StringToDouble(
704 reinterpret_cast<const uint16_t*>(numberString.getBuffer()),
705 numberString.length(),
706 &count);
707}
708
709DecNum& DecimalQuantity::toDecNum(DecNum& output, UErrorCode& status) const {
710 // Special handling for zero
711 if (precision == 0) {
712 output.setTo("0", status);
713 return output;
714 }
715
716 // Use the BCD constructor. We need to do a little bit of work to convert, though.
717 // The decNumber constructor expects most-significant first, but we store least-significant first.
718 MaybeStackArray<uint8_t, 20> ubcd(precision, status);
719 if (U_FAILURE(status)) {
720 return output;
721 }
722 for (int32_t m = 0; m < precision; m++) {
723 ubcd[precision - m - 1] = static_cast<uint8_t>(getDigitPos(m));
724 }
725 output.setTo(ubcd.getAlias(), precision, scale, isNegative(), status);
726 return output;
727}
728
729void DecimalQuantity::truncate() {
730 if (scale < 0) {
731 shiftRight(-scale);
732 scale = 0;
733 compact();
734 }
735}
736
737void DecimalQuantity::roundToNickel(int32_t magnitude, RoundingMode roundingMode, UErrorCode& status) {
738 roundToMagnitude(magnitude, roundingMode, true, status);
739}
740
741void DecimalQuantity::roundToMagnitude(int32_t magnitude, RoundingMode roundingMode, UErrorCode& status) {
742 roundToMagnitude(magnitude, roundingMode, false, status);
743}
744
745void DecimalQuantity::roundToMagnitude(int32_t magnitude, RoundingMode roundingMode, bool nickel, UErrorCode& status) {
746 // The position in the BCD at which rounding will be performed; digits to the right of position
747 // will be rounded away.
748 int position = safeSubtract(magnitude, scale);
749
750 // "trailing" = least significant digit to the left of rounding
751 int8_t trailingDigit = getDigitPos(position);
752
753 if (position <= 0 && !isApproximate && (!nickel || trailingDigit == 0 || trailingDigit == 5)) {
754 // All digits are to the left of the rounding magnitude.
755 } else if (precision == 0) {
756 // No rounding for zero.
757 } else {
758 // Perform rounding logic.
759 // "leading" = most significant digit to the right of rounding
760 int8_t leadingDigit = getDigitPos(safeSubtract(position, 1));
761
762 // Compute which section of the number we are in.
763 // EDGE means we are at the bottom or top edge, like 1.000 or 1.999 (used by doubles)
764 // LOWER means we are between the bottom edge and the midpoint, like 1.391
765 // MIDPOINT means we are exactly in the middle, like 1.500
766 // UPPER means we are between the midpoint and the top edge, like 1.916
767 roundingutils::Section section;
768 if (!isApproximate) {
769 if (nickel && trailingDigit != 2 && trailingDigit != 7) {
770 // Nickel rounding, and not at .02x or .07x
771 if (trailingDigit < 2) {
772 // .00, .01 => down to .00
773 section = roundingutils::SECTION_LOWER;
774 } else if (trailingDigit < 5) {
775 // .03, .04 => up to .05
776 section = roundingutils::SECTION_UPPER;
777 } else if (trailingDigit < 7) {
778 // .05, .06 => down to .05
779 section = roundingutils::SECTION_LOWER;
780 } else {
781 // .08, .09 => up to .10
782 section = roundingutils::SECTION_UPPER;
783 }
784 } else if (leadingDigit < 5) {
785 // Includes nickel rounding .020-.024 and .070-.074
786 section = roundingutils::SECTION_LOWER;
787 } else if (leadingDigit > 5) {
788 // Includes nickel rounding .026-.029 and .076-.079
789 section = roundingutils::SECTION_UPPER;
