File: | out/../deps/v8/src/wasm/wasm-code-manager.cc |
Warning: | line 2233, column 10 Value stored to 'size' during its initialization is never read |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | // Copyright 2017 the V8 project authors. All rights reserved. |
2 | // Use of this source code is governed by a BSD-style license that can be |
3 | // found in the LICENSE file. |
4 | |
5 | #include "src/wasm/wasm-code-manager.h" |
6 | |
7 | #include <algorithm> |
8 | #include <iomanip> |
9 | #include <numeric> |
10 | |
11 | #include "src/base/atomicops.h" |
12 | #include "src/base/build_config.h" |
13 | #include "src/base/iterator.h" |
14 | #include "src/base/macros.h" |
15 | #include "src/base/platform/platform.h" |
16 | #include "src/base/small-vector.h" |
17 | #include "src/base/vector.h" |
18 | #include "src/codegen/assembler-inl.h" |
19 | #include "src/codegen/macro-assembler-inl.h" |
20 | #include "src/codegen/macro-assembler.h" |
21 | #include "src/common/globals.h" |
22 | #include "src/diagnostics/disassembler.h" |
23 | #include "src/logging/counters.h" |
24 | #include "src/logging/log.h" |
25 | #include "src/objects/objects-inl.h" |
26 | #include "src/snapshot/embedded/embedded-data-inl.h" |
27 | #include "src/utils/ostreams.h" |
28 | #include "src/wasm/code-space-access.h" |
29 | #include "src/wasm/compilation-environment.h" |
30 | #include "src/wasm/function-compiler.h" |
31 | #include "src/wasm/jump-table-assembler.h" |
32 | #include "src/wasm/memory-protection-key.h" |
33 | #include "src/wasm/module-compiler.h" |
34 | #include "src/wasm/wasm-debug.h" |
35 | #include "src/wasm/wasm-engine.h" |
36 | #include "src/wasm/wasm-import-wrapper-cache.h" |
37 | #include "src/wasm/wasm-module-sourcemap.h" |
38 | #include "src/wasm/wasm-module.h" |
39 | #include "src/wasm/wasm-objects-inl.h" |
40 | #include "src/wasm/wasm-objects.h" |
41 | |
42 | #if defined(V8_OS_WIN64) |
43 | #include "src/base/platform/wrappers.h" |
44 | #include "src/diagnostics/unwinding-info-win64.h" |
45 | #endif // V8_OS_WIN64 |
46 | |
47 | #define TRACE_HEAP(...) \ |
48 | do { \ |
49 | if (FLAG_trace_wasm_native_heap) PrintF(__VA_ARGS__); \ |
50 | } while (false) |
51 | |
52 | namespace v8 { |
53 | namespace internal { |
54 | namespace wasm { |
55 | |
56 | using trap_handler::ProtectedInstructionData; |
57 | |
58 | base::AddressRegion DisjointAllocationPool::Merge( |
59 | base::AddressRegion new_region) { |
60 | // Find the possible insertion position by identifying the first region whose |
61 | // start address is not less than that of {new_region}. Since there cannot be |
62 | // any overlap between regions, this also means that the start of {above} is |
63 | // bigger or equal than the *end* of {new_region}. |
64 | auto above = regions_.lower_bound(new_region); |
65 | DCHECK(above == regions_.end() || above->begin() >= new_region.end())((void) 0); |
66 | |
67 | // Check whether to merge with {above}. |
68 | if (above != regions_.end() && new_region.end() == above->begin()) { |
69 | base::AddressRegion merged_region{new_region.begin(), |
70 | new_region.size() + above->size()}; |
71 | DCHECK_EQ(merged_region.end(), above->end())((void) 0); |
72 | // Check whether to also merge with the region below. |
73 | if (above != regions_.begin()) { |
74 | auto below = above; |
75 | --below; |
76 | if (below->end() == new_region.begin()) { |
77 | merged_region = {below->begin(), below->size() + merged_region.size()}; |
78 | regions_.erase(below); |
79 | } |
80 | } |
81 | auto insert_pos = regions_.erase(above); |
82 | regions_.insert(insert_pos, merged_region); |
83 | return merged_region; |
84 | } |
85 | |
86 | // No element below, and not adjavent to {above}: insert and done. |
87 | if (above == regions_.begin()) { |
88 | regions_.insert(above, new_region); |
89 | return new_region; |
90 | } |
91 | |
92 | auto below = above; |
93 | --below; |
94 | // Consistency check: |
95 | DCHECK(above == regions_.end() || below->end() < above->begin())((void) 0); |
96 | |
97 | // Adjacent to {below}: merge and done. |
98 | if (below->end() == new_region.begin()) { |
99 | base::AddressRegion merged_region{below->begin(), |
100 | below->size() + new_region.size()}; |
101 | DCHECK_EQ(merged_region.end(), new_region.end())((void) 0); |
102 | regions_.erase(below); |
103 | regions_.insert(above, merged_region); |
104 | return merged_region; |
105 | } |
106 | |
107 | // Not adjacent to any existing region: insert between {below} and {above}. |
108 | DCHECK_LT(below->end(), new_region.begin())((void) 0); |
109 | regions_.insert(above, new_region); |
110 | return new_region; |
111 | } |
112 | |
113 | base::AddressRegion DisjointAllocationPool::Allocate(size_t size) { |
114 | return AllocateInRegion(size, |
115 | {kNullAddress, std::numeric_limits<size_t>::max()}); |
116 | } |
117 | |
118 | base::AddressRegion DisjointAllocationPool::AllocateInRegion( |
119 | size_t size, base::AddressRegion region) { |
120 | // Get an iterator to the first contained region whose start address is not |
121 | // smaller than the start address of {region}. Start the search from the |
122 | // region one before that (the last one whose start address is smaller). |
123 | auto it = regions_.lower_bound(region); |
124 | if (it != regions_.begin()) --it; |
125 | |
126 | for (auto end = regions_.end(); it != end; ++it) { |
127 | base::AddressRegion overlap = it->GetOverlap(region); |
128 | if (size > overlap.size()) continue; |
129 | base::AddressRegion ret{overlap.begin(), size}; |
130 | base::AddressRegion old = *it; |
131 | auto insert_pos = regions_.erase(it); |
132 | if (size == old.size()) { |
133 | // We use the full region --> nothing to add back. |
134 | } else if (ret.begin() == old.begin()) { |
135 | // We return a region at the start --> shrink old region from front. |
136 | regions_.insert(insert_pos, {old.begin() + size, old.size() - size}); |
137 | } else if (ret.end() == old.end()) { |
138 | // We return a region at the end --> shrink remaining region. |
139 | regions_.insert(insert_pos, {old.begin(), old.size() - size}); |
140 | } else { |
141 | // We return something in the middle --> split the remaining region |
142 | // (insert the region with smaller address first). |
143 | regions_.insert(insert_pos, {old.begin(), ret.begin() - old.begin()}); |
144 | regions_.insert(insert_pos, {ret.end(), old.end() - ret.end()}); |
145 | } |
146 | return ret; |
147 | } |
148 | return {}; |
149 | } |
150 | |
151 | Address WasmCode::constant_pool() const { |
152 | if (FLAG_enable_embedded_constant_pool) { |
153 | if (constant_pool_offset_ < code_comments_offset_) { |
154 | return instruction_start() + constant_pool_offset_; |
155 | } |
156 | } |
157 | return kNullAddress; |
158 | } |
159 | |
160 | Address WasmCode::handler_table() const { |
161 | return instruction_start() + handler_table_offset_; |
162 | } |
163 | |
164 | int WasmCode::handler_table_size() const { |
165 | DCHECK_GE(constant_pool_offset_, handler_table_offset_)((void) 0); |
166 | return static_cast<int>(constant_pool_offset_ - handler_table_offset_); |
167 | } |
168 | |
169 | Address WasmCode::code_comments() const { |
170 | return instruction_start() + code_comments_offset_; |
171 | } |
172 | |
173 | int WasmCode::code_comments_size() const { |
174 | DCHECK_GE(unpadded_binary_size_, code_comments_offset_)((void) 0); |
175 | return static_cast<int>(unpadded_binary_size_ - code_comments_offset_); |
176 | } |
177 | |
178 | std::unique_ptr<const byte[]> WasmCode::ConcatenateBytes( |
179 | std::initializer_list<base::Vector<const byte>> vectors) { |
180 | size_t total_size = 0; |
181 | for (auto& vec : vectors) total_size += vec.size(); |
182 | // Use default-initialization (== no initialization). |
183 | std::unique_ptr<byte[]> result{new byte[total_size]}; |
184 | byte* ptr = result.get(); |
185 | for (auto& vec : vectors) { |
186 | if (vec.empty()) continue; // Avoid nullptr in {memcpy}. |
187 | memcpy(ptr, vec.begin(), vec.size()); |
188 | ptr += vec.size(); |
189 | } |
190 | return result; |
191 | } |
192 | |
193 | void WasmCode::RegisterTrapHandlerData() { |
194 | DCHECK(!has_trap_handler_index())((void) 0); |
195 | if (kind() != WasmCode::kWasmFunction) return; |
196 | if (protected_instructions_size_ == 0) return; |
197 | |
198 | Address base = instruction_start(); |
199 | |
200 | size_t size = instructions().size(); |
201 | auto protected_instruction_data = this->protected_instructions(); |
202 | const int index = |
203 | RegisterHandlerData(base, size, protected_instruction_data.size(), |
204 | protected_instruction_data.begin()); |
205 | |
206 | // TODO(eholk): if index is negative, fail. |
207 | CHECK_LE(0, index)do { bool _cmp = ::v8::base::CmpLEImpl< typename ::v8::base ::pass_value_or_ref<decltype(0)>::type, typename ::v8:: base::pass_value_or_ref<decltype(index)>::type>((0), (index)); do { if ((__builtin_expect(!!(!(_cmp)), 0))) { V8_Fatal ("Check failed: %s.", "0" " " "<=" " " "index"); } } while (false); } while (false); |
208 | set_trap_handler_index(index); |
209 | DCHECK(has_trap_handler_index())((void) 0); |
210 | } |
211 | |
212 | bool WasmCode::ShouldBeLogged(Isolate* isolate) { |
213 | // The return value is cached in {WasmEngine::IsolateData::log_codes}. Ensure |
214 | // to call {WasmEngine::EnableCodeLogging} if this return value would change |
215 | // for any isolate. Otherwise we might lose code events. |
216 | return isolate->logger()->is_listening_to_code_events() || |
217 | isolate->code_event_dispatcher()->IsListeningToCodeEvents() || |
218 | isolate->is_profiling(); |
219 | } |
220 | |
221 | std::string WasmCode::DebugName() const { |
222 | if (IsAnonymous()) { |
223 | return "anonymous function"; |
224 | } |
225 | |
226 | ModuleWireBytes wire_bytes(native_module()->wire_bytes()); |
227 | const WasmModule* module = native_module()->module(); |
228 | WireBytesRef name_ref = |
229 | module->lazily_generated_names.LookupFunctionName(wire_bytes, index()); |
230 | WasmName name = wire_bytes.GetNameOrNull(name_ref); |
231 | std::string name_buffer; |
232 | if (kind() == kWasmToJsWrapper) { |
233 | name_buffer = "wasm-to-js:"; |
234 | size_t prefix_len = name_buffer.size(); |
235 | constexpr size_t kMaxSigLength = 128; |
236 | name_buffer.resize(prefix_len + kMaxSigLength); |
237 | const FunctionSig* sig = module->functions[index()].sig; |
238 | size_t sig_length = PrintSignature( |
239 | base::VectorOf(&name_buffer[prefix_len], kMaxSigLength), sig); |
240 | name_buffer.resize(prefix_len + sig_length); |
241 | // If the import has a name, also append that (separated by "-"). |
242 | if (!name.empty()) { |
243 | name_buffer += '-'; |
244 | name_buffer.append(name.begin(), name.size()); |
245 | } |
246 | } else if (name.empty()) { |
247 | name_buffer.resize(32); |
248 | name_buffer.resize( |
249 | SNPrintF(base::VectorOf(&name_buffer.front(), name_buffer.size()), |
250 | "wasm-function[%d]", index())); |
251 | } else { |
252 | name_buffer.append(name.begin(), name.end()); |
253 | } |
254 | return name_buffer; |
255 | } |
256 | |
257 | void WasmCode::LogCode(Isolate* isolate, const char* source_url, |
258 | int script_id) const { |
259 | DCHECK(ShouldBeLogged(isolate))((void) 0); |
260 | if (IsAnonymous()) return; |
261 | |
262 | ModuleWireBytes wire_bytes(native_module_->wire_bytes()); |
263 | const WasmModule* module = native_module_->module(); |
264 | std::string fn_name = DebugName(); |
265 | WasmName name = base::VectorOf(fn_name); |
266 | |
267 | const WasmDebugSymbols& debug_symbols = module->debug_symbols; |
268 | auto load_wasm_source_map = isolate->wasm_load_source_map_callback(); |
269 | auto source_map = native_module_->GetWasmSourceMap(); |
270 | if (!source_map && debug_symbols.type == WasmDebugSymbols::Type::SourceMap && |
271 | !debug_symbols.external_url.is_empty() && load_wasm_source_map) { |
272 | WasmName external_url = |
273 | wire_bytes.GetNameOrNull(debug_symbols.external_url); |
274 | std::string external_url_string(external_url.data(), external_url.size()); |
275 | HandleScope scope(isolate); |
276 | v8::Isolate* v8_isolate = reinterpret_cast<v8::Isolate*>(isolate); |
277 | Local<v8::String> source_map_str = |
278 | load_wasm_source_map(v8_isolate, external_url_string.c_str()); |
279 | native_module_->SetWasmSourceMap( |
280 | std::make_unique<WasmModuleSourceMap>(v8_isolate, source_map_str)); |
281 | } |
282 | |
283 | // Record source positions before adding code, otherwise when code is added, |
284 | // there are no source positions to associate with the added code. |
285 | if (!source_positions().empty()) { |
286 | LOG_CODE_EVENT(isolate, WasmCodeLinePosInfoRecordEvent(instruction_start(),do { auto&& logger = (isolate)->logger(); if (logger ->is_listening_to_code_events()) logger->WasmCodeLinePosInfoRecordEvent (instruction_start(), source_positions()); } while (false) |
287 | source_positions()))do { auto&& logger = (isolate)->logger(); if (logger ->is_listening_to_code_events()) logger->WasmCodeLinePosInfoRecordEvent (instruction_start(), source_positions()); } while (false); |
288 | } |
289 | |
290 | int code_offset = module->functions[index_].code.offset(); |
291 | PROFILE(isolate, CodeCreateEvent(CodeEventListener::FUNCTION_TAG, this, name,(isolate)->code_event_dispatcher()->CodeCreateEvent(CodeEventListener ::FUNCTION_TAG, this, name, source_url, code_offset, script_id ); |
292 | source_url, code_offset, script_id))(isolate)->code_event_dispatcher()->CodeCreateEvent(CodeEventListener ::FUNCTION_TAG, this, name, source_url, code_offset, script_id );; |
293 | } |
294 | |
295 | void WasmCode::Validate() const { |
296 | // The packing strategy for {tagged_parameter_slots} only works if both the |
297 | // max number of parameters and their max combined stack slot usage fits into |
298 | // their respective half of the result value. |
299 | STATIC_ASSERT(wasm::kV8MaxWasmFunctionParams <static_assert(wasm::kV8MaxWasmFunctionParams < std::numeric_limits <uint16_t>::max(), "wasm::kV8MaxWasmFunctionParams < std::numeric_limits<uint16_t>::max()" ) |
300 | std::numeric_limits<uint16_t>::max())static_assert(wasm::kV8MaxWasmFunctionParams < std::numeric_limits <uint16_t>::max(), "wasm::kV8MaxWasmFunctionParams < std::numeric_limits<uint16_t>::max()" ); |
301 | static constexpr int kMaxSlotsPerParam = 4; // S128 on 32-bit platforms. |
302 | STATIC_ASSERT(wasm::kV8MaxWasmFunctionParams * kMaxSlotsPerParam <static_assert(wasm::kV8MaxWasmFunctionParams * kMaxSlotsPerParam < std::numeric_limits<uint16_t>::max(), "wasm::kV8MaxWasmFunctionParams * kMaxSlotsPerParam < std::numeric_limits<uint16_t>::max()" ) |
303 | std::numeric_limits<uint16_t>::max())static_assert(wasm::kV8MaxWasmFunctionParams * kMaxSlotsPerParam < std::numeric_limits<uint16_t>::max(), "wasm::kV8MaxWasmFunctionParams * kMaxSlotsPerParam < std::numeric_limits<uint16_t>::max()" ); |
304 | |
305 | #ifdef DEBUG |
306 | // Scope for foreign WasmCode pointers. |
307 | WasmCodeRefScope code_ref_scope; |
308 | // We expect certain relocation info modes to never appear in {WasmCode} |
309 | // objects or to be restricted to a small set of valid values. Hence the |
310 | // iteration below does not use a mask, but visits all relocation data. |
311 | for (RelocIterator it(instructions(), reloc_info(), constant_pool()); |
312 | !it.done(); it.next()) { |
313 | RelocInfo::Mode mode = it.rinfo()->rmode(); |
314 | switch (mode) { |
315 | case RelocInfo::WASM_CALL: { |
316 | Address target = it.rinfo()->wasm_call_address(); |
317 | WasmCode* code = native_module_->Lookup(target); |
318 | CHECK_NOT_NULL(code)do { if ((__builtin_expect(!!(!((code) != nullptr)), 0))) { V8_Fatal ("Check failed: %s.", "(code) != nullptr"); } } while (false); |
319 | CHECK_EQ(WasmCode::kJumpTable, code->kind())do { bool _cmp = ::v8::base::CmpEQImpl< typename ::v8::base ::pass_value_or_ref<decltype(WasmCode::kJumpTable)>::type , typename ::v8::base::pass_value_or_ref<decltype(code-> kind())>::type>((WasmCode::kJumpTable), (code->kind( ))); do { if ((__builtin_expect(!!(!(_cmp)), 0))) { V8_Fatal( "Check failed: %s.", "WasmCode::kJumpTable" " " "==" " " "code->kind()" ); } } while (false); } while (false); |
320 | CHECK(code->contains(target))do { if ((__builtin_expect(!!(!(code->contains(target))), 0 ))) { V8_Fatal("Check failed: %s.", "code->contains(target)" ); } } while (false); |
321 | break; |
322 | } |
323 | case RelocInfo::WASM_STUB_CALL: { |
324 | Address target = it.rinfo()->wasm_stub_call_address(); |
325 | WasmCode* code = native_module_->Lookup(target); |
326 | CHECK_NOT_NULL(code)do { if ((__builtin_expect(!!(!((code) != nullptr)), 0))) { V8_Fatal ("Check failed: %s.", "(code) != nullptr"); } } while (false); |
327 | CHECK_EQ(WasmCode::kJumpTable, code->kind())do { bool _cmp = ::v8::base::CmpEQImpl< typename ::v8::base ::pass_value_or_ref<decltype(WasmCode::kJumpTable)>::type , typename ::v8::base::pass_value_or_ref<decltype(code-> kind())>::type>((WasmCode::kJumpTable), (code->kind( ))); do { if ((__builtin_expect(!!(!(_cmp)), 0))) { V8_Fatal( "Check failed: %s.", "WasmCode::kJumpTable" " " "==" " " "code->kind()" ); } } while (false); } while (false); |
328 | CHECK(code->contains(target))do { if ((__builtin_expect(!!(!(code->contains(target))), 0 ))) { V8_Fatal("Check failed: %s.", "code->contains(target)" ); } } while (false); |
329 | break; |
330 | } |
331 | case RelocInfo::INTERNAL_REFERENCE: |
332 | case RelocInfo::INTERNAL_REFERENCE_ENCODED: { |
333 | Address target = it.rinfo()->target_internal_reference(); |
334 | CHECK(contains(target))do { if ((__builtin_expect(!!(!(contains(target))), 0))) { V8_Fatal ("Check failed: %s.", "contains(target)"); } } while (false); |
335 | break; |
336 | } |
337 | case RelocInfo::EXTERNAL_REFERENCE: |
338 | case RelocInfo::CONST_POOL: |
339 | case RelocInfo::VENEER_POOL: |
340 | // These are OK to appear. |
341 | break; |
342 | default: |
343 | FATAL("Unexpected mode: %d", mode)V8_Fatal("Unexpected mode: %d", mode); |
344 | } |
345 | } |
346 | #endif |
347 | } |
348 | |
349 | void WasmCode::MaybePrint() const { |