790 } else {
791 // Includes nickel rounding .025 and .075
792 section = roundingutils::SECTION_MIDPOINT;
793 for (int p = safeSubtract(position, 2); p >= 0; p--) {
794 if (getDigitPos(p) != 0) {
795 section = roundingutils::SECTION_UPPER;
796 break;
797 }
798 }
799 }
800 } else {
801 int32_t p = safeSubtract(position, 2);
802 int32_t minP = uprv_maxuprv_max_71(0, precision - 14);
803 if (leadingDigit == 0 && (!nickel || trailingDigit == 0 || trailingDigit == 5)) {
804 section = roundingutils::SECTION_LOWER_EDGE;
805 for (; p >= minP; p--) {
806 if (getDigitPos(p) != 0) {
807 section = roundingutils::SECTION_LOWER;
808 break;
809 }
810 }
811 } else if (leadingDigit == 4 && (!nickel || trailingDigit == 2 || trailingDigit == 7)) {
812 section = roundingutils::SECTION_MIDPOINT;
813 for (; p >= minP; p--) {
814 if (getDigitPos(p) != 9) {
815 section = roundingutils::SECTION_LOWER;
816 break;
817 }
818 }
819 } else if (leadingDigit == 5 && (!nickel || trailingDigit == 2 || trailingDigit == 7)) {
820 section = roundingutils::SECTION_MIDPOINT;
821 for (; p >= minP; p--) {
822 if (getDigitPos(p) != 0) {
823 section = roundingutils::SECTION_UPPER;
824 break;
825 }
826 }
827 } else if (leadingDigit == 9 && (!nickel || trailingDigit == 4 || trailingDigit == 9)) {
828 section = roundingutils::SECTION_UPPER_EDGE;
829 for (; p >= minP; p--) {
830 if (getDigitPos(p) != 9) {
831 section = roundingutils::SECTION_UPPER;
832 break;
833 }
834 }
835 } else if (nickel && trailingDigit != 2 && trailingDigit != 7) {
836 // Nickel rounding, and not at .02x or .07x
837 if (trailingDigit < 2) {
838 // .00, .01 => down to .00
839 section = roundingutils::SECTION_LOWER;
840 } else if (trailingDigit < 5) {
841 // .03, .04 => up to .05
842 section = roundingutils::SECTION_UPPER;
843 } else if (trailingDigit < 7) {
844 // .05, .06 => down to .05
845 section = roundingutils::SECTION_LOWER;
846 } else {
847 // .08, .09 => up to .10
848 section = roundingutils::SECTION_UPPER;
849 }
850 } else if (leadingDigit < 5) {
851 // Includes nickel rounding .020-.024 and .070-.074
852 section = roundingutils::SECTION_LOWER;
853 } else {
854 // Includes nickel rounding .026-.029 and .076-.079
855 section = roundingutils::SECTION_UPPER;
856 }
857
858 bool roundsAtMidpoint = roundingutils::roundsAtMidpoint(roundingMode);
859 if (safeSubtract(position, 1) < precision - 14 ||
860 (roundsAtMidpoint && section == roundingutils::SECTION_MIDPOINT) ||
861 (!roundsAtMidpoint && section < 0 /* i.e. at upper or lower edge */)) {
862 // Oops! This means that we have to get the exact representation of the double,
863 // because the zone of uncertainty is along the rounding boundary.
864 convertToAccurateDouble();
865 roundToMagnitude(magnitude, roundingMode, nickel, status); // start over
866 return;
867 }
868
869 // Turn off the approximate double flag, since the value is now confirmed to be exact.
870 isApproximate = false;
871 origDouble = 0.0;
872 origDelta = 0;
873
874 if (position <= 0 && (!nickel || trailingDigit == 0 || trailingDigit == 5)) {
875 // All digits are to the left of the rounding magnitude.
876 return;
877 }
878
879 // Good to continue rounding.
880 if (section == -1) { section = roundingutils::SECTION_LOWER; }
881 if (section == -2) { section = roundingutils::SECTION_UPPER; }
882 }
883
884 // Nickel rounding "half even" goes to the nearest whole (away from the 5).