350 | // Determines whether flags want this code to be printed. |
351 | bool function_index_matches = |
352 | (!IsAnonymous() && |
353 | FLAG_print_wasm_code_function_index == static_cast<int>(index())); |
354 | if (FLAG_print_code || (kind() == kWasmFunction |
355 | ? (FLAG_print_wasm_code || function_index_matches) |
356 | : FLAG_print_wasm_stub_code)) { |
357 | std::string name = DebugName(); |
358 | Print(name.c_str()); |
359 | } |
360 | } |
361 | |
362 | void WasmCode::Print(const char* name) const { |
363 | StdoutStream os; |
364 | os << "--- WebAssembly code ---\n"; |
365 | Disassemble(name, os); |
366 | if (native_module_->HasDebugInfo()) { |
367 | if (auto* debug_side_table = |
368 | native_module_->GetDebugInfo()->GetDebugSideTableIfExists(this)) { |
369 | debug_side_table->Print(os); |
370 | } |
371 | } |
372 | os << "--- End code ---\n"; |
373 | } |
374 | |
375 | void WasmCode::Disassemble(const char* name, std::ostream& os, |
376 | Address current_pc) const { |
377 | if (name) os << "name: " << name << "\n"; |
378 | if (!IsAnonymous()) os << "index: " << index() << "\n"; |
379 | os << "kind: " << GetWasmCodeKindAsString(kind()) << "\n"; |
380 | if (kind() == kWasmFunction) { |
381 | DCHECK(is_liftoff() || tier() == ExecutionTier::kTurbofan)((void) 0); |
382 | const char* compiler = |
383 | is_liftoff() ? (for_debugging() ? "Liftoff (debug)" : "Liftoff") |
384 | : "TurboFan"; |
385 | os << "compiler: " << compiler << "\n"; |
386 | } |
387 | size_t padding = instructions().size() - unpadded_binary_size_; |
388 | os << "Body (size = " << instructions().size() << " = " |
389 | << unpadded_binary_size_ << " + " << padding << " padding)\n"; |
390 | |
391 | int instruction_size = unpadded_binary_size_; |
392 | if (constant_pool_offset_ < instruction_size) { |
393 | instruction_size = constant_pool_offset_; |
394 | } |
395 | if (safepoint_table_offset_ && safepoint_table_offset_ < instruction_size) { |
396 | instruction_size = safepoint_table_offset_; |
397 | } |
398 | if (handler_table_offset_ < instruction_size) { |
399 | instruction_size = handler_table_offset_; |
400 | } |
401 | DCHECK_LT(0, instruction_size)((void) 0); |
402 | |
403 | #ifdef ENABLE_DISASSEMBLER1 |
404 | os << "Instructions (size = " << instruction_size << ")\n"; |
405 | Disassembler::Decode(nullptr, os, instructions().begin(), |
406 | instructions().begin() + instruction_size, |
407 | CodeReference(this), current_pc); |
408 | os << "\n"; |
409 | |
410 | if (handler_table_size() > 0) { |
411 | HandlerTable table(this); |
412 | os << "Exception Handler Table (size = " << table.NumberOfReturnEntries() |
413 | << "):\n"; |
414 | table.HandlerTableReturnPrint(os); |
415 | os << "\n"; |
416 | } |
417 | |
418 | if (protected_instructions_size_ > 0) { |
419 | os << "Protected instructions:\n pc offset land pad\n"; |
420 | for (auto& data : protected_instructions()) { |
421 | os << std::setw(10) << std::hex << data.instr_offset << std::setw(10) |
422 | << std::hex << data.landing_offset << "\n"; |
423 | } |
424 | os << "\n"; |
425 | } |
426 | |
427 | if (!source_positions().empty()) { |
428 | os << "Source positions:\n pc offset position\n"; |
429 | for (SourcePositionTableIterator it(source_positions()); !it.done(); |
430 | it.Advance()) { |
431 | os << std::setw(10) << std::hex << it.code_offset() << std::dec |
432 | << std::setw(10) << it.source_position().ScriptOffset() |
433 | << (it.is_statement() ? " statement" : "") << "\n"; |
434 | } |
435 | os << "\n"; |
436 | } |
437 | |
438 | if (safepoint_table_offset_ > 0) { |
439 | SafepointTable table(this); |
440 | table.Print(os); |
441 | os << "\n"; |
442 | } |
443 | |
444 | os << "RelocInfo (size = " << reloc_info().size() << ")\n"; |
445 | for (RelocIterator it(instructions(), reloc_info(), constant_pool()); |
446 | !it.done(); it.next()) { |
447 | it.rinfo()->Print(nullptr, os); |
448 | } |
449 | os << "\n"; |
450 | #else // !ENABLE_DISASSEMBLER |
451 | os << "Instructions (size = " << instruction_size << ", " |
452 | << static_cast<void*>(instructions().begin()) << "-" |
453 | << static_cast<void*>(instructions().begin() + instruction_size) << ")\n"; |
454 | #endif // !ENABLE_DISASSEMBLER |
455 | } |
456 | |
457 | const char* GetWasmCodeKindAsString(WasmCode::Kind kind) { |
458 | switch (kind) { |
459 | case WasmCode::kWasmFunction: |
460 | return "wasm function"; |
461 | case WasmCode::kWasmToCapiWrapper: |
462 | return "wasm-to-capi"; |
463 | case WasmCode::kWasmToJsWrapper: |
464 | return "wasm-to-js"; |
465 | case WasmCode::kJumpTable: |
466 | return "jump table"; |
467 | } |
468 | return "unknown kind"; |
469 | } |
470 | |
471 | WasmCode::~WasmCode() { |
472 | if (has_trap_handler_index()) { |
473 | trap_handler::ReleaseHandlerData(trap_handler_index()); |
474 | } |
475 | } |
476 | |
477 | V8_WARN_UNUSED_RESULT__attribute__((warn_unused_result)) bool WasmCode::DecRefOnPotentiallyDeadCode() { |
478 | if (GetWasmEngine()->AddPotentiallyDeadCode(this)) { |
479 | // The code just became potentially dead. The ref count we wanted to |
480 | // decrement is now transferred to the set of potentially dead code, and |
481 | // will be decremented when the next GC is run. |
482 | return false; |
483 | } |
484 | // If we reach here, the code was already potentially dead. Decrement the ref |
485 | // count, and return true if it drops to zero. |
486 | return DecRefOnDeadCode(); |
487 | } |
488 | |
489 | // static |
490 | void WasmCode::DecrementRefCount(base::Vector<WasmCode* const> code_vec) { |
491 | // Decrement the ref counter of all given code objects. Keep the ones whose |
492 | // ref count drops to zero. |
493 | WasmEngine::DeadCodeMap dead_code; |
494 | for (WasmCode* code : code_vec) { |
495 | if (!code->DecRef()) continue; // Remaining references. |
496 | dead_code[code->native_module()].push_back(code); |
497 | } |
498 | |
499 | if (dead_code.empty()) return; |
500 | |
501 | GetWasmEngine()->FreeDeadCode(dead_code); |
502 | } |
503 | |
504 | int WasmCode::GetSourcePositionBefore(int offset) { |
505 | int position = kNoSourcePosition; |
506 | for (SourcePositionTableIterator iterator(source_positions()); |
507 | !iterator.done() && iterator.code_offset() < offset; |
508 | iterator.Advance()) { |
509 | position = iterator.source_position().ScriptOffset(); |
510 | } |
511 | return position; |
512 | } |
513 | |
514 | // static |
515 | constexpr size_t WasmCodeAllocator::kMaxCodeSpaceSize; |
516 | |
517 | WasmCodeAllocator::WasmCodeAllocator(std::shared_ptr<Counters> async_counters) |
518 | : protect_code_memory_( |
519 | !V8_HAS_PTHREAD_JIT_WRITE_PROTECT0 && |
520 | FLAG_wasm_write_protect_code_memory && |
521 | !GetWasmCodeManager()->MemoryProtectionKeysEnabled()), |
522 | async_counters_(std::move(async_counters)) { |
523 | owned_code_space_.reserve(4); |
524 | } |
525 | |
526 | WasmCodeAllocator::~WasmCodeAllocator() { |
527 | GetWasmCodeManager()->FreeNativeModule(base::VectorOf(owned_code_space_), |
528 | committed_code_space()); |
529 | } |
530 | |
531 | void WasmCodeAllocator::Init(VirtualMemory code_space) { |
532 | DCHECK(owned_code_space_.empty())((void) 0); |
533 | DCHECK(free_code_space_.IsEmpty())((void) 0); |
534 | free_code_space_.Merge(code_space.region()); |
535 | owned_code_space_.emplace_back(std::move(code_space)); |
536 | async_counters_->wasm_module_num_code_spaces()->AddSample(1); |
537 | } |
538 | |
539 | namespace { |
540 | // On Windows, we cannot commit a region that straddles different reservations |
541 | // of virtual memory. Because we bump-allocate, and because, if we need more |
542 | // memory, we append that memory at the end of the owned_code_space_ list, we |
543 | // traverse that list in reverse order to find the reservation(s) that guide how |
544 | // to chunk the region to commit. |
545 | #if V8_OS_WIN |
546 | constexpr bool kNeedsToSplitRangeByReservations = true; |
547 | #else |
548 | constexpr bool kNeedsToSplitRangeByReservations = false; |
549 | #endif |
550 | |
551 | base::SmallVector<base::AddressRegion, 1> SplitRangeByReservationsIfNeeded( |
552 | base::AddressRegion range, |
553 | const std::vector<VirtualMemory>& owned_code_space) { |
554 | if (!kNeedsToSplitRangeByReservations) return {range}; |
555 | |
556 | base::SmallVector<base::AddressRegion, 1> split_ranges; |
557 | size_t missing_begin = range.begin(); |
558 | size_t missing_end = range.end(); |
559 | for (auto& vmem : base::Reversed(owned_code_space)) { |
560 | Address overlap_begin = std::max(missing_begin, vmem.address()); |
561 | Address overlap_end = std::min(missing_end, vmem.end()); |
562 | if (overlap_begin >= overlap_end) continue; |
563 | split_ranges.emplace_back(overlap_begin, overlap_end - overlap_begin); |
564 | // Opportunistically reduce the missing range. This might terminate the loop |
565 | // early. |
566 | if (missing_begin == overlap_begin) missing_begin = overlap_end; |
567 | if (missing_end == overlap_end) missing_end = overlap_begin; |
568 | if (missing_begin >= missing_end) break; |
569 | } |
570 | #ifdef ENABLE_SLOW_DCHECKS |
571 | // The returned vector should cover the full range. |
572 | size_t total_split_size = 0; |
573 | for (auto split : split_ranges) total_split_size += split.size(); |
574 | DCHECK_EQ(range.size(), total_split_size)((void) 0); |
575 | #endif |
576 | return split_ranges; |
577 | } |
578 | |
579 | int NumWasmFunctionsInFarJumpTable(uint32_t num_declared_functions) { |
580 | return NativeModule::kNeedsFarJumpsBetweenCodeSpaces |
581 | ? static_cast<int>(num_declared_functions) |
582 | : 0; |
583 | } |
584 | |
585 | // Returns an overapproximation of the code size overhead per new code space |
586 | // created by the jump tables. |
587 | size_t OverheadPerCodeSpace(uint32_t num_declared_functions) { |
588 | // Overhead for the jump table. |
589 | size_t overhead = RoundUp<kCodeAlignment>( |
590 | JumpTableAssembler::SizeForNumberOfSlots(num_declared_functions)); |
591 | |
592 | #if defined(V8_OS_WIN64) |
593 | // On Win64, we need to reserve some pages at the beginning of an executable |
594 | // space. See {AddCodeSpace}. |
595 | overhead += Heap::GetCodeRangeReservedAreaSize(); |
596 | #endif // V8_OS_WIN64 |
597 | |
598 | // Overhead for the far jump table. |
599 | overhead += |
600 | RoundUp<kCodeAlignment>(JumpTableAssembler::SizeForNumberOfFarJumpSlots( |
601 | WasmCode::kRuntimeStubCount, |
602 | NumWasmFunctionsInFarJumpTable(num_declared_functions))); |
603 | |
604 | return overhead; |
605 | } |
606 | |
607 | // Returns an estimate how much code space should be reserved. |
608 | size_t ReservationSize(size_t code_size_estimate, int num_declared_functions, |
609 | size_t total_reserved) { |
610 | size_t overhead = OverheadPerCodeSpace(num_declared_functions); |
611 | |
612 | // Reserve the maximum of |
613 | // a) needed size + overhead (this is the minimum needed) |
614 | // b) 2 * overhead (to not waste too much space by overhead) |
615 | // c) 1/4 of current total reservation size (to grow exponentially) |
616 | size_t minimum_size = 2 * overhead; |
617 | size_t suggested_size = |
618 | std::max(std::max(RoundUp<kCodeAlignment>(code_size_estimate) + overhead, |
619 | minimum_size), |
620 | total_reserved / 4); |
621 | |
622 | if (V8_UNLIKELY(minimum_size > WasmCodeAllocator::kMaxCodeSpaceSize)(__builtin_expect(!!(minimum_size > WasmCodeAllocator::kMaxCodeSpaceSize ), 0))) { |
623 | constexpr auto format = base::StaticCharVector( |
624 | "wasm code reservation: required minimum (%zu) is bigger than " |
625 | "supported maximum (%zu)"); |
626 | constexpr int kMaxMessageLength = |
627 | format.size() - 6 + 2 * std::numeric_limits<size_t>::digits10; |
628 | base::EmbeddedVector<char, kMaxMessageLength + 1> message; |
629 | SNPrintF(message, format.begin(), minimum_size, |
630 | WasmCodeAllocator::kMaxCodeSpaceSize); |
631 | V8::FatalProcessOutOfMemory(nullptr, message.begin()); |
632 | UNREACHABLE()V8_Fatal("unreachable code"); |
633 | } |
634 | |
635 | // Limit by the maximum supported code space size. |
636 | size_t reserve_size = |
637 | std::min(WasmCodeAllocator::kMaxCodeSpaceSize, suggested_size); |
638 | |
639 | return reserve_size; |
640 | } |
641 | |
642 | #ifdef DEBUG |
643 | // Check postconditions when returning from this method: |
644 | // 1) {region} must be fully contained in {writable_memory_}; |
645 | // 2) {writable_memory_} must be a maximally merged ordered set of disjoint |
646 | // non-empty regions. |
647 | class CheckWritableMemoryRegions { |
648 | public: |
649 | CheckWritableMemoryRegions( |
650 | std::set<base::AddressRegion, base::AddressRegion::StartAddressLess>& |
651 | writable_memory, |
652 | base::AddressRegion new_region, size_t& new_writable_memory) |
653 | : writable_memory_(writable_memory), |
654 | new_region_(new_region), |
655 | new_writable_memory_(new_writable_memory), |
656 | old_writable_size_(std::accumulate( |
657 | writable_memory_.begin(), writable_memory_.end(), size_t{0}, |
658 | [](size_t old, base::AddressRegion region) { |
659 | return old + region.size(); |
660 | })) {} |
661 | |
662 | ~CheckWritableMemoryRegions() { |
663 | // {new_region} must be contained in {writable_memory_}. |
664 | DCHECK(std::any_of(((void) 0) |
665 | writable_memory_.begin(), writable_memory_.end(),((void) 0) |
666 | [this](auto region) { return region.contains(new_region_); }))((void) 0); |
667 | |
668 | // The new total size of writable memory must have increased by |
669 | // {new_writable_memory}. |
670 | size_t total_writable_size = std::accumulate( |
671 | writable_memory_.begin(), writable_memory_.end(), size_t{0}, |
672 | [](size_t old, auto region) { return old + region.size(); }); |
673 | DCHECK_EQ(old_writable_size_ + new_writable_memory_, total_writable_size)((void) 0); |
674 | |
675 | // There are no empty regions. |
676 | DCHECK(std::none_of(writable_memory_.begin(), writable_memory_.end(),((void) 0) |
677 | [](auto region) { return region.is_empty(); }))((void) 0); |
678 | |
679 | // Regions are sorted and disjoint. (std::accumulate has nodiscard on msvc |
680 | // so USE is required to prevent build failures in debug builds). |
681 | USE(std::accumulate(writable_memory_.begin(), writable_memory_.end(),do { ::v8::base::Use unused_tmp_array_for_use_macro[]{std::accumulate (writable_memory_.begin(), writable_memory_.end(), Address{0} , [](Address previous_end, auto region) { ((void) 0); return region .end(); })}; (void)unused_tmp_array_for_use_macro; } while (false ) |
682 | Address{0}, [](Address previous_end, auto region) {do { ::v8::base::Use unused_tmp_array_for_use_macro[]{std::accumulate (writable_memory_.begin(), writable_memory_.end(), Address{0} , [](Address previous_end, auto region) { ((void) 0); return region .end(); })}; (void)unused_tmp_array_for_use_macro; } while (false ) |
683 | DCHECK_LT(previous_end, region.begin());do { ::v8::base::Use unused_tmp_array_for_use_macro[]{std::accumulate (writable_memory_.begin(), writable_memory_.end(), Address{0} , [](Address previous_end, auto region) { ((void) 0); return region .end(); })}; (void)unused_tmp_array_for_use_macro; } while (false ) |
684 | return region.end();do { ::v8::base::Use unused_tmp_array_for_use_macro[]{std::accumulate (writable_memory_.begin(), writable_memory_.end(), Address{0} , [](Address previous_end, auto region) { ((void) 0); return region .end(); })}; (void)unused_tmp_array_for_use_macro; } while (false ) |
685 | }))do { ::v8::base::Use unused_tmp_array_for_use_macro[]{std::accumulate (writable_memory_.begin(), writable_memory_.end(), Address{0} , [](Address previous_end, auto region) { ((void) 0); return region .end(); })}; (void)unused_tmp_array_for_use_macro; } while (false ); |
686 | } |
687 | |
688 | private: |
689 | const std::set<base::AddressRegion, base::AddressRegion::StartAddressLess>& |
690 | writable_memory_; |
691 | const base::AddressRegion new_region_; |
692 | const size_t& new_writable_memory_; |
693 | const size_t old_writable_size_; |
694 | }; |
695 | #else // !DEBUG |
696 | class CheckWritableMemoryRegions { |
697 | public: |
698 | template <typename... Args> |
699 | explicit CheckWritableMemoryRegions(Args...) {} |
700 | }; |
701 | #endif // !DEBUG |
702 | |
703 | } // namespace |
704 | |
705 | base::Vector<byte> WasmCodeAllocator::AllocateForCode( |
706 | NativeModule* native_module, size_t size) { |
707 | return AllocateForCodeInRegion(native_module, size, kUnrestrictedRegion); |
708 | } |
709 | |
710 | base::Vector<byte> WasmCodeAllocator::AllocateForCodeInRegion( |
711 | NativeModule* native_module, size_t size, base::AddressRegion region) { |
712 | DCHECK_LT(0, size)((void) 0); |
713 | auto* code_manager = GetWasmCodeManager(); |
714 | size = RoundUp<kCodeAlignment>(size); |
715 | base::AddressRegion code_space = |
716 | free_code_space_.AllocateInRegion(size, region); |
717 | if (V8_UNLIKELY(code_space.is_empty())(__builtin_expect(!!(code_space.is_empty()), 0))) { |
718 | // Only allocations without a specific region are allowed to fail. Otherwise |
719 | // the region must have been allocated big enough to hold all initial |
720 | // allocations (jump tables etc). |
721 | CHECK_EQ(kUnrestrictedRegion, region)do { bool _cmp = ::v8::base::CmpEQImpl< typename ::v8::base ::pass_value_or_ref<decltype(kUnrestrictedRegion)>::type , typename ::v8::base::pass_value_or_ref<decltype(region)> ::type>((kUnrestrictedRegion), (region)); do { if ((__builtin_expect (!!(!(_cmp)), 0))) { V8_Fatal("Check failed: %s.", "kUnrestrictedRegion" " " "==" " " "region"); } } while (false); } while (false); |
722 | |
723 | Address hint = owned_code_space_.empty() ? kNullAddress |
724 | : owned_code_space_.back().end(); |
725 | |
726 | size_t total_reserved = 0; |
727 | for (auto& vmem : owned_code_space_) total_reserved += vmem.size(); |
728 | size_t reserve_size = ReservationSize( |
729 | size, native_module->module()->num_declared_functions, total_reserved); |
730 | VirtualMemory new_mem = |
731 | code_manager->TryAllocate(reserve_size, reinterpret_cast<void*>(hint)); |
732 | if (!new_mem.IsReserved()) { |