885 bool isEven = nickel
886 ? (trailingDigit < 2 || trailingDigit > 7
887 || (trailingDigit == 2 && section != roundingutils::SECTION_UPPER)
888 || (trailingDigit == 7 && section == roundingutils::SECTION_UPPER))
889 : (trailingDigit % 2) == 0;
890
891 bool roundDown = roundingutils::getRoundingDirection(isEven,
892 isNegative(),
893 section,
894 roundingMode,
895 status);
896 if (U_FAILURE(status)) {
897 return;
898 }
899
900 // Perform truncation
901 if (position >= precision) {
902 U_ASSERT(trailingDigit == 0)(void)0;
903 setBcdToZero();
904 scale = magnitude;
905 } else {
906 shiftRight(position);
907 }
908
909 if (nickel) {
910 if (trailingDigit < 5 && roundDown) {
911 setDigitPos(0, 0);
912 compact();
913 return;
914 } else if (trailingDigit >= 5 && !roundDown) {
915 setDigitPos(0, 9);
916 trailingDigit = 9;
917 // do not return: use the bubbling logic below
918 } else {
919 setDigitPos(0, 5);
920 // If the quantity was set to 0, we may need to restore a digit.
921 if (precision == 0) {
922 precision = 1;
923 }
924 // compact not necessary: digit at position 0 is nonzero
925 return;
926 }
927 }
928
929 // Bubble the result to the higher digits
930 if (!roundDown) {
931 if (trailingDigit == 9) {
932 int bubblePos = 0;
933 // Note: in the long implementation, the most digits BCD can have at this point is
934 // 15, so bubblePos <= 15 and getDigitPos(bubblePos) is safe.
935 for (; getDigitPos(bubblePos) == 9; bubblePos++) {}
936 shiftRight(bubblePos); // shift off the trailing 9s
937 }
938 int8_t digit0 = getDigitPos(0);
939 U_ASSERT(digit0 != 9)(void)0;
940 setDigitPos(0, static_cast<int8_t>(digit0 + 1));
941 precision += 1; // in case an extra digit got added
942 }
943
944 compact();
945 }
946}
947
948void DecimalQuantity::roundToInfinity() {
949 if (isApproximate) {
950 convertToAccurateDouble();
951 }
952}
953
954void DecimalQuantity::appendDigit(int8_t value, int32_t leadingZeros, bool appendAsInteger) {
955 U_ASSERT(leadingZeros >= 0)(void)0;
956
957 // Zero requires special handling to maintain the invariant that the least-significant digit
958 // in the BCD is nonzero.
959 if (value == 0) {
960 if (appendAsInteger && precision != 0) {
961 scale += leadingZeros + 1;
962 }
963 return;
964 }
965
966 // Deal with trailing zeros
967 if (scale > 0) {
968 leadingZeros += scale;
969 if (appendAsInteger) {
970 scale = 0;
971 }
972 }
973
974 // Append digit
975 shiftLeft(leadingZeros + 1);
976 setDigitPos(0, value);
977
978 // Fix scale if in integer mode
979 if (appendAsInteger) {
980 scale += leadingZeros + 1;
981 }
982}
983
984UnicodeString DecimalQuantity::toPlainString() const {
985 U_ASSERT(!isApproximate)(void)0;
986 UnicodeString sb;
987 if (isNegative()) {
988 sb.append(u'-');
989 }
990 if (precision == 0) {
991 sb.append(u'0');
992 return sb;
993 }
994 int32_t upper = scale + precision + exponent - 1;
995 int32_t lower = scale + exponent;
996 if (upper < lReqPos - 1) {
997 upper = lReqPos - 1;
998 }
999 if (lower > rReqPos) {
1000 lower = rReqPos;
1001 }
1002 int32_t p = upper;
1003 if (p < 0) {
1004 sb.append(u'0');
1005 }