733 | constexpr auto format = base::StaticCharVector( |
734 | "Cannot allocate more code space (%zu bytes, currently %zu)"); |
735 | constexpr int kMaxMessageLength = |
736 | format.size() - 6 + 2 * std::numeric_limits<size_t>::digits10; |
737 | base::EmbeddedVector<char, kMaxMessageLength + 1> message; |
738 | SNPrintF(message, format.begin(), total_reserved, reserve_size); |
739 | V8::FatalProcessOutOfMemory(nullptr, message.begin()); |
740 | UNREACHABLE()V8_Fatal("unreachable code"); |
741 | } |
742 | |
743 | base::AddressRegion new_region = new_mem.region(); |
744 | code_manager->AssignRange(new_region, native_module); |
745 | free_code_space_.Merge(new_region); |
746 | owned_code_space_.emplace_back(std::move(new_mem)); |
747 | native_module->AddCodeSpaceLocked(new_region); |
748 | |
749 | code_space = free_code_space_.Allocate(size); |
750 | DCHECK(!code_space.is_empty())((void) 0); |
751 | async_counters_->wasm_module_num_code_spaces()->AddSample( |
752 | static_cast<int>(owned_code_space_.size())); |
753 | } |
754 | const Address commit_page_size = CommitPageSize(); |
755 | Address commit_start = RoundUp(code_space.begin(), commit_page_size); |
756 | if (commit_start != code_space.begin()) { |
757 | MakeWritable({commit_start - commit_page_size, commit_page_size}); |
758 | } |
759 | |
760 | Address commit_end = RoundUp(code_space.end(), commit_page_size); |
761 | // {commit_start} will be either code_space.start or the start of the next |
762 | // page. {commit_end} will be the start of the page after the one in which |
763 | // the allocation ends. |
764 | // We start from an aligned start, and we know we allocated vmem in |
765 | // page multiples. |
766 | // We just need to commit what's not committed. The page in which we |
767 | // start is already committed (or we start at the beginning of a page). |
768 | // The end needs to be committed all through the end of the page. |
769 | if (commit_start < commit_end) { |
770 | for (base::AddressRegion split_range : SplitRangeByReservationsIfNeeded( |
771 | {commit_start, commit_end - commit_start}, owned_code_space_)) { |
772 | code_manager->Commit(split_range); |
773 | } |
774 | committed_code_space_.fetch_add(commit_end - commit_start); |
775 | // Committed code cannot grow bigger than maximum code space size. |
776 | DCHECK_LE(committed_code_space_.load(), FLAG_wasm_max_code_space * MB)((void) 0); |
777 | if (protect_code_memory_) { |
778 | DCHECK_LT(0, writers_count_)((void) 0); |
779 | InsertIntoWritableRegions({commit_start, commit_end - commit_start}, |
780 | false); |
781 | } |
782 | } |
783 | DCHECK(IsAligned(code_space.begin(), kCodeAlignment))((void) 0); |
784 | allocated_code_space_.Merge(code_space); |
785 | generated_code_size_.fetch_add(code_space.size(), std::memory_order_relaxed); |
786 | |
787 | TRACE_HEAP("Code alloc for %p: 0x%" PRIxPTR"l" "x" ",+%zu\n", this, |
788 | code_space.begin(), size); |
789 | return {reinterpret_cast<byte*>(code_space.begin()), code_space.size()}; |
790 | } |
791 | |
792 | // TODO(dlehmann): Ensure that {AddWriter()} is always paired up with a |
793 | // {RemoveWriter}, such that eventually the code space is write protected. |
794 | // One solution is to make the API foolproof by hiding {SetWritable()} and |
795 | // allowing change of permissions only through {CodeSpaceWriteScope}. |
796 | // TODO(dlehmann): Add tests that ensure the code space is eventually write- |
797 | // protected. |
798 | void WasmCodeAllocator::AddWriter() { |
799 | DCHECK(protect_code_memory_)((void) 0); |
800 | ++writers_count_; |
801 | } |
802 | |
803 | void WasmCodeAllocator::RemoveWriter() { |
804 | DCHECK(protect_code_memory_)((void) 0); |
805 | DCHECK_GT(writers_count_, 0)((void) 0); |
806 | if (--writers_count_ > 0) return; |
807 | |
808 | // Switch all memory to non-writable. |
809 | v8::PageAllocator* page_allocator = GetPlatformPageAllocator(); |
810 | for (base::AddressRegion writable : writable_memory_) { |
811 | for (base::AddressRegion split_range : |
812 | SplitRangeByReservationsIfNeeded(writable, owned_code_space_)) { |
813 | TRACE_HEAP("Set 0x%" V8PRIxPTR"l" "x" ":0x%" V8PRIxPTR"l" "x" " to RX\n", |
814 | split_range.begin(), split_range.end()); |
815 | CHECK(SetPermissions(page_allocator, split_range.begin(),do { if ((__builtin_expect(!!(!(SetPermissions(page_allocator , split_range.begin(), split_range.size(), PageAllocator::kReadExecute ))), 0))) { V8_Fatal("Check failed: %s.", "SetPermissions(page_allocator, split_range.begin(), split_range.size(), PageAllocator::kReadExecute)" ); } } while (false) |
816 | split_range.size(), PageAllocator::kReadExecute))do { if ((__builtin_expect(!!(!(SetPermissions(page_allocator , split_range.begin(), split_range.size(), PageAllocator::kReadExecute ))), 0))) { V8_Fatal("Check failed: %s.", "SetPermissions(page_allocator, split_range.begin(), split_range.size(), PageAllocator::kReadExecute)" ); } } while (false); |
817 | } |
818 | } |
819 | writable_memory_.clear(); |
820 | } |
821 | |
822 | void WasmCodeAllocator::MakeWritable(base::AddressRegion region) { |
823 | if (!protect_code_memory_) return; |
824 | DCHECK_LT(0, writers_count_)((void) 0); |
825 | DCHECK(!region.is_empty())((void) 0); |
826 | v8::PageAllocator* page_allocator = GetPlatformPageAllocator(); |
827 | |
828 | // Align to commit page size. |
829 | size_t commit_page_size = page_allocator->CommitPageSize(); |
830 | DCHECK(base::bits::IsPowerOfTwo(commit_page_size))((void) 0); |
831 | Address begin = RoundDown(region.begin(), commit_page_size); |
832 | Address end = RoundUp(region.end(), commit_page_size); |
833 | region = base::AddressRegion(begin, end - begin); |
834 | |
835 | InsertIntoWritableRegions(region, true); |
836 | } |
837 | |
838 | void WasmCodeAllocator::FreeCode(base::Vector<WasmCode* const> codes) { |
839 | // Zap code area and collect freed code regions. |
840 | DisjointAllocationPool freed_regions; |
841 | size_t code_size = 0; |
842 | for (WasmCode* code : codes) { |
843 | code_size += code->instructions().size(); |
844 | freed_regions.Merge(base::AddressRegion{code->instruction_start(), |
845 | code->instructions().size()}); |
846 | } |
847 | freed_code_size_.fetch_add(code_size); |
848 | |
849 | // Merge {freed_regions} into {freed_code_space_} and put all ranges of full |
850 | // pages to decommit into {regions_to_decommit} (decommitting is expensive, |
851 | // so try to merge regions before decommitting). |
852 | DisjointAllocationPool regions_to_decommit; |
853 | size_t commit_page_size = CommitPageSize(); |
854 | for (auto region : freed_regions.regions()) { |
855 | auto merged_region = freed_code_space_.Merge(region); |
856 | Address discard_start = |
857 | std::max(RoundUp(merged_region.begin(), commit_page_size), |
858 | RoundDown(region.begin(), commit_page_size)); |
859 | Address discard_end = |
860 | std::min(RoundDown(merged_region.end(), commit_page_size), |
861 | RoundUp(region.end(), commit_page_size)); |
862 | if (discard_start >= discard_end) continue; |
863 | regions_to_decommit.Merge({discard_start, discard_end - discard_start}); |
864 | } |
865 | |
866 | auto* code_manager = GetWasmCodeManager(); |
867 | for (auto region : regions_to_decommit.regions()) { |
868 | size_t old_committed = committed_code_space_.fetch_sub(region.size()); |
869 | DCHECK_GE(old_committed, region.size())((void) 0); |
870 | USE(old_committed)do { ::v8::base::Use unused_tmp_array_for_use_macro[]{old_committed }; (void)unused_tmp_array_for_use_macro; } while (false); |
871 | for (base::AddressRegion split_range : |
872 | SplitRangeByReservationsIfNeeded(region, owned_code_space_)) { |
873 | code_manager->Decommit(split_range); |
874 | } |
875 | } |
876 | } |
877 | |
878 | size_t WasmCodeAllocator::GetNumCodeSpaces() const { |
879 | return owned_code_space_.size(); |
880 | } |
881 | |
882 | void WasmCodeAllocator::InsertIntoWritableRegions(base::AddressRegion region, |
883 | bool switch_to_writable) { |
884 | size_t new_writable_memory = 0; |
885 | |
886 | CheckWritableMemoryRegions check_on_return{writable_memory_, region, |
887 | new_writable_memory}; |
888 | |
889 | v8::PageAllocator* page_allocator = GetPlatformPageAllocator(); |
890 | // Subroutine to make a non-writable region writable (if {switch_to_writable} |
891 | // is {true}) and insert it into {writable_memory_}. |
892 | auto make_writable = [&](decltype(writable_memory_)::iterator insert_pos, |
893 | base::AddressRegion region) { |
894 | new_writable_memory += region.size(); |
895 | if (switch_to_writable) { |
896 | for (base::AddressRegion split_range : |
897 | SplitRangeByReservationsIfNeeded(region, owned_code_space_)) { |
898 | TRACE_HEAP("Set 0x%" V8PRIxPTR"l" "x" ":0x%" V8PRIxPTR"l" "x" " to RWX\n", |
899 | split_range.begin(), split_range.end()); |
900 | CHECK(SetPermissions(page_allocator, split_range.begin(),do { if ((__builtin_expect(!!(!(SetPermissions(page_allocator , split_range.begin(), split_range.size(), PageAllocator::kReadWriteExecute ))), 0))) { V8_Fatal("Check failed: %s.", "SetPermissions(page_allocator, split_range.begin(), split_range.size(), PageAllocator::kReadWriteExecute)" ); } } while (false) |
901 | split_range.size(),do { if ((__builtin_expect(!!(!(SetPermissions(page_allocator , split_range.begin(), split_range.size(), PageAllocator::kReadWriteExecute ))), 0))) { V8_Fatal("Check failed: %s.", "SetPermissions(page_allocator, split_range.begin(), split_range.size(), PageAllocator::kReadWriteExecute)" ); } } while (false) |
902 | PageAllocator::kReadWriteExecute))do { if ((__builtin_expect(!!(!(SetPermissions(page_allocator , split_range.begin(), split_range.size(), PageAllocator::kReadWriteExecute ))), 0))) { V8_Fatal("Check failed: %s.", "SetPermissions(page_allocator, split_range.begin(), split_range.size(), PageAllocator::kReadWriteExecute)" ); } } while (false); |
903 | } |
904 | } |
905 | |
906 | // Insert {region} into {writable_memory_} before {insert_pos}, potentially |
907 | // merging it with the surrounding regions. |
908 | if (insert_pos != writable_memory_.begin()) { |
909 | auto previous = insert_pos; |
910 | --previous; |
911 | if (previous->end() == region.begin()) { |
912 | region = {previous->begin(), previous->size() + region.size()}; |
913 | writable_memory_.erase(previous); |
914 | } |
915 | } |
916 | if (insert_pos != writable_memory_.end() && |
917 | region.end() == insert_pos->begin()) { |
918 | region = {region.begin(), insert_pos->size() + region.size()}; |
919 | insert_pos = writable_memory_.erase(insert_pos); |
920 | } |
921 | writable_memory_.insert(insert_pos, region); |
922 | }; |
923 | |
924 | DCHECK(!region.is_empty())((void) 0); |
925 | // Find a possible insertion position by identifying the first region whose |
926 | // start address is not less than that of {new_region}, and the starting the |
927 | // merge from the existing region before that. |
928 | auto it = writable_memory_.lower_bound(region); |
929 | if (it != writable_memory_.begin()) --it; |
930 | for (;; ++it) { |
931 | if (it == writable_memory_.end() || it->begin() >= region.end()) { |
932 | // No overlap; add before {it}. |
933 | make_writable(it, region); |
934 | return; |
935 | } |
936 | if (it->end() <= region.begin()) continue; // Continue after {it}. |
937 | base::AddressRegion overlap = it->GetOverlap(region); |
938 | DCHECK(!overlap.is_empty())((void) 0); |
939 | if (overlap.begin() == region.begin()) { |
940 | if (overlap.end() == region.end()) return; // Fully contained already. |
941 | // Remove overlap (which is already writable) and continue. |
942 | region = {overlap.end(), region.end() - overlap.end()}; |
943 | continue; |
944 | } |
945 | if (overlap.end() == region.end()) { |
946 | // Remove overlap (which is already writable), then make the remaining |
947 | // region writable. |
948 | region = {region.begin(), overlap.begin() - region.begin()}; |
949 | make_writable(it, region); |
950 | return; |
951 | } |
952 | // Split {region}, make the split writable, and continue with the rest. |
953 | base::AddressRegion split = {region.begin(), |
954 | overlap.begin() - region.begin()}; |
955 | make_writable(it, split); |
956 | region = {overlap.end(), region.end() - overlap.end()}; |
957 | } |
958 | } |
959 | |
960 | // static |
961 | constexpr base::AddressRegion WasmCodeAllocator::kUnrestrictedRegion; |
962 | |
963 | namespace { |
964 | BoundsCheckStrategy GetBoundsChecks(const WasmModule* module) { |
965 | if (!FLAG_wasm_bounds_checks) return kNoBoundsChecks; |
966 | if (FLAG_wasm_enforce_bounds_checks) return kExplicitBoundsChecks; |
967 | // We do not have trap handler support for memory64 yet. |
968 | if (module->is_memory64) return kExplicitBoundsChecks; |
969 | if (trap_handler::IsTrapHandlerEnabled()) return kTrapHandler; |
970 | return kExplicitBoundsChecks; |
971 | } |
972 | } // namespace |
973 | |
974 | NativeModule::NativeModule(const WasmFeatures& enabled, |
975 | DynamicTiering dynamic_tiering, |
976 | VirtualMemory code_space, |
977 | std::shared_ptr<const WasmModule> module, |
978 | std::shared_ptr<Counters> async_counters, |
979 | std::shared_ptr<NativeModule>* shared_this) |
980 | : engine_scope_( |
981 | GetWasmEngine()->GetBarrierForBackgroundCompile()->TryLock()), |
982 | code_allocator_(async_counters), |
983 | enabled_features_(enabled), |
984 | module_(std::move(module)), |
985 | import_wrapper_cache_(std::unique_ptr<WasmImportWrapperCache>( |
986 | new WasmImportWrapperCache())), |
987 | bounds_checks_(GetBoundsChecks(module_.get())) { |
988 | DCHECK(engine_scope_)((void) 0); |
989 | // We receive a pointer to an empty {std::shared_ptr}, and install ourselve |
990 | // there. |
991 | DCHECK_NOT_NULL(shared_this)((void) 0); |
992 | DCHECK_NULL(*shared_this)((void) 0); |
993 | shared_this->reset(this); |
994 | compilation_state_ = CompilationState::New( |
995 | *shared_this, std::move(async_counters), dynamic_tiering); |
996 | compilation_state_->InitCompileJob(); |
997 | DCHECK_NOT_NULL(module_)((void) 0); |
998 | if (module_->num_declared_functions > 0) { |
999 | code_table_ = |
1000 | std::make_unique<WasmCode*[]>(module_->num_declared_functions); |
1001 | tiering_budgets_ = |
1002 | std::make_unique<uint32_t[]>(module_->num_declared_functions); |
1003 | |
1004 | std::fill_n(tiering_budgets_.get(), module_->num_declared_functions, |
1005 | FLAG_wasm_tiering_budget); |
1006 | } |
1007 | // Even though there cannot be another thread using this object (since we are |
1008 | // just constructing it), we need to hold the mutex to fulfill the |
1009 | // precondition of {WasmCodeAllocator::Init}, which calls |
1010 | // {NativeModule::AddCodeSpaceLocked}. |
1011 | base::RecursiveMutexGuard guard{&allocation_mutex_}; |
1012 | auto initial_region = code_space.region(); |
1013 | code_allocator_.Init(std::move(code_space)); |
1014 | AddCodeSpaceLocked(initial_region); |
1015 | } |
1016 | |
1017 | void NativeModule::ReserveCodeTableForTesting(uint32_t max_functions) { |
1018 | WasmCodeRefScope code_ref_scope; |
1019 | DCHECK_LE(module_->num_declared_functions, max_functions)((void) 0); |
1020 | auto new_table = std::make_unique<WasmCode*[]>(max_functions); |
1021 | if (module_->num_declared_functions > 0) { |
1022 | memcpy(new_table.get(), code_table_.get(), |
1023 | module_->num_declared_functions * sizeof(WasmCode*)); |
1024 | } |
1025 | code_table_ = std::move(new_table); |
1026 | |
1027 | base::AddressRegion single_code_space_region; |
1028 | base::RecursiveMutexGuard guard(&allocation_mutex_); |
1029 | CHECK_EQ(1, code_space_data_.size())do { bool _cmp = ::v8::base::CmpEQImpl< typename ::v8::base ::pass_value_or_ref<decltype(1)>::type, typename ::v8:: base::pass_value_or_ref<decltype(code_space_data_.size())> ::type>((1), (code_space_data_.size())); do { if ((__builtin_expect (!!(!(_cmp)), 0))) { V8_Fatal("Check failed: %s.", "1" " " "==" " " "code_space_data_.size()"); } } while (false); } while ( false); |
1030 | single_code_space_region = code_space_data_[0].region; |
1031 | // Re-allocate jump table. |
1032 | main_jump_table_ = CreateEmptyJumpTableInRegionLocked( |
1033 | JumpTableAssembler::SizeForNumberOfSlots(max_functions), |
1034 | single_code_space_region); |
1035 | code_space_data_[0].jump_table = main_jump_table_; |
1036 | } |
1037 | |
1038 | void NativeModule::LogWasmCodes(Isolate* isolate, Script script) { |
1039 | DisallowGarbageCollection no_gc; |
1040 | if (!WasmCode::ShouldBeLogged(isolate)) return; |
1041 | |
1042 | TRACE_EVENT1("v8.wasm", "wasm.LogWasmCodes", "functions",static v8::base::AtomicWord trace_event_unique_atomic1043 = 0 ; const uint8_t* trace_event_unique_category_group_enabled1043 ; trace_event_unique_category_group_enabled1043 = reinterpret_cast <const uint8_t*>(v8::base::Relaxed_Load(&(trace_event_unique_atomic1043 ))); if (!trace_event_unique_category_group_enabled1043) { trace_event_unique_category_group_enabled1043 = v8::internal::tracing::TraceEventHelper::GetTracingController () ->GetCategoryGroupEnabled("v8.wasm"); v8::base::Relaxed_Store (&(trace_event_unique_atomic1043), (reinterpret_cast<v8 ::base::AtomicWord>( trace_event_unique_category_group_enabled1043 ))); };; v8::internal::tracing::ScopedTracer trace_event_unique_tracer1043 ; if (v8::base::Relaxed_Load(reinterpret_cast<const v8::base ::Atomic8*>( trace_event_unique_category_group_enabled1043 )) & (kEnabledForRecording_CategoryGroupEnabledFlags | kEnabledForEventCallback_CategoryGroupEnabledFlags )) { uint64_t h = v8::internal::tracing::AddTraceEvent( ('X') , trace_event_unique_category_group_enabled1043, "wasm.LogWasmCodes" , v8::internal::tracing::kGlobalScope, v8::internal::tracing:: kNoId, v8::internal::tracing::kNoId, (static_cast<unsigned int>(0)), "functions", module_->num_declared_functions ); trace_event_unique_tracer1043 .Initialize(trace_event_unique_category_group_enabled1043 , "wasm.LogWasmCodes", h); } |
1043 | module_->num_declared_functions)static v8::base::AtomicWord trace_event_unique_atomic1043 = 0 ; const uint8_t* trace_event_unique_category_group_enabled1043 ; trace_event_unique_category_group_enabled1043 = reinterpret_cast <const uint8_t*>(v8::base::Relaxed_Load(&(trace_event_unique_atomic1043 ))); if (!trace_event_unique_category_group_enabled1043) { trace_event_unique_category_group_enabled1043 = v8::internal::tracing::TraceEventHelper::GetTracingController () ->GetCategoryGroupEnabled("v8.wasm"); v8::base::Relaxed_Store (&(trace_event_unique_atomic1043), (reinterpret_cast<v8 ::base::AtomicWord>( trace_event_unique_category_group_enabled1043 ))); };; v8::internal::tracing::ScopedTracer trace_event_unique_tracer1043 ; if (v8::base::Relaxed_Load(reinterpret_cast<const v8::base ::Atomic8*>( trace_event_unique_category_group_enabled1043 )) & (kEnabledForRecording_CategoryGroupEnabledFlags | kEnabledForEventCallback_CategoryGroupEnabledFlags )) { uint64_t h = v8::internal::tracing::AddTraceEvent( ('X') , trace_event_unique_category_group_enabled1043, "wasm.LogWasmCodes" , v8::internal::tracing::kGlobalScope, v8::internal::tracing:: kNoId, v8::internal::tracing::kNoId, (static_cast<unsigned int>(0)), "functions", module_->num_declared_functions ); trace_event_unique_tracer1043 .Initialize(trace_event_unique_category_group_enabled1043 , "wasm.LogWasmCodes", h); }; |
1044 | |
1045 | Object url_obj = script.name(); |
1046 | DCHECK(url_obj.IsString() || url_obj.IsUndefined())((void) 0); |
1047 | std::unique_ptr<char[]> source_url = |
1048 | url_obj.IsString() ? String::cast(url_obj).ToCString() : nullptr; |
1049 | |
1050 | // Log all owned code, not just the current entries in the code table. This |
1051 | // will also include import wrappers. |
1052 | WasmCodeRefScope code_ref_scope; |
1053 | for (auto& code : SnapshotAllOwnedCode()) { |
1054 | code->LogCode(isolate, source_url.get(), script.id()); |
1055 | } |
1056 | } |
1057 | |
1058 | CompilationEnv NativeModule::CreateCompilationEnv() const { |
1059 | return {module(), bounds_checks_, kRuntimeExceptionSupport, enabled_features_, |
1060 | compilation_state()->dynamic_tiering()}; |
1061 | } |
1062 | |
1063 | WasmCode* NativeModule::AddCodeForTesting(Handle<Code> code) { |
1064 | CodeSpaceWriteScope code_space_write_scope(this); |
1065 | const size_t relocation_size = code->relocation_size(); |
1066 | base::OwnedVector<byte> reloc_info; |
1067 | if (relocation_size > 0) { |
1068 | reloc_info = base::OwnedVector<byte>::Of( |
1069 | base::Vector<byte>{code->relocation_start(), relocation_size}); |
1070 | } |
1071 | Handle<ByteArray> source_pos_table(code->source_position_table(), |
1072 | code->GetIsolate()); |
1073 | base::OwnedVector<byte> source_pos = |
1074 | base::OwnedVector<byte>::NewForOverwrite(source_pos_table->length()); |
1075 | if (source_pos_table->length() > 0) { |
1076 | source_pos_table->copy_out(0, source_pos.start(), |
1077 | source_pos_table->length()); |
1078 | } |
1079 | CHECK(!code->is_off_heap_trampoline())do { if ((__builtin_expect(!!(!(!code->is_off_heap_trampoline ())), 0))) { V8_Fatal("Check failed: %s.", "!code->is_off_heap_trampoline()" ); } } while (false); |
1080 | STATIC_ASSERT(Code::kOnHeapBodyIsContiguous)static_assert(Code::kOnHeapBodyIsContiguous, "Code::kOnHeapBodyIsContiguous" ); |
1081 | base::Vector<const byte> instructions( |
1082 | reinterpret_cast<byte*>(code->raw_body_start()), |
1083 | static_cast<size_t>(code->raw_body_size())); |
1084 | const int stack_slots = code->stack_slots(); |
1085 | |
1086 | // Metadata offsets in Code objects are relative to the start of the metadata |
1087 | // section, whereas WasmCode expects offsets relative to InstructionStart. |
1088 | const int base_offset = code->raw_instruction_size(); |
1089 | // TODO(jgruber,v8:8758): Remove this translation. It exists only because |
1090 | // Code objects contains real offsets but WasmCode expects an offset of 0 to |
1091 | // mean 'empty'. |
1092 | const int safepoint_table_offset = |
1093 | code->has_safepoint_table() ? base_offset + code->safepoint_table_offset() |
1094 | : 0; |
1095 | const int handler_table_offset = base_offset + code->handler_table_offset(); |
1096 | const int constant_pool_offset = base_offset + code->constant_pool_offset(); |
1097 | const int code_comments_offset = base_offset + code->code_comments_offset(); |
1098 | |
1099 | base::RecursiveMutexGuard guard{&allocation_mutex_}; |
1100 | base::Vector<uint8_t> dst_code_bytes = |
1101 | code_allocator_.AllocateForCode(this, instructions.size()); |
1102 | memcpy(dst_code_bytes.begin(), instructions.begin(), instructions.size()); |
1103 | |
1104 | // Apply the relocation delta by iterating over the RelocInfo. |
1105 | intptr_t delta = reinterpret_cast<Address>(dst_code_bytes.begin()) - |
1106 | code->raw_instruction_start(); |
1107 | int mode_mask = |
1108 | RelocInfo::kApplyMask | RelocInfo::ModeMask(RelocInfo::WASM_STUB_CALL); |
1109 | auto jump_tables_ref = |
1110 | FindJumpTablesForRegionLocked(base::AddressRegionOf(dst_code_bytes)); |
1111 | Address dst_code_addr = reinterpret_cast<Address>(dst_code_bytes.begin()); |
1112 | Address constant_pool_start = dst_code_addr + constant_pool_offset; |
1113 | RelocIterator orig_it(*code, mode_mask); |
1114 | for (RelocIterator it(dst_code_bytes, reloc_info.as_vector(), |
1115 | constant_pool_start, mode_mask); |
1116 | !it.done(); it.next(), orig_it.next()) { |
1117 | RelocInfo::Mode mode = it.rinfo()->rmode(); |
1118 | if (RelocInfo::IsWasmStubCall(mode)) { |
1119 | uint32_t stub_call_tag = orig_it.rinfo()->wasm_call_tag(); |
1120 | DCHECK_LT(stub_call_tag, WasmCode::kRuntimeStubCount)((void) 0); |
1121 | Address entry = GetNearRuntimeStubEntry( |
1122 | static_cast<WasmCode::RuntimeStubId>(stub_call_tag), jump_tables_ref); |
1123 | it.rinfo()->set_wasm_stub_call_address(entry, SKIP_ICACHE_FLUSH); |
1124 | } else { |
1125 | it.rinfo()->apply(delta); |
1126 | } |
1127 | } |
1128 | |
1129 | // Flush the i-cache after relocation. |
1130 | FlushInstructionCache(dst_code_bytes.begin(), dst_code_bytes.size()); |
1131 | |
1132 | std::unique_ptr<WasmCode> new_code{ |
1133 | new WasmCode{this, // native_module |
1134 | kAnonymousFuncIndex, // index |
1135 | dst_code_bytes, // instructions |
1136 | stack_slots, // stack_slots |
1137 | 0, // tagged_parameter_slots |
1138 | safepoint_table_offset, // safepoint_table_offset |
1139 | handler_table_offset, // handler_table_offset |
1140 | constant_pool_offset, // constant_pool_offset |
1141 | code_comments_offset, // code_comments_offset |
1142 | instructions.length(), // unpadded_binary_size |
1143 | {}, // protected_instructions |
1144 | reloc_info.as_vector(), // reloc_info |
1145 | source_pos.as_vector(), // source positions |
1146 | WasmCode::kWasmFunction, // kind |
1147 | ExecutionTier::kNone, // tier |
1148 | kNoDebugging}}; // for_debugging |
1149 | new_code->MaybePrint(); |
1150 | new_code->Validate(); |
1151 | |
1152 | return PublishCodeLocked(std::move(new_code)); |
1153 | } |
1154 | |
1155 | void NativeModule::UseLazyStub(uint32_t func_index) { |
1156 | DCHECK_LE(module_->num_imported_functions, func_index)((void) 0); |
1157 | DCHECK_LT(func_index,((void) 0) |
1158 | module_->num_imported_functions + module_->num_declared_functions)((void) 0); |
1159 | // Avoid opening a new write scope per function. The caller should hold the |
1160 | // scope instead. |
1161 | DCHECK(CodeSpaceWriteScope::IsInScope())((void) 0); |
1162 | |
1163 | base::RecursiveMutexGuard guard(&allocation_mutex_); |
1164 | if (!lazy_compile_table_) { |
1165 | uint32_t num_slots = module_->num_declared_functions; |
1166 | WasmCodeRefScope code_ref_scope; |
1167 | DCHECK_EQ(1, code_space_data_.size())((void) 0); |
1168 | base::AddressRegion single_code_space_region = code_space_data_[0].region; |
1169 | lazy_compile_table_ = CreateEmptyJumpTableInRegionLocked( |
1170 | JumpTableAssembler::SizeForNumberOfLazyFunctions(num_slots), |
1171 | single_code_space_region); |
1172 | JumpTableAssembler::GenerateLazyCompileTable( |
1173 | lazy_compile_table_->instruction_start(), num_slots, |
1174 | module_->num_imported_functions, |
1175 | GetNearRuntimeStubEntry( |
1176 | WasmCode::kWasmCompileLazy, |
1177 | FindJumpTablesForRegionLocked( |
1178 | base::AddressRegionOf(lazy_compile_table_->instructions())))); |
1179 | } |
1180 | |
1181 | // Add jump table entry for jump to the lazy compile stub. |
1182 | uint32_t slot_index = declared_function_index(module(), func_index); |
1183 | DCHECK_NULL(code_table_[slot_index])((void) 0); |
1184 | Address lazy_compile_target = |
1185 | lazy_compile_table_->instruction_start() + |
1186 | JumpTableAssembler::LazyCompileSlotIndexToOffset(slot_index); |
1187 | PatchJumpTablesLocked(slot_index, lazy_compile_target); |
1188 | } |
1189 | |
1190 | std::unique_ptr<WasmCode> NativeModule::AddCode( |
1191 | int index, const CodeDesc& desc, int stack_slots, |
1192 | uint32_t tagged_parameter_slots, |
1193 | base::Vector<const byte> protected_instructions_data, |
1194 | base::Vector<const byte> source_position_table, WasmCode::Kind kind, |
1195 | ExecutionTier tier, ForDebugging for_debugging) { |
1196 | base::Vector<byte> code_space; |
1197 | NativeModule::JumpTablesRef jump_table_ref; |
1198 | { |
1199 | base::RecursiveMutexGuard guard{&allocation_mutex_}; |
1200 | code_space = code_allocator_.AllocateForCode(this, desc.instr_size); |
1201 | jump_table_ref = |
1202 | FindJumpTablesForRegionLocked(base::AddressRegionOf(code_space)); |
1203 | } |
1204 | return AddCodeWithCodeSpace(index, desc, stack_slots, tagged_parameter_slots, |
1205 | protected_instructions_data, |
1206 | source_position_table, kind, tier, for_debugging, |
1207 | code_space, jump_table_ref); |
1208 | } |
1209 | |
1210 | std::unique_ptr<WasmCode> NativeModule::AddCodeWithCodeSpace( |
1211 | int index, const CodeDesc& desc, int stack_slots, |
1212 | uint32_t tagged_parameter_slots, |
1213 | base::Vector<const byte> protected_instructions_data, |
1214 | base::Vector<const byte> source_position_table, WasmCode::Kind kind, |
1215 | ExecutionTier tier, ForDebugging for_debugging, |
1216 | base::Vector<uint8_t> dst_code_bytes, const JumpTablesRef& jump_tables) { |
1217 | base::Vector<byte> reloc_info{ |
1218 | desc.buffer + desc.buffer_size - desc.reloc_size, |
1219 | static_cast<size_t>(desc.reloc_size)}; |
1220 | UpdateCodeSize(desc.instr_size, tier, for_debugging); |
1221 | |
1222 | // TODO(jgruber,v8:8758): Remove this translation. It exists only because |
1223 | // CodeDesc contains real offsets but WasmCode expects an offset of 0 to mean |
1224 | // 'empty'. |
1225 | const int safepoint_table_offset = |
1226 | desc.safepoint_table_size == 0 ? 0 : desc.safepoint_table_offset; |
1227 | const int handler_table_offset = desc.handler_table_offset; |
1228 | const int constant_pool_offset = desc.constant_pool_offset; |
1229 | const int code_comments_offset = desc.code_comments_offset; |
1230 | const int instr_size = desc.instr_size; |
1231 | |
1232 | memcpy(dst_code_bytes.begin(), desc.buffer, |
1233 | static_cast<size_t>(desc.instr_size)); |
1234 | |
1235 | // Apply the relocation delta by iterating over the RelocInfo. |
1236 | intptr_t delta = dst_code_bytes.begin() - desc.buffer; |
1237 | int mode_mask = RelocInfo::kApplyMask | |
1238 | RelocInfo::ModeMask(RelocInfo::WASM_CALL) | |
1239 | RelocInfo::ModeMask(RelocInfo::WASM_STUB_CALL); |
1240 | Address code_start = reinterpret_cast<Address>(dst_code_bytes.begin()); |
1241 | Address constant_pool_start = code_start + constant_pool_offset; |
1242 | for (RelocIterator it(dst_code_bytes, reloc_info, constant_pool_start, |
1243 | mode_mask); |
1244 | !it.done(); it.next()) { |
1245 | RelocInfo::Mode mode = it.rinfo()->rmode(); |
1246 | if (RelocInfo::IsWasmCall(mode)) { |
1247 | uint32_t call_tag = it.rinfo()->wasm_call_tag(); |
1248 | Address target = GetNearCallTargetForFunction(call_tag, jump_tables); |
1249 | it.rinfo()->set_wasm_call_address(target, SKIP_ICACHE_FLUSH); |
1250 | } else if (RelocInfo::IsWasmStubCall(mode)) { |
1251 | uint32_t stub_call_tag = it.rinfo()->wasm_call_tag(); |
1252 | DCHECK_LT(stub_call_tag, WasmCode::kRuntimeStubCount)((void) 0); |
1253 | Address entry = GetNearRuntimeStubEntry( |
1254 | static_cast<WasmCode::RuntimeStubId>(stub_call_tag), jump_tables); |
1255 | it.rinfo()->set_wasm_stub_call_address(entry, SKIP_ICACHE_FLUSH); |
1256 | } else { |
1257 | it.rinfo()->apply(delta); |
1258 | } |
1259 | } |
1260 | |
1261 | // Flush the i-cache after relocation. |
1262 | FlushInstructionCache(dst_code_bytes.begin(), dst_code_bytes.size()); |
1263 | |
1264 | // Liftoff code will not be relocated or serialized, thus do not store any |
1265 | // relocation information. |
1266 | if (tier == ExecutionTier::kLiftoff) reloc_info = {}; |
1267 | |
1268 | std::unique_ptr<WasmCode> code{new WasmCode{ |
1269 | this, index, dst_code_bytes, stack_slots, tagged_parameter_slots, |
1270 | safepoint_table_offset, handler_table_offset, constant_pool_offset, |
1271 | code_comments_offset, instr_size, protected_instructions_data, reloc_info, |
1272 | source_position_table, kind, tier, for_debugging}}; |
1273 | |
1274 | code->MaybePrint(); |
1275 | code->Validate(); |
1276 | |
1277 | return code; |
1278 | } |
1279 | |
1280 | WasmCode* NativeModule::PublishCode(std::unique_ptr<WasmCode> code) { |
1281 | TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("v8.wasm.detailed"),static v8::base::AtomicWord trace_event_unique_atomic1282 = 0 ; const uint8_t* trace_event_unique_category_group_enabled1282 ; trace_event_unique_category_group_enabled1282 = reinterpret_cast <const uint8_t*>(v8::base::Relaxed_Load(&(trace_event_unique_atomic1282 ))); if (!trace_event_unique_category_group_enabled1282) { trace_event_unique_category_group_enabled1282 = v8::internal::tracing::TraceEventHelper::GetTracingController () ->GetCategoryGroupEnabled("disabled-by-default-" "v8.wasm.detailed" ); v8::base::Relaxed_Store(&(trace_event_unique_atomic1282 ), (reinterpret_cast<v8::base::AtomicWord>( trace_event_unique_category_group_enabled1282 ))); };; v8::internal::tracing::ScopedTracer trace_event_unique_tracer1282 ; if (v8::base::Relaxed_Load(reinterpret_cast<const v8::base ::Atomic8*>( trace_event_unique_category_group_enabled1282 )) & (kEnabledForRecording_CategoryGroupEnabledFlags | kEnabledForEventCallback_CategoryGroupEnabledFlags )) { uint64_t h = v8::internal::tracing::AddTraceEvent( ('X') , trace_event_unique_category_group_enabled1282, "wasm.PublishCode" , v8::internal::tracing::kGlobalScope, v8::internal::tracing:: kNoId, v8::internal::tracing::kNoId, (static_cast<unsigned int>(0))); trace_event_unique_tracer1282 .Initialize(trace_event_unique_category_group_enabled1282 , "wasm.PublishCode", h); } |
1282 | "wasm.PublishCode")static v8::base::AtomicWord trace_event_unique_atomic1282 = 0 ; const uint8_t* trace_event_unique_category_group_enabled1282 ; trace_event_unique_category_group_enabled1282 = reinterpret_cast <const uint8_t*>(v8::base::Relaxed_Load(&(trace_event_unique_atomic1282 ))); if (!trace_event_unique_category_group_enabled1282) { trace_event_unique_category_group_enabled1282 = v8::internal::tracing::TraceEventHelper::GetTracingController () ->GetCategoryGroupEnabled("disabled-by-default-" "v8.wasm.detailed" ); v8::base::Relaxed_Store(&(trace_event_unique_atomic1282 ), (reinterpret_cast<v8::base::AtomicWord>( trace_event_unique_category_group_enabled1282 ))); };; v8::internal::tracing::ScopedTracer trace_event_unique_tracer1282 ; if (v8::base::Relaxed_Load(reinterpret_cast<const v8::base ::Atomic8*>( trace_event_unique_category_group_enabled1282 )) & (kEnabledForRecording_CategoryGroupEnabledFlags | kEnabledForEventCallback_CategoryGroupEnabledFlags )) { uint64_t h = v8::internal::tracing::AddTraceEvent( ('X') , trace_event_unique_category_group_enabled1282, "wasm.PublishCode" , v8::internal::tracing::kGlobalScope, v8::internal::tracing:: kNoId, v8::internal::tracing::kNoId, (static_cast<unsigned int>(0))); trace_event_unique_tracer1282 .Initialize(trace_event_unique_category_group_enabled1282 , "wasm.PublishCode", h); }; |
1283 | base::RecursiveMutexGuard lock(&allocation_mutex_); |
1284 | CodeSpaceWriteScope code_space_write_scope(this); |
1285 | return PublishCodeLocked(std::move(code)); |
1286 | } |
1287 | |
1288 | std::vector<WasmCode*> NativeModule::PublishCode( |
1289 | base::Vector<std::unique_ptr<WasmCode>> codes) { |
1290 | // Publishing often happens in a loop, so the caller should hold the |
1291 | // {CodeSpaceWriteScope} outside of such a loop. |
1292 | DCHECK(CodeSpaceWriteScope::IsInScope())((void) 0); |
1293 | TRACE_EVENT1(TRACE_DISABLED_BY_DEFAULT("v8.wasm.detailed"),static v8::base::AtomicWord trace_event_unique_atomic1294 = 0 ; const uint8_t* trace_event_unique_category_group_enabled1294 ; trace_event_unique_category_group_enabled1294 = reinterpret_cast <const uint8_t*>(v8::base::Relaxed_Load(&(trace_event_unique_atomic1294 ))); if (!trace_event_unique_category_group_enabled1294) { trace_event_unique_category_group_enabled1294 = v8::internal::tracing::TraceEventHelper::GetTracingController () ->GetCategoryGroupEnabled("disabled-by-default-" "v8.wasm.detailed" ); v8::base::Relaxed_Store(&(trace_event_unique_atomic1294 ), (reinterpret_cast<v8::base::AtomicWord>( trace_event_unique_category_group_enabled1294 ))); };; v8::internal::tracing::ScopedTracer trace_event_unique_tracer1294 ; if (v8::base::Relaxed_Load(reinterpret_cast<const v8::base ::Atomic8*>( trace_event_unique_category_group_enabled1294 )) & (kEnabledForRecording_CategoryGroupEnabledFlags | kEnabledForEventCallback_CategoryGroupEnabledFlags )) { uint64_t h = v8::internal::tracing::AddTraceEvent( ('X') , trace_event_unique_category_group_enabled1294, "wasm.PublishCode" , v8::internal::tracing::kGlobalScope, v8::internal::tracing:: kNoId, v8::internal::tracing::kNoId, (static_cast<unsigned int>(0)), "number", codes.size()); trace_event_unique_tracer1294 .Initialize(trace_event_unique_category_group_enabled1294, "wasm.PublishCode" , h); } |