1006 for (; p >= 0; p--) {
1007 sb.append(u'0' + getDigitPos(p - scale - exponent));
1008 }
1009 if (lower < 0) {
1010 sb.append(u'.');
1011 }
1012 for(; p >= lower; p--) {
1013 sb.append(u'0' + getDigitPos(p - scale - exponent));
1014 }
1015 return sb;
1016}
1017
1018
1019UnicodeString DecimalQuantity::toExponentString() const {
1020 U_ASSERT(!isApproximate)(void)0;
1021 UnicodeString sb;
1022 if (isNegative()) {
1023 sb.append(u'-');
1024 }
1025
1026 int32_t upper = scale + precision - 1;
1027 int32_t lower = scale;
1028 if (upper < lReqPos - 1) {
1029 upper = lReqPos - 1;
1030 }
1031 if (lower > rReqPos) {
1032 lower = rReqPos;
1033 }
1034 int32_t p = upper;
1035 if (p < 0) {
1036 sb.append(u'0');
1037 }
1038 for (; p >= 0; p--) {
1039 sb.append(u'0' + getDigitPos(p - scale));
1040 }
1041 if (lower < 0) {
1042 sb.append(u'.');
1043 }
1044 for(; p >= lower; p--) {
1045 sb.append(u'0' + getDigitPos(p - scale));
1046 }
1047
1048 if (exponent != 0) {
1049 sb.append(u'c');
1050 ICU_Utility::appendNumber(sb, exponent);
1051 }
1052
1053 return sb;
1054}
1055
1056UnicodeString DecimalQuantity::toScientificString() const {
1057 U_ASSERT(!isApproximate)(void)0;
1058 UnicodeString result;
1059 if (isNegative()) {
1060 result.append(u'-');
1061 }
1062 if (precision == 0) {
1063 result.append(u"0E+0", -1);
1064 return result;
1065 }
1066 int32_t upperPos = precision - 1;
1067 int32_t lowerPos = 0;
1068 int32_t p = upperPos;
1069 result.append(u'0' + getDigitPos(p));
1070 if ((--p) >= lowerPos) {
1071 result.append(u'.');
1072 for (; p >= lowerPos; p--) {
1073 result.append(u'0' + getDigitPos(p));
1074 }
1075 }
1076 result.append(u'E');
1077 int32_t _scale = upperPos + scale + exponent;
1078 if (_scale == INT32_MIN(-2147483647-1)) {
1079 result.append({u"-2147483648", -1});
1080 return result;
1081 } else if (_scale < 0) {
1082 _scale *= -1;
1083 result.append(u'-');
1084 } else {
1085 result.append(u'+');
1086 }
1087 if (_scale == 0) {
1088 result.append(u'0');
1089 }
1090 int32_t insertIndex = result.length();
1091 while (_scale > 0) {
1092 std::div_t res = std::div(_scale, 10);
1093 result.insert(insertIndex, u'0' + res.rem);
1094 _scale = res.quot;
1095 }
1096 return result;
1097}
1098
1099////////////////////////////////////////////////////
1100/// End of DecimalQuantity_AbstractBCD.java ///
1101/// Start of DecimalQuantity_DualStorageBCD.java ///
1102////////////////////////////////////////////////////
1103
1104int8_t DecimalQuantity::getDigitPos(int32_t position) const {
1105 if (usingBytes) {
1106 if (position < 0 || position >= precision) { return 0; }
1107 return fBCD.bcdBytes.ptr[position];
1108 } else {
1109 if (position < 0 || position >= 16) { return 0; }
1110 return (int8_t) ((fBCD.bcdLong >> (position * 4)) & 0xf);
1111 }
1112}
1113
1114void DecimalQuantity::setDigitPos(int32_t position, int8_t value) {
1115 U_ASSERT(position >= 0)(void)0;
1116 if (usingBytes) {
1117 ensureCapacity(position + 1);
1118 fBCD.bcdBytes.ptr[position] = value;
1119 } else if (position >= 16) {
1120 switchStorage();
1121 ensureCapacity(position + 1);