1294 | "wasm.PublishCode", "number", codes.size())static v8::base::AtomicWord trace_event_unique_atomic1294 = 0 ; const uint8_t* trace_event_unique_category_group_enabled1294 ; trace_event_unique_category_group_enabled1294 = reinterpret_cast <const uint8_t*>(v8::base::Relaxed_Load(&(trace_event_unique_atomic1294 ))); if (!trace_event_unique_category_group_enabled1294) { trace_event_unique_category_group_enabled1294 = v8::internal::tracing::TraceEventHelper::GetTracingController () ->GetCategoryGroupEnabled("disabled-by-default-" "v8.wasm.detailed" ); v8::base::Relaxed_Store(&(trace_event_unique_atomic1294 ), (reinterpret_cast<v8::base::AtomicWord>( trace_event_unique_category_group_enabled1294 ))); };; v8::internal::tracing::ScopedTracer trace_event_unique_tracer1294 ; if (v8::base::Relaxed_Load(reinterpret_cast<const v8::base ::Atomic8*>( trace_event_unique_category_group_enabled1294 )) & (kEnabledForRecording_CategoryGroupEnabledFlags | kEnabledForEventCallback_CategoryGroupEnabledFlags )) { uint64_t h = v8::internal::tracing::AddTraceEvent( ('X') , trace_event_unique_category_group_enabled1294, "wasm.PublishCode" , v8::internal::tracing::kGlobalScope, v8::internal::tracing:: kNoId, v8::internal::tracing::kNoId, (static_cast<unsigned int>(0)), "number", codes.size()); trace_event_unique_tracer1294 .Initialize(trace_event_unique_category_group_enabled1294, "wasm.PublishCode" , h); }; |
1295 | std::vector<WasmCode*> published_code; |
1296 | published_code.reserve(codes.size()); |
1297 | base::RecursiveMutexGuard lock(&allocation_mutex_); |
1298 | // The published code is put into the top-most surrounding {WasmCodeRefScope}. |
1299 | for (auto& code : codes) { |
1300 | published_code.push_back(PublishCodeLocked(std::move(code))); |
1301 | } |
1302 | return published_code; |
1303 | } |
1304 | |
1305 | WasmCode::Kind GetCodeKind(const WasmCompilationResult& result) { |
1306 | switch (result.kind) { |
1307 | case WasmCompilationResult::kWasmToJsWrapper: |
1308 | return WasmCode::Kind::kWasmToJsWrapper; |
1309 | case WasmCompilationResult::kFunction: |
1310 | return WasmCode::Kind::kWasmFunction; |
1311 | default: |
1312 | UNREACHABLE()V8_Fatal("unreachable code"); |
1313 | } |
1314 | } |
1315 | |
1316 | WasmCode* NativeModule::PublishCodeLocked( |
1317 | std::unique_ptr<WasmCode> owned_code) { |
1318 | allocation_mutex_.AssertHeld(); |
1319 | |
1320 | WasmCode* code = owned_code.get(); |
1321 | new_owned_code_.emplace_back(std::move(owned_code)); |
1322 | |
1323 | // Add the code to the surrounding code ref scope, so the returned pointer is |
1324 | // guaranteed to be valid. |
1325 | WasmCodeRefScope::AddRef(code); |
1326 | |
1327 | if (code->index() < static_cast<int>(module_->num_imported_functions)) { |
1328 | return code; |
1329 | } |
1330 | |
1331 | DCHECK_LT(code->index(), num_functions())((void) 0); |
1332 | |
1333 | code->RegisterTrapHandlerData(); |
1334 | |
1335 | // Put the code in the debugging cache, if needed. |
1336 | if (V8_UNLIKELY(cached_code_)(__builtin_expect(!!(cached_code_), 0))) InsertToCodeCache(code); |
1337 | |
1338 | // Assume an order of execution tiers that represents the quality of their |
1339 | // generated code. |
1340 | static_assert(ExecutionTier::kNone < ExecutionTier::kLiftoff && |
1341 | ExecutionTier::kLiftoff < ExecutionTier::kTurbofan, |
1342 | "Assume an order on execution tiers"); |
1343 | |
1344 | uint32_t slot_idx = declared_function_index(module(), code->index()); |
1345 | WasmCode* prior_code = code_table_[slot_idx]; |
1346 | // If we are tiered down, install all debugging code (except for stepping |
1347 | // code, which is only used for a single frame and never installed in the |
1348 | // code table of jump table). Otherwise, install code if it was compiled |
1349 | // with a higher tier. |
1350 | static_assert( |
1351 | kForDebugging > kNoDebugging && kWithBreakpoints > kForDebugging, |
1352 | "for_debugging is ordered"); |
1353 | const bool update_code_table = |
1354 | // Never install stepping code. |
1355 | code->for_debugging() != kForStepping && |
1356 | (!prior_code || |
1357 | (tiering_state_ == kTieredDown |
1358 | // Tiered down: Install breakpoints over normal debug code. |
1359 | ? prior_code->for_debugging() <= code->for_debugging() |
1360 | // Tiered up: Install if the tier is higher than before or we |
1361 | // replace debugging code with non-debugging code. |
1362 | : (prior_code->tier() < code->tier() || |
1363 | (prior_code->for_debugging() && !code->for_debugging())))); |
1364 | if (update_code_table) { |
1365 | code_table_[slot_idx] = code; |
1366 | if (prior_code) { |
1367 | WasmCodeRefScope::AddRef(prior_code); |
1368 | // The code is added to the current {WasmCodeRefScope}, hence the ref |
1369 | // count cannot drop to zero here. |
1370 | prior_code->DecRefOnLiveCode(); |
1371 | } |
1372 | |
1373 | PatchJumpTablesLocked(slot_idx, code->instruction_start()); |
1374 | } else { |
1375 | // The code tables does not hold a reference to the code, hence decrement |
1376 | // the initial ref count of 1. The code was added to the |
1377 | // {WasmCodeRefScope} though, so it cannot die here. |
1378 | code->DecRefOnLiveCode(); |
1379 | } |
1380 | |
1381 | return code; |
1382 | } |
1383 | |
1384 | void NativeModule::ReinstallDebugCode(WasmCode* code) { |
1385 | base::RecursiveMutexGuard lock(&allocation_mutex_); |
1386 | |
1387 | DCHECK_EQ(this, code->native_module())((void) 0); |
1388 | DCHECK_EQ(kWithBreakpoints, code->for_debugging())((void) 0); |
1389 | DCHECK(!code->IsAnonymous())((void) 0); |
1390 | DCHECK_LE(module_->num_imported_functions, code->index())((void) 0); |
1391 | DCHECK_LT(code->index(), num_functions())((void) 0); |
1392 | |
1393 | // If the module is tiered up by now, do not reinstall debug code. |
1394 | if (tiering_state_ != kTieredDown) return; |
1395 | |
1396 | uint32_t slot_idx = declared_function_index(module(), code->index()); |
1397 | if (WasmCode* prior_code = code_table_[slot_idx]) { |
1398 | WasmCodeRefScope::AddRef(prior_code); |
1399 | // The code is added to the current {WasmCodeRefScope}, hence the ref |
1400 | // count cannot drop to zero here. |
1401 | prior_code->DecRefOnLiveCode(); |
1402 | } |
1403 | code_table_[slot_idx] = code; |
1404 | code->IncRef(); |
1405 | |
1406 | CodeSpaceWriteScope code_space_write_scope(this); |
1407 | PatchJumpTablesLocked(slot_idx, code->instruction_start()); |
1408 | } |
1409 | |
1410 | std::pair<base::Vector<uint8_t>, NativeModule::JumpTablesRef> |
1411 | NativeModule::AllocateForDeserializedCode(size_t total_code_size) { |
1412 | base::RecursiveMutexGuard guard{&allocation_mutex_}; |
1413 | base::Vector<uint8_t> code_space = |
1414 | code_allocator_.AllocateForCode(this, total_code_size); |
1415 | auto jump_tables = |
1416 | FindJumpTablesForRegionLocked(base::AddressRegionOf(code_space)); |
1417 | return {code_space, jump_tables}; |
1418 | } |
1419 | |
1420 | std::unique_ptr<WasmCode> NativeModule::AddDeserializedCode( |
1421 | int index, base::Vector<byte> instructions, int stack_slots, |
1422 | uint32_t tagged_parameter_slots, int safepoint_table_offset, |
1423 | int handler_table_offset, int constant_pool_offset, |
1424 | int code_comments_offset, int unpadded_binary_size, |
1425 | base::Vector<const byte> protected_instructions_data, |
1426 | base::Vector<const byte> reloc_info, |
1427 | base::Vector<const byte> source_position_table, WasmCode::Kind kind, |
1428 | ExecutionTier tier) { |
1429 | UpdateCodeSize(instructions.size(), tier, kNoDebugging); |
1430 | |
1431 | return std::unique_ptr<WasmCode>{new WasmCode{ |
1432 | this, index, instructions, stack_slots, tagged_parameter_slots, |
1433 | safepoint_table_offset, handler_table_offset, constant_pool_offset, |
1434 | code_comments_offset, unpadded_binary_size, protected_instructions_data, |
1435 | reloc_info, source_position_table, kind, tier, kNoDebugging}}; |
1436 | } |
1437 | |
1438 | std::vector<WasmCode*> NativeModule::SnapshotCodeTable() const { |
1439 | base::RecursiveMutexGuard lock(&allocation_mutex_); |
1440 | WasmCode** start = code_table_.get(); |
1441 | WasmCode** end = start + module_->num_declared_functions; |
1442 | for (WasmCode* code : base::VectorOf(start, end - start)) { |
1443 | if (code) WasmCodeRefScope::AddRef(code); |
1444 | } |
1445 | return std::vector<WasmCode*>{start, end}; |
1446 | } |
1447 | |
1448 | std::vector<WasmCode*> NativeModule::SnapshotAllOwnedCode() const { |
1449 | base::RecursiveMutexGuard lock(&allocation_mutex_); |
1450 | if (!new_owned_code_.empty()) TransferNewOwnedCodeLocked(); |
1451 | |
1452 | std::vector<WasmCode*> all_code(owned_code_.size()); |
1453 | std::transform(owned_code_.begin(), owned_code_.end(), all_code.begin(), |
1454 | [](auto& entry) { return entry.second.get(); }); |
1455 | std::for_each(all_code.begin(), all_code.end(), WasmCodeRefScope::AddRef); |
1456 | return all_code; |
1457 | } |
1458 | |
1459 | WasmCode* NativeModule::GetCode(uint32_t index) const { |
1460 | base::RecursiveMutexGuard guard(&allocation_mutex_); |
1461 | WasmCode* code = code_table_[declared_function_index(module(), index)]; |
1462 | if (code) WasmCodeRefScope::AddRef(code); |
1463 | return code; |
1464 | } |
1465 | |
1466 | bool NativeModule::HasCode(uint32_t index) const { |
1467 | base::RecursiveMutexGuard guard(&allocation_mutex_); |
1468 | return code_table_[declared_function_index(module(), index)] != nullptr; |
1469 | } |
1470 | |
1471 | bool NativeModule::HasCodeWithTier(uint32_t index, ExecutionTier tier) const { |
1472 | base::RecursiveMutexGuard guard(&allocation_mutex_); |
1473 | return code_table_[declared_function_index(module(), index)] != nullptr && |
1474 | code_table_[declared_function_index(module(), index)]->tier() == tier; |
1475 | } |
1476 | |
1477 | void NativeModule::SetWasmSourceMap( |
1478 | std::unique_ptr<WasmModuleSourceMap> source_map) { |
1479 | source_map_ = std::move(source_map); |
1480 | } |
1481 | |
1482 | WasmModuleSourceMap* NativeModule::GetWasmSourceMap() const { |
1483 | return source_map_.get(); |
1484 | } |
1485 | |
1486 | WasmCode* NativeModule::CreateEmptyJumpTableInRegionLocked( |
1487 | int jump_table_size, base::AddressRegion region) { |
1488 | allocation_mutex_.AssertHeld(); |
1489 | // Only call this if we really need a jump table. |
1490 | DCHECK_LT(0, jump_table_size)((void) 0); |
1491 | CodeSpaceWriteScope code_space_write_scope(this); |
1492 | base::Vector<uint8_t> code_space = |
1493 | code_allocator_.AllocateForCodeInRegion(this, jump_table_size, region); |
1494 | DCHECK(!code_space.empty())((void) 0); |
1495 | UpdateCodeSize(jump_table_size, ExecutionTier::kNone, kNoDebugging); |
1496 | ZapCode(reinterpret_cast<Address>(code_space.begin()), code_space.size()); |
1497 | std::unique_ptr<WasmCode> code{ |
1498 | new WasmCode{this, // native_module |
1499 | kAnonymousFuncIndex, // index |
1500 | code_space, // instructions |
1501 | 0, // stack_slots |
1502 | 0, // tagged_parameter_slots |
1503 | 0, // safepoint_table_offset |
1504 | jump_table_size, // handler_table_offset |
1505 | jump_table_size, // constant_pool_offset |
1506 | jump_table_size, // code_comments_offset |
1507 | jump_table_size, // unpadded_binary_size |
1508 | {}, // protected_instructions |
1509 | {}, // reloc_info |
1510 | {}, // source_pos |
1511 | WasmCode::kJumpTable, // kind |
1512 | ExecutionTier::kNone, // tier |
1513 | kNoDebugging}}; // for_debugging |
1514 | return PublishCodeLocked(std::move(code)); |
1515 | } |
1516 | |
1517 | void NativeModule::UpdateCodeSize(size_t size, ExecutionTier tier, |
1518 | ForDebugging for_debugging) { |
1519 | if (for_debugging != kNoDebugging) return; |
1520 | // Count jump tables (ExecutionTier::kNone) for both Liftoff and TurboFan as |
1521 | // this is shared code. |
1522 | if (tier != ExecutionTier::kTurbofan) liftoff_code_size_.fetch_add(size); |
1523 | if (tier != ExecutionTier::kLiftoff) turbofan_code_size_.fetch_add(size); |
1524 | } |
1525 | |
1526 | void NativeModule::PatchJumpTablesLocked(uint32_t slot_index, Address target) { |
1527 | allocation_mutex_.AssertHeld(); |
1528 | |
1529 | for (auto& code_space_data : code_space_data_) { |
1530 | DCHECK_IMPLIES(code_space_data.jump_table, code_space_data.far_jump_table)((void) 0); |
1531 | if (!code_space_data.jump_table) continue; |
1532 | PatchJumpTableLocked(code_space_data, slot_index, target); |
1533 | } |
1534 | } |
1535 | |
1536 | void NativeModule::PatchJumpTableLocked(const CodeSpaceData& code_space_data, |
1537 | uint32_t slot_index, Address target) { |
1538 | allocation_mutex_.AssertHeld(); |
1539 | |
1540 | DCHECK_NOT_NULL(code_space_data.jump_table)((void) 0); |
1541 | DCHECK_NOT_NULL(code_space_data.far_jump_table)((void) 0); |
1542 | |
1543 | // Jump tables are often allocated next to each other, so we can switch |
1544 | // permissions on both at the same time. |
1545 | if (code_space_data.jump_table->instructions().end() == |
1546 | code_space_data.far_jump_table->instructions().begin()) { |
1547 | base::Vector<uint8_t> jump_tables_space = base::VectorOf( |
1548 | code_space_data.jump_table->instructions().begin(), |
1549 | code_space_data.jump_table->instructions().size() + |
1550 | code_space_data.far_jump_table->instructions().size()); |
1551 | code_allocator_.MakeWritable(AddressRegionOf(jump_tables_space)); |
1552 | } else { |
1553 | code_allocator_.MakeWritable( |
1554 | AddressRegionOf(code_space_data.jump_table->instructions())); |
1555 | code_allocator_.MakeWritable( |
1556 | AddressRegionOf(code_space_data.far_jump_table->instructions())); |
1557 | } |
1558 | |
1559 | DCHECK_LT(slot_index, module_->num_declared_functions)((void) 0); |
1560 | Address jump_table_slot = |
1561 | code_space_data.jump_table->instruction_start() + |
1562 | JumpTableAssembler::JumpSlotIndexToOffset(slot_index); |
1563 | uint32_t far_jump_table_offset = JumpTableAssembler::FarJumpSlotIndexToOffset( |
1564 | WasmCode::kRuntimeStubCount + slot_index); |
1565 | // Only pass the far jump table start if the far jump table actually has a |
1566 | // slot for this function index (i.e. does not only contain runtime stubs). |
1567 | bool has_far_jump_slot = |
1568 | far_jump_table_offset < |
1569 | code_space_data.far_jump_table->instructions().size(); |
1570 | Address far_jump_table_start = |
1571 | code_space_data.far_jump_table->instruction_start(); |
1572 | Address far_jump_table_slot = |
1573 | has_far_jump_slot ? far_jump_table_start + far_jump_table_offset |
1574 | : kNullAddress; |
1575 | JumpTableAssembler::PatchJumpTableSlot(jump_table_slot, far_jump_table_slot, |
1576 | target); |
1577 | } |
1578 | |
1579 | void NativeModule::AddCodeSpaceLocked(base::AddressRegion region) { |
1580 | allocation_mutex_.AssertHeld(); |
1581 | |
1582 | // Each code space must be at least twice as large as the overhead per code |
1583 | // space. Otherwise, we are wasting too much memory. |
1584 | DCHECK_GE(region.size(),((void) 0) |
1585 | 2 * OverheadPerCodeSpace(module()->num_declared_functions))((void) 0); |
1586 | |
1587 | CodeSpaceWriteScope code_space_write_scope(this); |
1588 | #if defined(V8_OS_WIN64) |
1589 | // On some platforms, specifically Win64, we need to reserve some pages at |
1590 | // the beginning of an executable space. |
1591 | // See src/heap/spaces.cc, MemoryAllocator::InitializeCodePageAllocator() and |
1592 | // https://cs.chromium.org/chromium/src/components/crash/content/app/crashpad_win.cc?rcl=fd680447881449fba2edcf0589320e7253719212&l=204 |
1593 | // for details. |
1594 | if (WasmCodeManager::CanRegisterUnwindInfoForNonABICompliantCodeRange()) { |
1595 | size_t size = Heap::GetCodeRangeReservedAreaSize(); |
1596 | DCHECK_LT(0, size)((void) 0); |
1597 | base::Vector<byte> padding = |
1598 | code_allocator_.AllocateForCodeInRegion(this, size, region); |
1599 | CHECK_EQ(reinterpret_cast<Address>(padding.begin()), region.begin())do { bool _cmp = ::v8::base::CmpEQImpl< typename ::v8::base ::pass_value_or_ref<decltype(reinterpret_cast<Address> (padding.begin()))>::type, typename ::v8::base::pass_value_or_ref <decltype(region.begin())>::type>((reinterpret_cast< Address>(padding.begin())), (region.begin())); do { if ((__builtin_expect (!!(!(_cmp)), 0))) { V8_Fatal("Check failed: %s.", "reinterpret_cast<Address>(padding.begin())" " " "==" " " "region.begin()"); } } while (false); } while ( false); |
1600 | win64_unwindinfo::RegisterNonABICompliantCodeRange( |
1601 | reinterpret_cast<void*>(region.begin()), region.size()); |
1602 | } |
1603 | #endif // V8_OS_WIN64 |
1604 | |
1605 | WasmCodeRefScope code_ref_scope; |
1606 | WasmCode* jump_table = nullptr; |
1607 | WasmCode* far_jump_table = nullptr; |
1608 | const uint32_t num_wasm_functions = module_->num_declared_functions; |
1609 | const bool is_first_code_space = code_space_data_.empty(); |
1610 | // We always need a far jump table, because it contains the runtime stubs. |
1611 | const bool needs_far_jump_table = |
1612 | !FindJumpTablesForRegionLocked(region).is_valid(); |
1613 | const bool needs_jump_table = num_wasm_functions > 0 && needs_far_jump_table; |
1614 | |
1615 | if (needs_jump_table) { |
1616 | jump_table = CreateEmptyJumpTableInRegionLocked( |
1617 | JumpTableAssembler::SizeForNumberOfSlots(num_wasm_functions), region); |
1618 | CHECK(region.contains(jump_table->instruction_start()))do { if ((__builtin_expect(!!(!(region.contains(jump_table-> instruction_start()))), 0))) { V8_Fatal("Check failed: %s.", "region.contains(jump_table->instruction_start())" ); } } while (false); |
1619 | } |
1620 | |
1621 | if (needs_far_jump_table) { |
1622 | int num_function_slots = NumWasmFunctionsInFarJumpTable(num_wasm_functions); |
1623 | far_jump_table = CreateEmptyJumpTableInRegionLocked( |
1624 | JumpTableAssembler::SizeForNumberOfFarJumpSlots( |
1625 | WasmCode::kRuntimeStubCount, |
1626 | NumWasmFunctionsInFarJumpTable(num_function_slots)), |
1627 | region); |
1628 | CHECK(region.contains(far_jump_table->instruction_start()))do { if ((__builtin_expect(!!(!(region.contains(far_jump_table ->instruction_start()))), 0))) { V8_Fatal("Check failed: %s." , "region.contains(far_jump_table->instruction_start())"); } } while (false); |
1629 | EmbeddedData embedded_data = EmbeddedData::FromBlob(); |