1122 fBCD.bcdBytes.ptr[position] = value;
1123 } else {
1124 int shift = position * 4;
1125 fBCD.bcdLong = (fBCD.bcdLong & ~(0xfL << shift)) | ((long) value << shift);
1126 }
1127}
1128
1129void DecimalQuantity::shiftLeft(int32_t numDigits) {
1130 if (!usingBytes && precision + numDigits > 16) {
1131 switchStorage();
1132 }
1133 if (usingBytes) {
1134 ensureCapacity(precision + numDigits);
1135 uprv_memmove(fBCD.bcdBytes.ptr + numDigits, fBCD.bcdBytes.ptr, precision)do { clang diagnostic push clang diagnostic ignored "-Waddress"
(void)0; (void)0; clang diagnostic pop :: memmove(fBCD.bcdBytes
.ptr + numDigits, fBCD.bcdBytes.ptr, precision); } while (false
)
;
1136 uprv_memset(fBCD.bcdBytes.ptr, 0, numDigits):: memset(fBCD.bcdBytes.ptr, 0, numDigits);
1137 } else {
1138 fBCD.bcdLong <<= (numDigits * 4);
1139 }
1140 scale -= numDigits;
1141 precision += numDigits;
1142}
1143
1144void DecimalQuantity::shiftRight(int32_t numDigits) {
1145 if (usingBytes) {
1146 int i = 0;
1147 for (; i < precision - numDigits; i++) {
1148 fBCD.bcdBytes.ptr[i] = fBCD.bcdBytes.ptr[i + numDigits];
1149 }
1150 for (; i < precision; i++) {
1151 fBCD.bcdBytes.ptr[i] = 0;
1152 }
1153 } else {
1154 fBCD.bcdLong >>= (numDigits * 4);
1155 }
1156 scale += numDigits;
1157 precision -= numDigits;
1158}
1159
1160void DecimalQuantity::popFromLeft(int32_t numDigits) {
1161 U_ASSERT(numDigits <= precision)(void)0;
1162 if (usingBytes) {
1163 int i = precision - 1;
1164 for (; i >= precision - numDigits; i--) {
1165 fBCD.bcdBytes.ptr[i] = 0;
1166 }
1167 } else {
1168 fBCD.bcdLong &= (static_cast<uint64_t>(1) << ((precision - numDigits) * 4)) - 1;
1169 }
1170 precision -= numDigits;
1171}
1172
1173void DecimalQuantity::setBcdToZero() {
1174 if (usingBytes) {
1175 uprv_freeuprv_free_71(fBCD.bcdBytes.ptr);
1176 fBCD.bcdBytes.ptr = nullptr;
1177 usingBytes = false;
1178 }
1179 fBCD.bcdLong = 0L;
1180 scale = 0;
1181 precision = 0;
1182 isApproximate = false;
1183 origDouble = 0;
1184 origDelta = 0;
1185 exponent = 0;
1186}
1187
1188void DecimalQuantity::readIntToBcd(int32_t n) {
1189 U_ASSERT(n != 0)(void)0;
1190 // ints always fit inside the long implementation.
1191 uint64_t result = 0L;
1192 int i = 16;
1193 for (; n != 0; n /= 10, i--) {
21
Assuming 'n' is equal to 0
22
Loop condition is false. Execution continues on line 1196
1194 result = (result >> 4) + ((static_cast<uint64_t>(n) % 10) << 60);
1195 }
1196 U_ASSERT(!usingBytes)(void)0;
1197 fBCD.bcdLong = result >> (i * 4);
23
The result of the right shift is undefined due to shifting by '64', which is greater or equal to the width of type 'uint64_t'
1198 scale = 0;
1199 precision = 16 - i;
1200}
1201
1202void DecimalQuantity::readLongToBcd(int64_t n) {
1203 U_ASSERT(n != 0)(void)0;
1204 if (n >= 10000000000000000L) {
1205 ensureCapacity();
1206 int i = 0;
1207 for (; n != 0L; n /= 10L, i++) {
1208 fBCD.bcdBytes.ptr[i] = static_cast<int8_t>(n % 10);
1209 }
1210 U_ASSERT(usingBytes)(void)0;
1211 scale = 0;
1212 precision = i;
1213 } else {
1214 uint64_t result = 0L;
1215 int i = 16;
1216 for (; n != 0L; n /= 10L, i--) {