1630 | #define RUNTIME_STUB(Name) Builtin::k##Name, |
1631 | #define RUNTIME_STUB_TRAP(Name) RUNTIME_STUB(ThrowWasm##Name) |
1632 | Builtin stub_names[WasmCode::kRuntimeStubCount] = { |
1633 | WASM_RUNTIME_STUB_LIST(RUNTIME_STUB, RUNTIME_STUB_TRAP)RUNTIME_STUB_TRAP(TrapUnreachable) RUNTIME_STUB_TRAP(TrapMemOutOfBounds ) RUNTIME_STUB_TRAP(TrapUnalignedAccess) RUNTIME_STUB_TRAP(TrapDivByZero ) RUNTIME_STUB_TRAP(TrapDivUnrepresentable) RUNTIME_STUB_TRAP (TrapRemByZero) RUNTIME_STUB_TRAP(TrapFloatUnrepresentable) RUNTIME_STUB_TRAP (TrapFuncSigMismatch) RUNTIME_STUB_TRAP(TrapDataSegmentOutOfBounds ) RUNTIME_STUB_TRAP(TrapElemSegmentDropped) RUNTIME_STUB_TRAP (TrapTableOutOfBounds) RUNTIME_STUB_TRAP(TrapRethrowNull) RUNTIME_STUB_TRAP (TrapNullDereference) RUNTIME_STUB_TRAP(TrapIllegalCast) RUNTIME_STUB_TRAP (TrapArrayOutOfBounds) RUNTIME_STUB_TRAP(TrapArrayTooLarge) RUNTIME_STUB (WasmCompileLazy) RUNTIME_STUB(WasmTriggerTierUp) RUNTIME_STUB (WasmDebugBreak) RUNTIME_STUB(WasmInt32ToHeapNumber) RUNTIME_STUB (WasmTaggedNonSmiToInt32) RUNTIME_STUB(WasmFloat32ToNumber) RUNTIME_STUB (WasmFloat64ToNumber) RUNTIME_STUB(WasmTaggedToFloat64) RUNTIME_STUB (WasmAllocateJSArray) RUNTIME_STUB(WasmAtomicNotify) RUNTIME_STUB (WasmI32AtomicWait32) RUNTIME_STUB(WasmI32AtomicWait64) RUNTIME_STUB (WasmI64AtomicWait32) RUNTIME_STUB(WasmI64AtomicWait64) RUNTIME_STUB (WasmGetOwnProperty) RUNTIME_STUB(WasmRefFunc) RUNTIME_STUB(WasmMemoryGrow ) RUNTIME_STUB(WasmTableInit) RUNTIME_STUB(WasmTableCopy) RUNTIME_STUB (WasmTableFill) RUNTIME_STUB(WasmTableGrow) RUNTIME_STUB(WasmTableGet ) RUNTIME_STUB(WasmTableSet) RUNTIME_STUB(WasmStackGuard) RUNTIME_STUB (WasmStackOverflow) RUNTIME_STUB(WasmAllocateFixedArray) RUNTIME_STUB (WasmThrow) RUNTIME_STUB(WasmRethrow) RUNTIME_STUB(WasmRethrowExplicitContext ) RUNTIME_STUB(WasmTraceEnter) RUNTIME_STUB(WasmTraceExit) RUNTIME_STUB (WasmTraceMemory) RUNTIME_STUB(BigIntToI32Pair) RUNTIME_STUB( BigIntToI64) RUNTIME_STUB(CallRefIC) RUNTIME_STUB(DoubleToI) RUNTIME_STUB (I32PairToBigInt) RUNTIME_STUB(I64ToBigInt) RUNTIME_STUB(RecordWriteEmitRememberedSetSaveFP ) RUNTIME_STUB(RecordWriteOmitRememberedSetSaveFP) RUNTIME_STUB (RecordWriteEmitRememberedSetIgnoreFP) RUNTIME_STUB(RecordWriteOmitRememberedSetIgnoreFP ) RUNTIME_STUB(ToNumber) RUNTIME_STUB(WasmAllocateArray_Uninitialized ) RUNTIME_STUB(WasmAllocateArray_InitNull) RUNTIME_STUB(WasmAllocateArray_InitZero ) RUNTIME_STUB(WasmArrayCopy) RUNTIME_STUB(WasmArrayCopyWithChecks ) RUNTIME_STUB(WasmArrayInitFromData) RUNTIME_STUB(WasmAllocateStructWithRtt ) RUNTIME_STUB(WasmSubtypeCheck) RUNTIME_STUB(WasmOnStackReplace ) RUNTIME_STUB(WasmSuspend)}; |
1634 | #undef RUNTIME_STUB |
1635 | #undef RUNTIME_STUB_TRAP |
1636 | STATIC_ASSERT(Builtins::kAllBuiltinsAreIsolateIndependent)static_assert(Builtins::kAllBuiltinsAreIsolateIndependent, "Builtins::kAllBuiltinsAreIsolateIndependent" ); |
1637 | Address builtin_addresses[WasmCode::kRuntimeStubCount]; |
1638 | for (int i = 0; i < WasmCode::kRuntimeStubCount; ++i) { |
1639 | Builtin builtin = stub_names[i]; |
1640 | builtin_addresses[i] = embedded_data.InstructionStartOfBuiltin(builtin); |
1641 | } |
1642 | JumpTableAssembler::GenerateFarJumpTable( |
1643 | far_jump_table->instruction_start(), builtin_addresses, |
1644 | WasmCode::kRuntimeStubCount, num_function_slots); |
1645 | } |
1646 | |
1647 | if (is_first_code_space) { |
1648 | // This can be updated and accessed without locks, since the addition of the |
1649 | // first code space happens during initialization of the {NativeModule}, |
1650 | // where no concurrent accesses are possible. |
1651 | main_jump_table_ = jump_table; |
1652 | main_far_jump_table_ = far_jump_table; |
1653 | } |
1654 | |
1655 | code_space_data_.push_back(CodeSpaceData{region, jump_table, far_jump_table}); |
1656 | |
1657 | if (jump_table && !is_first_code_space) { |
1658 | // Patch the new jump table(s) with existing functions. If this is the first |
1659 | // code space, there cannot be any functions that have been compiled yet. |
1660 | const CodeSpaceData& new_code_space_data = code_space_data_.back(); |
1661 | for (uint32_t slot_index = 0; slot_index < num_wasm_functions; |
1662 | ++slot_index) { |
1663 | if (code_table_[slot_index]) { |
1664 | PatchJumpTableLocked(new_code_space_data, slot_index, |
1665 | code_table_[slot_index]->instruction_start()); |
1666 | } else if (lazy_compile_table_) { |
1667 | Address lazy_compile_target = |
1668 | lazy_compile_table_->instruction_start() + |
1669 | JumpTableAssembler::LazyCompileSlotIndexToOffset(slot_index); |
1670 | PatchJumpTableLocked(new_code_space_data, slot_index, |
1671 | lazy_compile_target); |
1672 | } |
1673 | } |
1674 | } |
1675 | } |
1676 | |
1677 | namespace { |
1678 | class NativeModuleWireBytesStorage final : public WireBytesStorage { |
1679 | public: |
1680 | explicit NativeModuleWireBytesStorage( |
1681 | std::shared_ptr<base::OwnedVector<const uint8_t>> wire_bytes) |
1682 | : wire_bytes_(std::move(wire_bytes)) {} |
1683 | |
1684 | base::Vector<const uint8_t> GetCode(WireBytesRef ref) const final { |
1685 | return std::atomic_load(&wire_bytes_) |
1686 | ->as_vector() |
1687 | .SubVector(ref.offset(), ref.end_offset()); |
1688 | } |
1689 | |
1690 | base::Optional<ModuleWireBytes> GetModuleBytes() const final { |
1691 | return base::Optional<ModuleWireBytes>( |
1692 | std::atomic_load(&wire_bytes_)->as_vector()); |
1693 | } |
1694 | |
1695 | private: |
1696 | const std::shared_ptr<base::OwnedVector<const uint8_t>> wire_bytes_; |
1697 | }; |
1698 | } // namespace |
1699 | |
1700 | void NativeModule::SetWireBytes(base::OwnedVector<const uint8_t> wire_bytes) { |
1701 | auto shared_wire_bytes = |
1702 | std::make_shared<base::OwnedVector<const uint8_t>>(std::move(wire_bytes)); |
1703 | std::atomic_store(&wire_bytes_, shared_wire_bytes); |
1704 | if (!shared_wire_bytes->empty()) { |
1705 | compilation_state_->SetWireBytesStorage( |
1706 | std::make_shared<NativeModuleWireBytesStorage>( |
1707 | std::move(shared_wire_bytes))); |
1708 | } |
1709 | } |
1710 | |
1711 | void NativeModule::UpdateCPUDuration(size_t cpu_duration, ExecutionTier tier) { |
1712 | if (tier == WasmCompilationUnit::GetBaselineExecutionTier(this->module())) { |
1713 | if (!compilation_state_->baseline_compilation_finished()) { |
1714 | baseline_compilation_cpu_duration_.fetch_add(cpu_duration, |
1715 | std::memory_order_relaxed); |
1716 | } |
1717 | } else if (tier == ExecutionTier::kTurbofan) { |
1718 | if (!compilation_state_->top_tier_compilation_finished()) { |
1719 | tier_up_cpu_duration_.fetch_add(cpu_duration, std::memory_order_relaxed); |
1720 | } |
1721 | } |
1722 | } |
1723 | |
1724 | void NativeModule::TransferNewOwnedCodeLocked() const { |
1725 | allocation_mutex_.AssertHeld(); |
1726 | DCHECK(!new_owned_code_.empty())((void) 0); |
1727 | // Sort the {new_owned_code_} vector reversed, such that the position of the |
1728 | // previously inserted element can be used as a hint for the next element. If |
1729 | // elements in {new_owned_code_} are adjacent, this will guarantee |
1730 | // constant-time insertion into the map. |
1731 | std::sort(new_owned_code_.begin(), new_owned_code_.end(), |
1732 | [](const std::unique_ptr<WasmCode>& a, |
1733 | const std::unique_ptr<WasmCode>& b) { |
1734 | return a->instruction_start() > b->instruction_start(); |
1735 | }); |
1736 | auto insertion_hint = owned_code_.end(); |
1737 | for (auto& code : new_owned_code_) { |
1738 | DCHECK_EQ(0, owned_code_.count(code->instruction_start()))((void) 0); |
1739 | // Check plausibility of the insertion hint. |
1740 | DCHECK(insertion_hint == owned_code_.end() ||((void) 0) |
1741 | insertion_hint->first > code->instruction_start())((void) 0); |
1742 | insertion_hint = owned_code_.emplace_hint( |
1743 | insertion_hint, code->instruction_start(), std::move(code)); |
1744 | } |
1745 | new_owned_code_.clear(); |
1746 | } |
1747 | |
1748 | void NativeModule::InsertToCodeCache(WasmCode* code) { |
1749 | allocation_mutex_.AssertHeld(); |
1750 | DCHECK_NOT_NULL(cached_code_)((void) 0); |
1751 | if (code->IsAnonymous()) return; |
1752 | // Only cache Liftoff debugging code or TurboFan code (no breakpoints or |
1753 | // stepping). |
1754 | if (code->tier() == ExecutionTier::kLiftoff && |
1755 | code->for_debugging() != kForDebugging) { |
1756 | return; |
1757 | } |
1758 | auto key = std::make_pair(code->tier(), code->index()); |
1759 | if (cached_code_->insert(std::make_pair(key, code)).second) { |
1760 | code->IncRef(); |
1761 | } |
1762 | } |
1763 | |
1764 | WasmCode* NativeModule::Lookup(Address pc) const { |
1765 | base::RecursiveMutexGuard lock(&allocation_mutex_); |
1766 | if (!new_owned_code_.empty()) TransferNewOwnedCodeLocked(); |
1767 | auto iter = owned_code_.upper_bound(pc); |
1768 | if (iter == owned_code_.begin()) return nullptr; |
1769 | --iter; |
1770 | WasmCode* candidate = iter->second.get(); |
1771 | DCHECK_EQ(candidate->instruction_start(), iter->first)((void) 0); |
1772 | if (!candidate->contains(pc)) return nullptr; |
1773 | WasmCodeRefScope::AddRef(candidate); |
1774 | return candidate; |
1775 | } |
1776 | |
1777 | uint32_t NativeModule::GetJumpTableOffset(uint32_t func_index) const { |
1778 | uint32_t slot_idx = declared_function_index(module(), func_index); |
1779 | return JumpTableAssembler::JumpSlotIndexToOffset(slot_idx); |
1780 | } |
1781 | |
1782 | Address NativeModule::GetCallTargetForFunction(uint32_t func_index) const { |
1783 | // Return the jump table slot for that function index. |
1784 | DCHECK_NOT_NULL(main_jump_table_)((void) 0); |
1785 | uint32_t slot_offset = GetJumpTableOffset(func_index); |
1786 | DCHECK_LT(slot_offset, main_jump_table_->instructions().size())((void) 0); |
1787 | return main_jump_table_->instruction_start() + slot_offset; |
1788 | } |
1789 | |
1790 | NativeModule::JumpTablesRef NativeModule::FindJumpTablesForRegionLocked( |
1791 | base::AddressRegion code_region) const { |
1792 | allocation_mutex_.AssertHeld(); |
1793 | auto jump_table_usable = [code_region](const WasmCode* jump_table) { |
1794 | Address table_start = jump_table->instruction_start(); |
1795 | Address table_end = table_start + jump_table->instructions().size(); |
1796 | // Compute the maximum distance from anywhere in the code region to anywhere |
1797 | // in the jump table, avoiding any underflow. |
1798 | size_t max_distance = std::max( |
1799 | code_region.end() > table_start ? code_region.end() - table_start : 0, |
1800 | table_end > code_region.begin() ? table_end - code_region.begin() : 0); |
1801 | // We can allow a max_distance that is equal to kMaxCodeSpaceSize, because |
1802 | // every call or jump will target an address *within* the region, but never |
1803 | // exactly the end of the region. So all occuring offsets are actually |
1804 | // smaller than max_distance. |
1805 | return max_distance <= WasmCodeAllocator::kMaxCodeSpaceSize; |
1806 | }; |
1807 | |
1808 | for (auto& code_space_data : code_space_data_) { |
1809 | DCHECK_IMPLIES(code_space_data.jump_table, code_space_data.far_jump_table)((void) 0); |
1810 | if (!code_space_data.far_jump_table) continue; |
1811 | // Only return these jump tables if they are reachable from the whole |
1812 | // {code_region}. |
1813 | if (kNeedsFarJumpsBetweenCodeSpaces && |
1814 | (!jump_table_usable(code_space_data.far_jump_table) || |
1815 | (code_space_data.jump_table && |
1816 | !jump_table_usable(code_space_data.jump_table)))) { |
1817 | continue; |
1818 | } |
1819 | return {code_space_data.jump_table |
1820 | ? code_space_data.jump_table->instruction_start() |
1821 | : kNullAddress, |
1822 | code_space_data.far_jump_table->instruction_start()}; |
1823 | } |
1824 | return {}; |
1825 | } |
1826 | |
1827 | Address NativeModule::GetNearCallTargetForFunction( |
1828 | uint32_t func_index, const JumpTablesRef& jump_tables) const { |
1829 | DCHECK(jump_tables.is_valid())((void) 0); |
1830 | uint32_t slot_offset = GetJumpTableOffset(func_index); |
1831 | return jump_tables.jump_table_start + slot_offset; |
1832 | } |
1833 | |
1834 | Address NativeModule::GetNearRuntimeStubEntry( |
1835 | WasmCode::RuntimeStubId index, const JumpTablesRef& jump_tables) const { |
1836 | DCHECK(jump_tables.is_valid())((void) 0); |
1837 | auto offset = JumpTableAssembler::FarJumpSlotIndexToOffset(index); |
1838 | return jump_tables.far_jump_table_start + offset; |
1839 | } |
1840 | |
1841 | uint32_t NativeModule::GetFunctionIndexFromJumpTableSlot( |
1842 | Address slot_address) const { |
1843 | WasmCodeRefScope code_refs; |
1844 | WasmCode* code = Lookup(slot_address); |
1845 | DCHECK_NOT_NULL(code)((void) 0); |
1846 | DCHECK_EQ(WasmCode::kJumpTable, code->kind())((void) 0); |
1847 | uint32_t slot_offset = |
1848 | static_cast<uint32_t>(slot_address - code->instruction_start()); |
1849 | uint32_t slot_idx = JumpTableAssembler::SlotOffsetToIndex(slot_offset); |
1850 | DCHECK_LT(slot_idx, module_->num_declared_functions)((void) 0); |
1851 | DCHECK_EQ(slot_address,((void) 0) |
1852 | code->instruction_start() +((void) 0) |
1853 | JumpTableAssembler::JumpSlotIndexToOffset(slot_idx))((void) 0); |
1854 | return module_->num_imported_functions + slot_idx; |
1855 | } |
1856 | |
1857 | WasmCode::RuntimeStubId NativeModule::GetRuntimeStubId(Address target) const { |
1858 | base::RecursiveMutexGuard guard(&allocation_mutex_); |
1859 | |
1860 | for (auto& code_space_data : code_space_data_) { |
1861 | if (code_space_data.far_jump_table != nullptr && |
1862 | code_space_data.far_jump_table->contains(target)) { |
1863 | uint32_t offset = static_cast<uint32_t>( |
1864 | target - code_space_data.far_jump_table->instruction_start()); |
1865 | uint32_t index = JumpTableAssembler::FarJumpSlotOffsetToIndex(offset); |
1866 | if (index >= WasmCode::kRuntimeStubCount) continue; |
1867 | if (JumpTableAssembler::FarJumpSlotIndexToOffset(index) != offset) { |
1868 | continue; |
1869 | } |
1870 | return static_cast<WasmCode::RuntimeStubId>(index); |
1871 | } |
1872 | } |
1873 | |
1874 | // Invalid address. |
1875 | return WasmCode::kRuntimeStubCount; |
1876 | } |
1877 | |
1878 | NativeModule::~NativeModule() { |
1879 | TRACE_HEAP("Deleting native module: %p\n", this); |
1880 | // Cancel all background compilation before resetting any field of the |
1881 | // NativeModule or freeing anything. |
1882 | compilation_state_->CancelCompilation(); |
1883 | GetWasmEngine()->FreeNativeModule(this); |
1884 | // Free the import wrapper cache before releasing the {WasmCode} objects in |
1885 | // {owned_code_}. The destructor of {WasmImportWrapperCache} still needs to |
1886 | // decrease reference counts on the {WasmCode} objects. |
1887 | import_wrapper_cache_.reset(); |
1888 | } |
1889 | |
1890 | WasmCodeManager::WasmCodeManager() |
1891 | : max_committed_code_space_(FLAG_wasm_max_code_space * MB), |
1892 | critical_committed_code_space_(max_committed_code_space_ / 2), |
1893 | memory_protection_key_(AllocateMemoryProtectionKey()) {} |
1894 | |
1895 | WasmCodeManager::~WasmCodeManager() { |
1896 | // No more committed code space. |
1897 | DCHECK_EQ(0, total_committed_code_space_.load())((void) 0); |
1898 | |
1899 | FreeMemoryProtectionKey(memory_protection_key_); |
1900 | } |
1901 | |
1902 | #if defined(V8_OS_WIN64) |
1903 | // static |
1904 | bool WasmCodeManager::CanRegisterUnwindInfoForNonABICompliantCodeRange() { |
1905 | return win64_unwindinfo::CanRegisterUnwindInfoForNonABICompliantCodeRange() && |
1906 | FLAG_win64_unwinding_info; |
1907 | } |
1908 | #endif // V8_OS_WIN64 |
1909 | |
1910 | void WasmCodeManager::Commit(base::AddressRegion region) { |
1911 | // TODO(v8:8462): Remove eager commit once perf supports remapping. |
1912 | if (FLAG_perf_prof) return; |
1913 | DCHECK(IsAligned(region.begin(), CommitPageSize()))((void) 0); |
1914 | DCHECK(IsAligned(region.size(), CommitPageSize()))((void) 0); |
1915 | // Reserve the size. Use CAS loop to avoid overflow on |
1916 | // {total_committed_code_space_}. |
1917 | size_t old_value = total_committed_code_space_.load(); |
1918 | while (true) { |
1919 | DCHECK_GE(max_committed_code_space_, old_value)((void) 0); |
1920 | if (region.size() > max_committed_code_space_ - old_value) { |
1921 | V8::FatalProcessOutOfMemory( |
1922 | nullptr, |
1923 | "WasmCodeManager::Commit: Exceeding maximum wasm code space"); |
1924 | UNREACHABLE()V8_Fatal("unreachable code"); |
1925 | } |
1926 | if (total_committed_code_space_.compare_exchange_weak( |
1927 | old_value, old_value + region.size())) { |
1928 | break; |
1929 | } |
1930 | } |
1931 | // Even when we employ W^X with FLAG_wasm_write_protect_code_memory == true, |
1932 | // code pages need to be initially allocated with RWX permission because of |
1933 | // concurrent compilation/execution. For this reason there is no distinction |
1934 | // here based on FLAG_wasm_write_protect_code_memory. |
1935 | // TODO(dlehmann): This allocates initially as writable and executable, and |
1936 | // as such is not safe-by-default. In particular, if |
1937 | // {WasmCodeAllocator::SetWritable(false)} is never called afterwards (e.g., |
1938 | // because no {CodeSpaceWriteScope} is created), the writable permission is |
1939 | // never withdrawn. |
1940 | // One potential fix is to allocate initially with kReadExecute only, which |
1941 | // forces all compilation threads to add the missing {CodeSpaceWriteScope}s |
1942 | // before modification; and/or adding DCHECKs that {CodeSpaceWriteScope} is |
1943 | // open when calling this method. |
1944 | PageAllocator::Permission permission = PageAllocator::kReadWriteExecute; |
1945 | |
1946 | bool success; |
1947 | if (MemoryProtectionKeysEnabled()) { |
1948 | TRACE_HEAP( |
1949 | "Setting rwx permissions and memory protection key %d for 0x%" PRIxPTR"l" "x" |
1950 | ":0x%" PRIxPTR"l" "x" "\n", |
1951 | memory_protection_key_, region.begin(), region.end()); |
1952 | success = SetPermissionsAndMemoryProtectionKey( |
1953 | GetPlatformPageAllocator(), region, permission, memory_protection_key_); |
1954 | } else { |
1955 | TRACE_HEAP("Setting rwx permissions for 0x%" PRIxPTR"l" "x" ":0x%" PRIxPTR"l" "x" "\n", |