1217 result = (result >> 4) + ((n % 10) << 60);
1218 }
1219 U_ASSERT(i >= 0)(void)0;
1220 U_ASSERT(!usingBytes)(void)0;
1221 fBCD.bcdLong = result >> (i * 4);
1222 scale = 0;
1223 precision = 16 - i;
1224 }
1225}
1226
1227void DecimalQuantity::readDecNumberToBcd(const DecNum& decnum) {
1228 const decNumber* dn = decnum.getRawDecNumber();
1229 if (dn->digits > 16) {
1230 ensureCapacity(dn->digits);
1231 for (int32_t i = 0; i < dn->digits; i++) {
1232 fBCD.bcdBytes.ptr[i] = dn->lsu[i];
1233 }
1234 } else {
1235 uint64_t result = 0L;
1236 for (int32_t i = 0; i < dn->digits; i++) {
1237 result |= static_cast<uint64_t>(dn->lsu[i]) << (4 * i);
1238 }
1239 fBCD.bcdLong = result;
1240 }
1241 scale = dn->exponent;
1242 precision = dn->digits;
1243}
1244
1245void DecimalQuantity::readDoubleConversionToBcd(
1246 const char* buffer, int32_t length, int32_t point) {
1247 // NOTE: Despite the fact that double-conversion's API is called
1248 // "DoubleToAscii", they actually use '0' (as opposed to u8'0').
1249 if (length > 16) {
1250 ensureCapacity(length);
1251 for (int32_t i = 0; i < length; i++) {
1252 fBCD.bcdBytes.ptr[i] = buffer[length-i-1] - '0';
1253 }
1254 } else {
1255 uint64_t result = 0L;
1256 for (int32_t i = 0; i < length; i++) {
1257 result |= static_cast<uint64_t>(buffer[length-i-1] - '0') << (4 * i);
1258 }
1259 fBCD.bcdLong = result;
1260 }
1261 scale = point - length;
1262 precision = length;
1263}
1264
1265void DecimalQuantity::compact() {
1266 if (usingBytes) {
1267 int32_t delta = 0;
1268 for (; delta < precision && fBCD.bcdBytes.ptr[delta] == 0; delta++);
1269 if (delta == precision) {
1270 // Number is zero
1271 setBcdToZero();
1272 return;
1273 } else {
1274 // Remove trailing zeros
1275 shiftRight(delta);
1276 }
1277
1278 // Compute precision
1279 int32_t leading = precision - 1;
1280 for (; leading >= 0 && fBCD.bcdBytes.ptr[leading] == 0; leading--);
1281 precision = leading + 1;
1282
1283 // Switch storage mechanism if possible
1284 if (precision <= 16) {
1285 switchStorage();
1286 }
1287
1288 } else {
1289 if (fBCD.bcdLong == 0L) {
1290 // Number is zero
1291 setBcdToZero();
1292 return;
1293 }
1294
1295 // Compact the number (remove trailing zeros)
1296 // TODO: Use a more efficient algorithm here and below. There is a logarithmic one.
1297 int32_t delta = 0;
1298 for (; delta < precision && getDigitPos(delta) == 0; delta++);
1299 fBCD.bcdLong >>= delta * 4;
1300 scale += delta;
1301
1302 // Compute precision
1303 int32_t leading = precision - 1;
1304 for (; leading >= 0 && getDigitPos(leading) == 0; leading--);
1305 precision = leading + 1;
1306 }
1307}
1308
1309void DecimalQuantity::ensureCapacity() {
1310 ensureCapacity(40);
1311}
1312
1313void DecimalQuantity::ensureCapacity(int32_t capacity) {
1314 if (capacity == 0) { return; }
1315 int32_t oldCapacity = usingBytes ? fBCD.bcdBytes.len : 0;
1316 if (!usingBytes) {
1317 // TODO: There is nothing being done to check for memory allocation failures.
1318 // TODO: Consider indexing by nybbles instead of bytes in C++, so that we can
1319 // make these arrays half the size.
1320 fBCD.bcdBytes.ptr = static_cast<int8_t*>(uprv_mallocuprv_malloc_71(capacity * sizeof(int8_t)));
1321 fBCD.bcdBytes.len = capacity;
1322 // Initialize the byte array to zeros (this is done automatically in Java)
1323 uprv_memset(fBCD.bcdBytes.ptr, 0, capacity * sizeof(int8_t)):: memset(fBCD.bcdBytes.ptr, 0, capacity * sizeof(int8_t));
1324 } else if (oldCapacity < capacity) {
1325 auto bcd1 = static_cast<int8_t*>(uprv_mallocuprv_malloc_71(capacity * 2 * sizeof(int8_t)));
1326 uprv_memcpy(bcd1, fBCD.bcdBytes.ptr, oldCapacity * sizeof(int8_t))do { clang diagnostic push clang diagnostic ignored "-Waddress"
(void)0; (void)0; clang diagnostic pop :: memcpy(bcd1, fBCD
.bcdBytes.ptr, oldCapacity * sizeof(int8_t)); } while (false)
;
1327 // Initialize the rest of the byte array to zeros (this is done automatically in Java)
1328 uprv_memset(bcd1 + oldCapacity, 0, (capacity - oldCapacity) * sizeof(int8_t)):: memset(bcd1 + oldCapacity, 0, (capacity - oldCapacity) * sizeof
(int8_t))
;
1329 uprv_freeuprv_free_71(fBCD.bcdBytes.ptr);
1330 fBCD.bcdBytes.ptr = bcd1;
1331 fBCD.bcdBytes.len = capacity * 2;
1332 }
1333 usingBytes = true;
1334}
1335
1336void DecimalQuantity::switchStorage() {
1337 if (usingBytes) {
1338 // Change from bytes to long
1339 uint64_t bcdLong = 0L;
1340 for (int i = precision - 1; i >= 0; i--) {
1341 bcdLong <<= 4;
1342 bcdLong |= fBCD.bcdBytes.ptr[i];
1343 }
1344 uprv_freeuprv_free_71(fBCD.bcdBytes.ptr);
1345 fBCD.bcdBytes.ptr = nullptr;
1346 fBCD.bcdLong = bcdLong;
1347 usingBytes = false;
1348 } else {
1349 // Change from long to bytes
1350 // Copy the long into a local variable since it will get munged when we allocate the bytes
1351 uint64_t bcdLong = fBCD.bcdLong;
1352 ensureCapacity();
1353 for (int i = 0; i < precision; i++) {
1354 fBCD.bcdBytes.ptr[i] = static_cast<int8_t>(bcdLong & 0xf);
1355 bcdLong >>= 4;
1356 }
1357 U_ASSERT(usingBytes)(void)0;
1358 }
1359}
1360
1361void DecimalQuantity::copyBcdFrom(const DecimalQuantity &other) {
1362 setBcdToZero();
1363 if (other.usingBytes) {
1364 ensureCapacity(other.precision);
1365 uprv_memcpy(fBCD.bcdBytes.ptr, other.fBCD.bcdBytes.ptr, other.precision * sizeof(int8_t))do { clang diagnostic push clang diagnostic ignored "-Waddress"
(void)0; (void)0; clang diagnostic pop :: memcpy(fBCD.bcdBytes
.ptr, other.fBCD.bcdBytes.ptr, other.precision * sizeof(int8_t
)); } while (false)
;
1366 } else {
1367 fBCD.bcdLong = other.fBCD.bcdLong;
1368 }
1369}
1370
1371void DecimalQuantity::moveBcdFrom(DecimalQuantity &other) {
1372 setBcdToZero();
1373 if (other.usingBytes) {
1374 usingBytes = true;
1375 fBCD.bcdBytes.ptr = other.fBCD.bcdBytes.ptr;
1376 fBCD.bcdBytes.len = other.fBCD.bcdBytes.len;
1377 // Take ownership away from the old instance:
1378 other.fBCD.bcdBytes.ptr = nullptr;
1379 other.usingBytes = false;
1380 } else {
1381 fBCD.bcdLong = other.fBCD.bcdLong;
1382 }
1383}
1384
1385const char16_t* DecimalQuantity::checkHealth() const {
1386 if (usingBytes) {
1387 if (precision == 0) { return u"Zero precision but we are in byte mode"; }