1956 | region.begin(), region.end()); |
1957 | success = SetPermissions(GetPlatformPageAllocator(), region.begin(), |
1958 | region.size(), permission); |
1959 | } |
1960 | |
1961 | if (V8_UNLIKELY(!success)(__builtin_expect(!!(!success), 0))) { |
1962 | V8::FatalProcessOutOfMemory( |
1963 | nullptr, |
1964 | "WasmCodeManager::Commit: Cannot make pre-reserved region writable"); |
1965 | UNREACHABLE()V8_Fatal("unreachable code"); |
1966 | } |
1967 | } |
1968 | |
1969 | void WasmCodeManager::Decommit(base::AddressRegion region) { |
1970 | // TODO(v8:8462): Remove this once perf supports remapping. |
1971 | if (FLAG_perf_prof) return; |
1972 | PageAllocator* allocator = GetPlatformPageAllocator(); |
1973 | DCHECK(IsAligned(region.begin(), allocator->CommitPageSize()))((void) 0); |
1974 | DCHECK(IsAligned(region.size(), allocator->CommitPageSize()))((void) 0); |
1975 | size_t old_committed = total_committed_code_space_.fetch_sub(region.size()); |
1976 | DCHECK_LE(region.size(), old_committed)((void) 0); |
1977 | USE(old_committed)do { ::v8::base::Use unused_tmp_array_for_use_macro[]{old_committed }; (void)unused_tmp_array_for_use_macro; } while (false); |
1978 | TRACE_HEAP("Decommitting system pages 0x%" PRIxPTR"l" "x" ":0x%" PRIxPTR"l" "x" "\n", |
1979 | region.begin(), region.end()); |
1980 | CHECK(allocator->DecommitPages(reinterpret_cast<void*>(region.begin()),do { if ((__builtin_expect(!!(!(allocator->DecommitPages(reinterpret_cast <void*>(region.begin()), region.size()))), 0))) { V8_Fatal ("Check failed: %s.", "allocator->DecommitPages(reinterpret_cast<void*>(region.begin()), region.size())" ); } } while (false) |
1981 | region.size()))do { if ((__builtin_expect(!!(!(allocator->DecommitPages(reinterpret_cast <void*>(region.begin()), region.size()))), 0))) { V8_Fatal ("Check failed: %s.", "allocator->DecommitPages(reinterpret_cast<void*>(region.begin()), region.size())" ); } } while (false); |
1982 | } |
1983 | |
1984 | void WasmCodeManager::AssignRange(base::AddressRegion region, |
1985 | NativeModule* native_module) { |
1986 | base::MutexGuard lock(&native_modules_mutex_); |
1987 | lookup_map_.insert(std::make_pair( |
1988 | region.begin(), std::make_pair(region.end(), native_module))); |
1989 | } |
1990 | |
1991 | VirtualMemory WasmCodeManager::TryAllocate(size_t size, void* hint) { |
1992 | v8::PageAllocator* page_allocator = GetPlatformPageAllocator(); |
1993 | DCHECK_GT(size, 0)((void) 0); |
1994 | size_t allocate_page_size = page_allocator->AllocatePageSize(); |
1995 | size = RoundUp(size, allocate_page_size); |
1996 | if (hint == nullptr) hint = page_allocator->GetRandomMmapAddr(); |
1997 | |
1998 | // When we start exposing Wasm in jitless mode, then the jitless flag |
1999 | // will have to determine whether we set kMapAsJittable or not. |
2000 | DCHECK(!FLAG_jitless)((void) 0); |
2001 | VirtualMemory mem(page_allocator, size, hint, allocate_page_size, |
2002 | VirtualMemory::kMapAsJittable); |
2003 | if (!mem.IsReserved()) return {}; |
2004 | TRACE_HEAP("VMem alloc: 0x%" PRIxPTR"l" "x" ":0x%" PRIxPTR"l" "x" " (%zu)\n", mem.address(), |
2005 | mem.end(), mem.size()); |
2006 | |
2007 | // TODO(v8:8462): Remove eager commit once perf supports remapping. |
2008 | if (FLAG_perf_prof) { |
2009 | SetPermissions(GetPlatformPageAllocator(), mem.address(), mem.size(), |
2010 | PageAllocator::kReadWriteExecute); |
2011 | } |
2012 | return mem; |
2013 | } |
2014 | |
2015 | namespace { |
2016 | // The numbers here are rough estimates, used to calculate the size of the |
2017 | // initial code reservation and for estimating the amount of external memory |
2018 | // reported to the GC. |
2019 | // They do not need to be accurate. Choosing them too small will result in |
2020 | // separate code spaces being allocated (compile time and runtime overhead), |
2021 | // choosing them too large results in over-reservation (virtual address space |
2022 | // only). |
2023 | // In doubt, choose the numbers slightly too large, because over-reservation is |
2024 | // less critical than multiple separate code spaces (especially on 64-bit). |
2025 | // Numbers can be determined by running benchmarks with |
2026 | // --trace-wasm-compilation-times, and piping the output through |
2027 | // tools/wasm/code-size-factors.py. |
2028 | #if V8_TARGET_ARCH_X641 |
2029 | constexpr size_t kTurbofanFunctionOverhead = 24; |
2030 | constexpr size_t kTurbofanCodeSizeMultiplier = 3; |
2031 | constexpr size_t kLiftoffFunctionOverhead = 56; |
2032 | constexpr size_t kLiftoffCodeSizeMultiplier = 4; |
2033 | constexpr size_t kImportSize = 640; |
2034 | #elif V8_TARGET_ARCH_IA32 |
2035 | constexpr size_t kTurbofanFunctionOverhead = 20; |
2036 | constexpr size_t kTurbofanCodeSizeMultiplier = 4; |
2037 | constexpr size_t kLiftoffFunctionOverhead = 48; |
2038 | constexpr size_t kLiftoffCodeSizeMultiplier = 5; |
2039 | constexpr size_t kImportSize = 320; |
2040 | #elif V8_TARGET_ARCH_ARM |
2041 | constexpr size_t kTurbofanFunctionOverhead = 44; |
2042 | constexpr size_t kTurbofanCodeSizeMultiplier = 4; |
2043 | constexpr size_t kLiftoffFunctionOverhead = 96; |
2044 | constexpr size_t kLiftoffCodeSizeMultiplier = 5; |
2045 | constexpr size_t kImportSize = 550; |
2046 | #elif V8_TARGET_ARCH_ARM64 |
2047 | constexpr size_t kTurbofanFunctionOverhead = 40; |
2048 | constexpr size_t kTurbofanCodeSizeMultiplier = 3; |
2049 | constexpr size_t kLiftoffFunctionOverhead = 68; |
2050 | constexpr size_t kLiftoffCodeSizeMultiplier = 4; |
2051 | constexpr size_t kImportSize = 750; |
2052 | #else |
2053 | // Other platforms should add their own estimates for best performance. Numbers |
2054 | // below are the maximum of other architectures. |
2055 | constexpr size_t kTurbofanFunctionOverhead = 44; |
2056 | constexpr size_t kTurbofanCodeSizeMultiplier = 4; |
2057 | constexpr size_t kLiftoffFunctionOverhead = 96; |
2058 | constexpr size_t kLiftoffCodeSizeMultiplier = 5; |
2059 | constexpr size_t kImportSize = 750; |
2060 | #endif |
2061 | } // namespace |
2062 | |
2063 | // static |
2064 | size_t WasmCodeManager::EstimateLiftoffCodeSize(int body_size) { |
2065 | return kLiftoffFunctionOverhead + kCodeAlignment / 2 + |
2066 | body_size * kLiftoffCodeSizeMultiplier; |
2067 | } |
2068 | |
2069 | // static |
2070 | size_t WasmCodeManager::EstimateNativeModuleCodeSize( |
2071 | const WasmModule* module, bool include_liftoff, |
2072 | DynamicTiering dynamic_tiering) { |
2073 | int num_functions = static_cast<int>(module->num_declared_functions); |
2074 | int num_imported_functions = static_cast<int>(module->num_imported_functions); |
2075 | int code_section_length = 0; |
2076 | if (num_functions > 0) { |
2077 | DCHECK_EQ(module->functions.size(), num_imported_functions + num_functions)((void) 0); |
2078 | auto* first_fn = &module->functions[module->num_imported_functions]; |
2079 | auto* last_fn = &module->functions.back(); |
2080 | code_section_length = |
2081 | static_cast<int>(last_fn->code.end_offset() - first_fn->code.offset()); |
2082 | } |
2083 | return EstimateNativeModuleCodeSize(num_functions, num_imported_functions, |
2084 | code_section_length, include_liftoff, |
2085 | dynamic_tiering); |
2086 | } |
2087 | |
2088 | // static |
2089 | size_t WasmCodeManager::EstimateNativeModuleCodeSize( |
2090 | int num_functions, int num_imported_functions, int code_section_length, |
2091 | bool include_liftoff, DynamicTiering dynamic_tiering) { |
2092 | // Note that the size for jump tables is added later, in {ReservationSize} / |
2093 | // {OverheadPerCodeSpace}. |
2094 | |
2095 | const size_t size_of_imports = kImportSize * num_imported_functions; |
2096 | |
2097 | const size_t overhead_per_function_turbofan = |
2098 | kTurbofanFunctionOverhead + kCodeAlignment / 2; |
2099 | size_t size_of_turbofan = overhead_per_function_turbofan * num_functions + |
2100 | kTurbofanCodeSizeMultiplier * code_section_length; |
2101 | |
2102 | const size_t overhead_per_function_liftoff = |
2103 | kLiftoffFunctionOverhead + kCodeAlignment / 2; |
2104 | size_t size_of_liftoff = overhead_per_function_liftoff * num_functions + |
2105 | kLiftoffCodeSizeMultiplier * code_section_length; |
2106 | |
2107 | if (!include_liftoff) { |
2108 | size_of_liftoff = 0; |
2109 | } |
2110 | // With dynamic tiering we don't expect to compile more than 25% with |
2111 | // TurboFan. If there is no liftoff though then all code will get generated |
2112 | // by TurboFan. |
2113 | if (include_liftoff && dynamic_tiering == DynamicTiering::kEnabled) { |
2114 | size_of_turbofan /= 4; |
2115 | } |
2116 | |
2117 | return size_of_imports + size_of_liftoff + size_of_turbofan; |
2118 | } |
2119 | |
2120 | // static |
2121 | size_t WasmCodeManager::EstimateNativeModuleMetaDataSize( |
2122 | const WasmModule* module) { |
2123 | size_t wasm_module_estimate = EstimateStoredSize(module); |
2124 | |
2125 | uint32_t num_wasm_functions = module->num_declared_functions; |
2126 | |
2127 | // TODO(wasm): Include wire bytes size. |
2128 | size_t native_module_estimate = |
2129 | sizeof(NativeModule) + // NativeModule struct |
2130 | (sizeof(WasmCode*) * num_wasm_functions) + // code table size |
2131 | (sizeof(WasmCode) * num_wasm_functions); // code object size |
2132 | |
2133 | size_t jump_table_size = RoundUp<kCodeAlignment>( |
2134 | JumpTableAssembler::SizeForNumberOfSlots(num_wasm_functions)); |
2135 | size_t far_jump_table_size = |
2136 | RoundUp<kCodeAlignment>(JumpTableAssembler::SizeForNumberOfFarJumpSlots( |
2137 | WasmCode::kRuntimeStubCount, |
2138 | NumWasmFunctionsInFarJumpTable(num_wasm_functions))); |
2139 | |
2140 | return wasm_module_estimate + native_module_estimate + jump_table_size + |
2141 | far_jump_table_size; |
2142 | } |
2143 | |
2144 | void WasmCodeManager::SetThreadWritable(bool writable) { |
2145 | DCHECK(MemoryProtectionKeysEnabled())((void) 0); |
2146 | |
2147 | MemoryProtectionKeyPermission permissions = |
2148 | writable ? kNoRestrictions : kDisableWrite; |
2149 | |
2150 | // When switching to writable we should not already be writable. Otherwise |
2151 | // this points at a problem with counting writers, or with wrong |
2152 | // initialization (globally or per thread). |
2153 | DCHECK_IMPLIES(writable, !MemoryProtectionKeyWritable())((void) 0); |
2154 | |
2155 | TRACE_HEAP("Setting memory protection key %d to writable: %d.\n", |
2156 | memory_protection_key_, writable); |
2157 | SetPermissionsForMemoryProtectionKey(memory_protection_key_, permissions); |
2158 | } |
2159 | |
2160 | bool WasmCodeManager::HasMemoryProtectionKeySupport() const { |
2161 | return memory_protection_key_ != kNoMemoryProtectionKey; |
2162 | } |
2163 | |
2164 | bool WasmCodeManager::MemoryProtectionKeysEnabled() const { |
2165 | return HasMemoryProtectionKeySupport() && FLAG_wasm_memory_protection_keys; |
2166 | } |
2167 | |
2168 | bool WasmCodeManager::MemoryProtectionKeyWritable() const { |
2169 | return GetMemoryProtectionKeyPermission(memory_protection_key_) == |
2170 | MemoryProtectionKeyPermission::kNoRestrictions; |
2171 | } |
2172 | |
2173 | void WasmCodeManager::InitializeMemoryProtectionKeyPermissionsIfSupported() |
2174 | const { |
2175 | if (!HasMemoryProtectionKeySupport()) return; |
2176 | // The default permission is {kDisableAccess}. Switch from that to |
2177 | // {kDisableWrite}. Leave other permissions untouched, as the thread did |
2178 | // already use the memory protection key in that case. |
2179 | if (GetMemoryProtectionKeyPermission(memory_protection_key_) == |
2180 | kDisableAccess) { |
2181 | SetPermissionsForMemoryProtectionKey(memory_protection_key_, kDisableWrite); |
2182 | } |
2183 | } |
2184 | |
2185 | std::shared_ptr<NativeModule> WasmCodeManager::NewNativeModule( |
2186 | Isolate* isolate, const WasmFeatures& enabled, size_t code_size_estimate, |
2187 | std::shared_ptr<const WasmModule> module) { |
2188 | if (total_committed_code_space_.load() > |
2189 | critical_committed_code_space_.load()) { |
2190 | (reinterpret_cast<v8::Isolate*>(isolate)) |
2191 | ->MemoryPressureNotification(MemoryPressureLevel::kCritical); |
2192 | size_t committed = total_committed_code_space_.load(); |
2193 | DCHECK_GE(max_committed_code_space_, committed)((void) 0); |
2194 | critical_committed_code_space_.store( |
2195 | committed + (max_committed_code_space_ - committed) / 2); |
2196 | } |
2197 | |
2198 | size_t code_vmem_size = |
2199 | ReservationSize(code_size_estimate, module->num_declared_functions, 0); |
2200 | |
2201 | // The '--wasm-max-initial-code-space-reservation' testing flag can be used to |
2202 | // reduce the maximum size of the initial code space reservation (in MB). |
2203 | if (FLAG_wasm_max_initial_code_space_reservation > 0) { |
2204 | size_t flag_max_bytes = |
2205 | static_cast<size_t>(FLAG_wasm_max_initial_code_space_reservation) * MB; |
2206 | if (flag_max_bytes < code_vmem_size) code_vmem_size = flag_max_bytes; |
2207 | } |
2208 | |
2209 | // Try up to two times; getting rid of dead JSArrayBuffer allocations might |
2210 | // require two GCs because the first GC maybe incremental and may have |
2211 | // floating garbage. |
2212 | static constexpr int kAllocationRetries = 2; |
2213 | VirtualMemory code_space; |
2214 | for (int retries = 0;; ++retries) { |
2215 | code_space = TryAllocate(code_vmem_size); |
2216 | if (code_space.IsReserved()) break; |
2217 | if (retries == kAllocationRetries) { |
2218 | constexpr auto format = base::StaticCharVector( |
2219 | "NewNativeModule cannot allocate code space of %zu bytes"); |
2220 | constexpr int kMaxMessageLength = |
2221 | format.size() - 3 + std::numeric_limits<size_t>::digits10; |
2222 | base::EmbeddedVector<char, kMaxMessageLength + 1> message; |
2223 | SNPrintF(message, format.begin(), code_vmem_size); |
2224 | V8::FatalProcessOutOfMemory(isolate, message.begin()); |
2225 | UNREACHABLE()V8_Fatal("unreachable code"); |
2226 | } |
2227 | // Run one GC, then try the allocation again. |
2228 | isolate->heap()->MemoryPressureNotification(MemoryPressureLevel::kCritical, |
2229 | true); |
2230 | } |
2231 | |
2232 | Address start = code_space.address(); |
2233 | size_t size = code_space.size(); |
Value stored to 'size' during its initialization is never read | |
2234 | Address end = code_space.end(); |
2235 | std::shared_ptr<NativeModule> ret; |
2236 | DynamicTiering dynamic_tiering = isolate->IsWasmDynamicTieringEnabled() |
2237 | ? DynamicTiering::kEnabled |
2238 | : DynamicTiering::kDisabled; |
2239 | new NativeModule(enabled, dynamic_tiering, std::move(code_space), |
2240 | std::move(module), isolate->async_counters(), &ret); |
2241 | // The constructor initialized the shared_ptr. |
2242 | DCHECK_NOT_NULL(ret)((void) 0); |
2243 | TRACE_HEAP("New NativeModule %p: Mem: 0x%" PRIxPTR"l" "x" ",+%zu\n", ret.get(), |
2244 | start, size); |
2245 | |
2246 | base::MutexGuard lock(&native_modules_mutex_); |
2247 | lookup_map_.insert(std::make_pair(start, std::make_pair(end, ret.get()))); |
2248 | return ret; |
2249 | } |
2250 | |
2251 | void NativeModule::SampleCodeSize( |
2252 | Counters* counters, NativeModule::CodeSamplingTime sampling_time) const { |
2253 | size_t code_size = sampling_time == kSampling |
2254 | ? code_allocator_.committed_code_space() |
2255 | : code_allocator_.generated_code_size(); |
2256 | int code_size_mb = static_cast<int>(code_size / MB); |
2257 | Histogram* histogram = nullptr; |
2258 | switch (sampling_time) { |
2259 | case kAfterBaseline: |
2260 | histogram = counters->wasm_module_code_size_mb_after_baseline(); |
2261 | break; |
2262 | case kAfterTopTier: |
2263 | histogram = counters->wasm_module_code_size_mb_after_top_tier(); |
2264 | break; |
2265 | case kSampling: { |
2266 | histogram = counters->wasm_module_code_size_mb(); |
2267 | // If this is a wasm module of >= 2MB, also sample the freed code size, |
2268 | // absolute and relative. Code GC does not happen on asm.js modules, and |
2269 | // small modules will never trigger GC anyway. |
2270 | size_t generated_size = code_allocator_.generated_code_size(); |
2271 | if (generated_size >= 2 * MB && module()->origin == kWasmOrigin) { |
2272 | size_t freed_size = code_allocator_.freed_code_size(); |
2273 | DCHECK_LE(freed_size, generated_size)((void) 0); |
2274 | int freed_percent = static_cast<int>(100 * freed_size / generated_size); |
2275 | counters->wasm_module_freed_code_size_percent()->AddSample( |
2276 | freed_percent); |
2277 | } |
2278 | break; |
2279 | } |
2280 | } |
2281 | histogram->AddSample(code_size_mb); |
2282 | } |
2283 | |
2284 | std::unique_ptr<WasmCode> NativeModule::AddCompiledCode( |
2285 | WasmCompilationResult result) { |
2286 | std::vector<std::unique_ptr<WasmCode>> code = AddCompiledCode({&result, 1}); |
2287 | return std::move(code[0]); |
2288 | } |
2289 | |
2290 | std::vector<std::unique_ptr<WasmCode>> NativeModule::AddCompiledCode( |
2291 | base::Vector<WasmCompilationResult> results) { |
2292 | TRACE_EVENT1(TRACE_DISABLED_BY_DEFAULT("v8.wasm.detailed"),static v8::base::AtomicWord trace_event_unique_atomic2293 = 0 ; const uint8_t* trace_event_unique_category_group_enabled2293 ; trace_event_unique_category_group_enabled2293 = reinterpret_cast <const uint8_t*>(v8::base::Relaxed_Load(&(trace_event_unique_atomic2293 ))); if (!trace_event_unique_category_group_enabled2293) { trace_event_unique_category_group_enabled2293 = v8::internal::tracing::TraceEventHelper::GetTracingController () ->GetCategoryGroupEnabled("disabled-by-default-" "v8.wasm.detailed" ); v8::base::Relaxed_Store(&(trace_event_unique_atomic2293 ), (reinterpret_cast<v8::base::AtomicWord>( trace_event_unique_category_group_enabled2293 ))); };; v8::internal::tracing::ScopedTracer trace_event_unique_tracer2293 ; if (v8::base::Relaxed_Load(reinterpret_cast<const v8::base ::Atomic8*>( trace_event_unique_category_group_enabled2293 )) & (kEnabledForRecording_CategoryGroupEnabledFlags | kEnabledForEventCallback_CategoryGroupEnabledFlags )) { uint64_t h = v8::internal::tracing::AddTraceEvent( ('X') , trace_event_unique_category_group_enabled2293, "wasm.AddCompiledCode" , v8::internal::tracing::kGlobalScope, v8::internal::tracing:: kNoId, v8::internal::tracing::kNoId, (static_cast<unsigned int>(0)), "num", results.size()); trace_event_unique_tracer2293 .Initialize(trace_event_unique_category_group_enabled2293, "wasm.AddCompiledCode" , h); } |