1388 int32_t capacity = fBCD.bcdBytes.len;
1389 if (precision > capacity) { return u"Precision exceeds length of byte array"; }
1390 if (getDigitPos(precision - 1) == 0) { return u"Most significant digit is zero in byte mode"; }
1391 if (getDigitPos(0) == 0) { return u"Least significant digit is zero in long mode"; }
1392 for (int i = 0; i < precision; i++) {
1393 if (getDigitPos(i) >= 10) { return u"Digit exceeding 10 in byte array"; }
1394 if (getDigitPos(i) < 0) { return u"Digit below 0 in byte array"; }
1395 }
1396 for (int i = precision; i < capacity; i++) {
1397 if (getDigitPos(i) != 0) { return u"Nonzero digits outside of range in byte array"; }
1398 }
1399 } else {
1400 if (precision == 0 && fBCD.bcdLong != 0) {
1401 return u"Value in bcdLong even though precision is zero";
1402 }
1403 if (precision > 16) { return u"Precision exceeds length of long"; }
1404 if (precision != 0 && getDigitPos(precision - 1) == 0) {
1405 return u"Most significant digit is zero in long mode";
1406 }
1407 if (precision != 0 && getDigitPos(0) == 0) {
1408 return u"Least significant digit is zero in long mode";
1409 }
1410 for (int i = 0; i < precision; i++) {
1411 if (getDigitPos(i) >= 10) { return u"Digit exceeding 10 in long"; }
1412 if (getDigitPos(i) < 0) { return u"Digit below 0 in long (?!)"; }
1413 }
1414 for (int i = precision; i < 16; i++) {
1415 if (getDigitPos(i) != 0) { return u"Nonzero digits outside of range in long"; }
1416 }
1417 }
1418
1419 // No error
1420 return nullptr;
1421}
1422
1423bool DecimalQuantity::operator==(const DecimalQuantity& other) const {
1424 bool basicEquals =
1425 scale == other.scale
1426 && precision == other.precision
1427 && flags == other.flags
1428 && lReqPos == other.lReqPos
1429 && rReqPos == other.rReqPos
1430 && isApproximate == other.isApproximate;
1431 if (!basicEquals) {
1432 return false;
1433 }
1434
1435 if (precision == 0) {
1436 return true;
1437 } else if (isApproximate) {
1438 return origDouble == other.origDouble && origDelta == other.origDelta;
1439 } else {
1440 for (int m = getUpperDisplayMagnitude(); m >= getLowerDisplayMagnitude(); m--) {
1441 if (getDigit(m) != other.getDigit(m)) {
1442 return false;
1443 }
1444 }
1445 return true;
1446 }
1447}
1448
1449UnicodeString DecimalQuantity::toString() const {
1450 UErrorCode localStatus = U_ZERO_ERROR;
1451 MaybeStackArray<char, 30> digits(precision + 1, localStatus);
1452 if (U_FAILURE(localStatus)) {
1453 return ICU_Utility::makeBogusString();
1454 }
1455 for (int32_t i = 0; i < precision; i++) {
1456 digits[i] = getDigitPos(precision - i - 1) + '0';
1457 }
1458 digits[precision] = 0; // terminate buffer
1459 char buffer8[100];
1460 snprintf(
1461 buffer8,
1462 sizeof(buffer8),
1463 "<DecimalQuantity %d:%d %s %s%s%s%d>",
1464 lReqPos,
1465 rReqPos,
1466 (usingBytes ? "bytes" : "long"),
1467 (isNegative() ? "-" : ""),
1468 (precision == 0 ? "0" : digits.getAlias()),
1469 "E",
1470 scale);
1471 return UnicodeString(buffer8, -1, US_INVicu::UnicodeString::kInvariant);
1472}
1473
1474#endif /* #if !UCONFIG_NO_FORMATTING */