2293 | "wasm.AddCompiledCode", "num", results.size())static v8::base::AtomicWord trace_event_unique_atomic2293 = 0 ; const uint8_t* trace_event_unique_category_group_enabled2293 ; trace_event_unique_category_group_enabled2293 = reinterpret_cast <const uint8_t*>(v8::base::Relaxed_Load(&(trace_event_unique_atomic2293 ))); if (!trace_event_unique_category_group_enabled2293) { trace_event_unique_category_group_enabled2293 = v8::internal::tracing::TraceEventHelper::GetTracingController () ->GetCategoryGroupEnabled("disabled-by-default-" "v8.wasm.detailed" ); v8::base::Relaxed_Store(&(trace_event_unique_atomic2293 ), (reinterpret_cast<v8::base::AtomicWord>( trace_event_unique_category_group_enabled2293 ))); };; v8::internal::tracing::ScopedTracer trace_event_unique_tracer2293 ; if (v8::base::Relaxed_Load(reinterpret_cast<const v8::base ::Atomic8*>( trace_event_unique_category_group_enabled2293 )) & (kEnabledForRecording_CategoryGroupEnabledFlags | kEnabledForEventCallback_CategoryGroupEnabledFlags )) { uint64_t h = v8::internal::tracing::AddTraceEvent( ('X') , trace_event_unique_category_group_enabled2293, "wasm.AddCompiledCode" , v8::internal::tracing::kGlobalScope, v8::internal::tracing:: kNoId, v8::internal::tracing::kNoId, (static_cast<unsigned int>(0)), "num", results.size()); trace_event_unique_tracer2293 .Initialize(trace_event_unique_category_group_enabled2293, "wasm.AddCompiledCode" , h); }; |
2294 | DCHECK(!results.empty())((void) 0); |
2295 | // First, allocate code space for all the results. |
2296 | size_t total_code_space = 0; |
2297 | for (auto& result : results) { |
2298 | DCHECK(result.succeeded())((void) 0); |
2299 | total_code_space += RoundUp<kCodeAlignment>(result.code_desc.instr_size); |
2300 | if (result.result_tier == ExecutionTier::kLiftoff) { |
2301 | int index = result.func_index; |
2302 | int* slots = &module()->functions[index].feedback_slots; |
2303 | #if DEBUG |
2304 | int current_value = base::Relaxed_Load(slots); |
2305 | DCHECK(current_value == 0 ||((void) 0) |
2306 | current_value == result.feedback_vector_slots)((void) 0); |
2307 | #endif |
2308 | base::Relaxed_Store(slots, result.feedback_vector_slots); |
2309 | } |
2310 | } |
2311 | base::Vector<byte> code_space; |
2312 | NativeModule::JumpTablesRef jump_tables; |
2313 | CodeSpaceWriteScope code_space_write_scope(this); |
2314 | { |
2315 | base::RecursiveMutexGuard guard{&allocation_mutex_}; |
2316 | code_space = code_allocator_.AllocateForCode(this, total_code_space); |
2317 | // Lookup the jump tables to use once, then use for all code objects. |
2318 | jump_tables = |
2319 | FindJumpTablesForRegionLocked(base::AddressRegionOf(code_space)); |
2320 | } |
2321 | // If we happen to have a {total_code_space} which is bigger than |
2322 | // {kMaxCodeSpaceSize}, we would not find valid jump tables for the whole |
2323 | // region. If this ever happens, we need to handle this case (by splitting the |
2324 | // {results} vector in smaller chunks). |
2325 | CHECK(jump_tables.is_valid())do { if ((__builtin_expect(!!(!(jump_tables.is_valid())), 0)) ) { V8_Fatal("Check failed: %s.", "jump_tables.is_valid()"); } } while (false); |
2326 | |
2327 | std::vector<std::unique_ptr<WasmCode>> generated_code; |
2328 | generated_code.reserve(results.size()); |
2329 | |
2330 | // Now copy the generated code into the code space and relocate it. |
2331 | for (auto& result : results) { |
2332 | DCHECK_EQ(result.code_desc.buffer, result.instr_buffer->start())((void) 0); |
2333 | size_t code_size = RoundUp<kCodeAlignment>(result.code_desc.instr_size); |
2334 | base::Vector<byte> this_code_space = code_space.SubVector(0, code_size); |
2335 | code_space += code_size; |
2336 | generated_code.emplace_back(AddCodeWithCodeSpace( |
2337 | result.func_index, result.code_desc, result.frame_slot_count, |
2338 | result.tagged_parameter_slots, |
2339 | result.protected_instructions_data.as_vector(), |
2340 | result.source_positions.as_vector(), GetCodeKind(result), |
2341 | result.result_tier, result.for_debugging, this_code_space, |
2342 | jump_tables)); |
2343 | } |
2344 | DCHECK_EQ(0, code_space.size())((void) 0); |
2345 | |
2346 | return generated_code; |
2347 | } |
2348 | |
2349 | void NativeModule::SetTieringState(TieringState new_tiering_state) { |
2350 | // Do not tier down asm.js (just never change the tiering state). |
2351 | if (module()->origin != kWasmOrigin) return; |
2352 | |
2353 | base::RecursiveMutexGuard lock(&allocation_mutex_); |
2354 | tiering_state_ = new_tiering_state; |
2355 | } |
2356 | |
2357 | bool NativeModule::IsTieredDown() { |
2358 | base::RecursiveMutexGuard lock(&allocation_mutex_); |
2359 | return tiering_state_ == kTieredDown; |
2360 | } |
2361 | |
2362 | void NativeModule::RecompileForTiering() { |
2363 | // If baseline compilation is not finished yet, we do not tier down now. This |
2364 | // would be tricky because not all code is guaranteed to be available yet. |
2365 | // Instead, we tier down after streaming compilation finished. |
2366 | if (!compilation_state_->baseline_compilation_finished()) return; |
2367 | |
2368 | // Read the tiering state under the lock, then trigger recompilation after |
2369 | // releasing the lock. If the tiering state was changed when the triggered |
2370 | // compilation units finish, code installation will handle that correctly. |
2371 | TieringState current_state; |
2372 | { |
2373 | base::RecursiveMutexGuard lock(&allocation_mutex_); |
2374 | current_state = tiering_state_; |
2375 | |
2376 | // Initialize {cached_code_} to signal that this cache should get filled |
2377 | // from now on. |
2378 | if (!cached_code_) { |
2379 | cached_code_ = std::make_unique< |
2380 | std::map<std::pair<ExecutionTier, int>, WasmCode*>>(); |
2381 | // Fill with existing code. |
2382 | for (auto& code_entry : owned_code_) { |
2383 | InsertToCodeCache(code_entry.second.get()); |
2384 | } |
2385 | } |
2386 | } |
2387 | RecompileNativeModule(this, current_state); |
2388 | } |
2389 | |
2390 | std::vector<int> NativeModule::FindFunctionsToRecompile( |
2391 | TieringState new_tiering_state) { |
2392 | WasmCodeRefScope code_ref_scope; |
2393 | base::RecursiveMutexGuard guard(&allocation_mutex_); |
2394 | // Get writable permission already here (and not inside the loop in |
2395 | // {PatchJumpTablesLocked}), to avoid switching for each slot individually. |
2396 | CodeSpaceWriteScope code_space_write_scope(this); |
2397 | std::vector<int> function_indexes; |
2398 | int imported = module()->num_imported_functions; |
2399 | int declared = module()->num_declared_functions; |
2400 | const bool tier_down = new_tiering_state == kTieredDown; |
2401 | for (int slot_index = 0; slot_index < declared; ++slot_index) { |
2402 | int function_index = imported + slot_index; |
2403 | WasmCode* old_code = code_table_[slot_index]; |
2404 | bool code_is_good = |
2405 | tier_down ? old_code && old_code->for_debugging() |
2406 | : old_code && old_code->tier() == ExecutionTier::kTurbofan; |
2407 | if (code_is_good) continue; |
2408 | DCHECK_NOT_NULL(cached_code_)((void) 0); |
2409 | auto cache_it = cached_code_->find(std::make_pair( |
2410 | tier_down ? ExecutionTier::kLiftoff : ExecutionTier::kTurbofan, |
2411 | function_index)); |
2412 | if (cache_it != cached_code_->end()) { |
2413 | WasmCode* cached_code = cache_it->second; |
2414 | if (old_code) { |
2415 | WasmCodeRefScope::AddRef(old_code); |
2416 | // The code is added to the current {WasmCodeRefScope}, hence the ref |
2417 | // count cannot drop to zero here. |
2418 | old_code->DecRefOnLiveCode(); |
2419 | } |
2420 | code_table_[slot_index] = cached_code; |
2421 | PatchJumpTablesLocked(slot_index, cached_code->instruction_start()); |
2422 | cached_code->IncRef(); |
2423 | continue; |
2424 | } |
2425 | // Otherwise add the function to the set of functions to recompile. |
2426 | function_indexes.push_back(function_index); |
2427 | } |
2428 | return function_indexes; |
2429 | } |
2430 | |
2431 | void NativeModule::FreeCode(base::Vector<WasmCode* const> codes) { |
2432 | base::RecursiveMutexGuard guard(&allocation_mutex_); |
2433 | // Free the code space. |
2434 | code_allocator_.FreeCode(codes); |
2435 | |
2436 | if (!new_owned_code_.empty()) TransferNewOwnedCodeLocked(); |
2437 | DebugInfo* debug_info = debug_info_.get(); |
2438 | // Free the {WasmCode} objects. This will also unregister trap handler data. |
2439 | for (WasmCode* code : codes) { |
2440 | DCHECK_EQ(1, owned_code_.count(code->instruction_start()))((void) 0); |
2441 | owned_code_.erase(code->instruction_start()); |
2442 | } |
2443 | // Remove debug side tables for all removed code objects, after releasing our |
2444 | // lock. This is to avoid lock order inversion. |
2445 | if (debug_info) debug_info->RemoveDebugSideTables(codes); |
2446 | } |
2447 | |
2448 | size_t NativeModule::GetNumberOfCodeSpacesForTesting() const { |
2449 | base::RecursiveMutexGuard guard{&allocation_mutex_}; |
2450 | return code_allocator_.GetNumCodeSpaces(); |
2451 | } |
2452 | |
2453 | bool NativeModule::HasDebugInfo() const { |
2454 | base::RecursiveMutexGuard guard(&allocation_mutex_); |
2455 | return debug_info_ != nullptr; |
2456 | } |
2457 | |
2458 | DebugInfo* NativeModule::GetDebugInfo() { |
2459 | base::RecursiveMutexGuard guard(&allocation_mutex_); |
2460 | if (!debug_info_) debug_info_ = std::make_unique<DebugInfo>(this); |
2461 | return debug_info_.get(); |
2462 | } |
2463 | |
2464 | void WasmCodeManager::FreeNativeModule( |
2465 | base::Vector<VirtualMemory> owned_code_space, size_t committed_size) { |
2466 | base::MutexGuard lock(&native_modules_mutex_); |
2467 | for (auto& code_space : owned_code_space) { |
2468 | DCHECK(code_space.IsReserved())((void) 0); |
2469 | TRACE_HEAP("VMem Release: 0x%" PRIxPTR"l" "x" ":0x%" PRIxPTR"l" "x" " (%zu)\n", |
2470 | code_space.address(), code_space.end(), code_space.size()); |
2471 | |
2472 | #if defined(V8_OS_WIN64) |
2473 | if (CanRegisterUnwindInfoForNonABICompliantCodeRange()) { |
2474 | win64_unwindinfo::UnregisterNonABICompliantCodeRange( |
2475 | reinterpret_cast<void*>(code_space.address())); |
2476 | } |
2477 | #endif // V8_OS_WIN64 |
2478 | |
2479 | lookup_map_.erase(code_space.address()); |
2480 | code_space.Free(); |
2481 | DCHECK(!code_space.IsReserved())((void) 0); |
2482 | } |
2483 | |
2484 | DCHECK(IsAligned(committed_size, CommitPageSize()))((void) 0); |
2485 | // TODO(v8:8462): Remove this once perf supports remapping. |
2486 | if (!FLAG_perf_prof) { |
2487 | size_t old_committed = |
2488 | total_committed_code_space_.fetch_sub(committed_size); |
2489 | DCHECK_LE(committed_size, old_committed)((void) 0); |
2490 | USE(old_committed)do { ::v8::base::Use unused_tmp_array_for_use_macro[]{old_committed }; (void)unused_tmp_array_for_use_macro; } while (false); |
2491 | } |
2492 | } |
2493 | |
2494 | NativeModule* WasmCodeManager::LookupNativeModule(Address pc) const { |
2495 | base::MutexGuard lock(&native_modules_mutex_); |
2496 | if (lookup_map_.empty()) return nullptr; |
2497 | |
2498 | auto iter = lookup_map_.upper_bound(pc); |
2499 | if (iter == lookup_map_.begin()) return nullptr; |
2500 | --iter; |
2501 | Address region_start = iter->first; |
2502 | Address region_end = iter->second.first; |
2503 | NativeModule* candidate = iter->second.second; |
2504 | |
2505 | DCHECK_NOT_NULL(candidate)((void) 0); |
2506 | return region_start <= pc && pc < region_end ? candidate : nullptr; |
2507 | } |
2508 | |
2509 | WasmCode* WasmCodeManager::LookupCode(Address pc) const { |
2510 | NativeModule* candidate = LookupNativeModule(pc); |
2511 | return candidate ? candidate->Lookup(pc) : nullptr; |
2512 | } |
2513 | |
2514 | namespace { |
2515 | thread_local WasmCodeRefScope* current_code_refs_scope = nullptr; |
2516 | } // namespace |
2517 | |
2518 | WasmCodeRefScope::WasmCodeRefScope() |
2519 | : previous_scope_(current_code_refs_scope) { |
2520 | current_code_refs_scope = this; |
2521 | } |
2522 | |
2523 | WasmCodeRefScope::~WasmCodeRefScope() { |
2524 | DCHECK_EQ(this, current_code_refs_scope)((void) 0); |
2525 | current_code_refs_scope = previous_scope_; |
2526 | WasmCode::DecrementRefCount(base::VectorOf(code_ptrs_)); |
2527 | } |
2528 | |
2529 | // static |
2530 | void WasmCodeRefScope::AddRef(WasmCode* code) { |
2531 | DCHECK_NOT_NULL(code)((void) 0); |
2532 | WasmCodeRefScope* current_scope = current_code_refs_scope; |
2533 | DCHECK_NOT_NULL(current_scope)((void) 0); |
2534 | current_scope->code_ptrs_.push_back(code); |
2535 | code->IncRef(); |
2536 | } |
2537 | |
2538 | Builtin RuntimeStubIdToBuiltinName(WasmCode::RuntimeStubId stub_id) { |
2539 | #define RUNTIME_STUB_NAME(Name) Builtin::k##Name, |
2540 | #define RUNTIME_STUB_NAME_TRAP(Name) Builtin::kThrowWasm##Name, |
2541 | constexpr Builtin builtin_names[] = { |
2542 | WASM_RUNTIME_STUB_LIST(RUNTIME_STUB_NAME, RUNTIME_STUB_NAME_TRAP)RUNTIME_STUB_NAME_TRAP(TrapUnreachable) RUNTIME_STUB_NAME_TRAP (TrapMemOutOfBounds) RUNTIME_STUB_NAME_TRAP(TrapUnalignedAccess ) RUNTIME_STUB_NAME_TRAP(TrapDivByZero) RUNTIME_STUB_NAME_TRAP (TrapDivUnrepresentable) RUNTIME_STUB_NAME_TRAP(TrapRemByZero ) RUNTIME_STUB_NAME_TRAP(TrapFloatUnrepresentable) RUNTIME_STUB_NAME_TRAP (TrapFuncSigMismatch) RUNTIME_STUB_NAME_TRAP(TrapDataSegmentOutOfBounds ) RUNTIME_STUB_NAME_TRAP(TrapElemSegmentDropped) RUNTIME_STUB_NAME_TRAP (TrapTableOutOfBounds) RUNTIME_STUB_NAME_TRAP(TrapRethrowNull ) RUNTIME_STUB_NAME_TRAP(TrapNullDereference) RUNTIME_STUB_NAME_TRAP (TrapIllegalCast) RUNTIME_STUB_NAME_TRAP(TrapArrayOutOfBounds ) RUNTIME_STUB_NAME_TRAP(TrapArrayTooLarge) RUNTIME_STUB_NAME (WasmCompileLazy) RUNTIME_STUB_NAME(WasmTriggerTierUp) RUNTIME_STUB_NAME (WasmDebugBreak) RUNTIME_STUB_NAME(WasmInt32ToHeapNumber) RUNTIME_STUB_NAME (WasmTaggedNonSmiToInt32) RUNTIME_STUB_NAME(WasmFloat32ToNumber ) RUNTIME_STUB_NAME(WasmFloat64ToNumber) RUNTIME_STUB_NAME(WasmTaggedToFloat64 ) RUNTIME_STUB_NAME(WasmAllocateJSArray) RUNTIME_STUB_NAME(WasmAtomicNotify ) RUNTIME_STUB_NAME(WasmI32AtomicWait32) RUNTIME_STUB_NAME(WasmI32AtomicWait64 ) RUNTIME_STUB_NAME(WasmI64AtomicWait32) RUNTIME_STUB_NAME(WasmI64AtomicWait64 ) RUNTIME_STUB_NAME(WasmGetOwnProperty) RUNTIME_STUB_NAME(WasmRefFunc ) RUNTIME_STUB_NAME(WasmMemoryGrow) RUNTIME_STUB_NAME(WasmTableInit ) RUNTIME_STUB_NAME(WasmTableCopy) RUNTIME_STUB_NAME(WasmTableFill ) RUNTIME_STUB_NAME(WasmTableGrow) RUNTIME_STUB_NAME(WasmTableGet ) RUNTIME_STUB_NAME(WasmTableSet) RUNTIME_STUB_NAME(WasmStackGuard ) RUNTIME_STUB_NAME(WasmStackOverflow) RUNTIME_STUB_NAME(WasmAllocateFixedArray ) RUNTIME_STUB_NAME(WasmThrow) RUNTIME_STUB_NAME(WasmRethrow) RUNTIME_STUB_NAME(WasmRethrowExplicitContext) RUNTIME_STUB_NAME (WasmTraceEnter) RUNTIME_STUB_NAME(WasmTraceExit) RUNTIME_STUB_NAME (WasmTraceMemory) RUNTIME_STUB_NAME(BigIntToI32Pair) RUNTIME_STUB_NAME (BigIntToI64) RUNTIME_STUB_NAME(CallRefIC) RUNTIME_STUB_NAME( DoubleToI) RUNTIME_STUB_NAME(I32PairToBigInt) RUNTIME_STUB_NAME (I64ToBigInt) RUNTIME_STUB_NAME(RecordWriteEmitRememberedSetSaveFP ) RUNTIME_STUB_NAME(RecordWriteOmitRememberedSetSaveFP) RUNTIME_STUB_NAME (RecordWriteEmitRememberedSetIgnoreFP) RUNTIME_STUB_NAME(RecordWriteOmitRememberedSetIgnoreFP ) RUNTIME_STUB_NAME(ToNumber) RUNTIME_STUB_NAME(WasmAllocateArray_Uninitialized ) RUNTIME_STUB_NAME(WasmAllocateArray_InitNull) RUNTIME_STUB_NAME (WasmAllocateArray_InitZero) RUNTIME_STUB_NAME(WasmArrayCopy) RUNTIME_STUB_NAME(WasmArrayCopyWithChecks) RUNTIME_STUB_NAME (WasmArrayInitFromData) RUNTIME_STUB_NAME(WasmAllocateStructWithRtt ) RUNTIME_STUB_NAME(WasmSubtypeCheck) RUNTIME_STUB_NAME(WasmOnStackReplace ) RUNTIME_STUB_NAME(WasmSuspend)}; |
2543 | #undef RUNTIME_STUB_NAME |
2544 | #undef RUNTIME_STUB_NAME_TRAP |
2545 | STATIC_ASSERT(arraysize(builtin_names) == WasmCode::kRuntimeStubCount)static_assert((sizeof(ArraySizeHelper(builtin_names))) == WasmCode ::kRuntimeStubCount, "arraysize(builtin_names) == WasmCode::kRuntimeStubCount" ); |
2546 | |
2547 | DCHECK_GT(arraysize(builtin_names), stub_id)((void) 0); |
2548 | return builtin_names[stub_id]; |
2549 | } |
2550 | |
2551 | const char* GetRuntimeStubName(WasmCode::RuntimeStubId stub_id) { |
2552 | #define RUNTIME_STUB_NAME(Name) #Name, |
2553 | #define RUNTIME_STUB_NAME_TRAP(Name) "ThrowWasm" #Name, |
2554 | constexpr const char* runtime_stub_names[] = {WASM_RUNTIME_STUB_LIST(RUNTIME_STUB_NAME_TRAP(TrapUnreachable) RUNTIME_STUB_NAME_TRAP (TrapMemOutOfBounds) RUNTIME_STUB_NAME_TRAP(TrapUnalignedAccess ) RUNTIME_STUB_NAME_TRAP(TrapDivByZero) RUNTIME_STUB_NAME_TRAP (TrapDivUnrepresentable) RUNTIME_STUB_NAME_TRAP(TrapRemByZero ) RUNTIME_STUB_NAME_TRAP(TrapFloatUnrepresentable) RUNTIME_STUB_NAME_TRAP (TrapFuncSigMismatch) RUNTIME_STUB_NAME_TRAP(TrapDataSegmentOutOfBounds ) RUNTIME_STUB_NAME_TRAP(TrapElemSegmentDropped) RUNTIME_STUB_NAME_TRAP (TrapTableOutOfBounds) RUNTIME_STUB_NAME_TRAP(TrapRethrowNull ) RUNTIME_STUB_NAME_TRAP(TrapNullDereference) RUNTIME_STUB_NAME_TRAP (TrapIllegalCast) RUNTIME_STUB_NAME_TRAP(TrapArrayOutOfBounds ) RUNTIME_STUB_NAME_TRAP(TrapArrayTooLarge) RUNTIME_STUB_NAME (WasmCompileLazy) RUNTIME_STUB_NAME(WasmTriggerTierUp) RUNTIME_STUB_NAME (WasmDebugBreak) RUNTIME_STUB_NAME(WasmInt32ToHeapNumber) RUNTIME_STUB_NAME (WasmTaggedNonSmiToInt32) RUNTIME_STUB_NAME(WasmFloat32ToNumber ) RUNTIME_STUB_NAME(WasmFloat64ToNumber) RUNTIME_STUB_NAME(WasmTaggedToFloat64 ) RUNTIME_STUB_NAME(WasmAllocateJSArray) RUNTIME_STUB_NAME(WasmAtomicNotify ) RUNTIME_STUB_NAME(WasmI32AtomicWait32) RUNTIME_STUB_NAME(WasmI32AtomicWait64 ) RUNTIME_STUB_NAME(WasmI64AtomicWait32) RUNTIME_STUB_NAME(WasmI64AtomicWait64 ) RUNTIME_STUB_NAME(WasmGetOwnProperty) RUNTIME_STUB_NAME(WasmRefFunc ) RUNTIME_STUB_NAME(WasmMemoryGrow) RUNTIME_STUB_NAME(WasmTableInit ) RUNTIME_STUB_NAME(WasmTableCopy) RUNTIME_STUB_NAME(WasmTableFill ) RUNTIME_STUB_NAME(WasmTableGrow) RUNTIME_STUB_NAME(WasmTableGet ) RUNTIME_STUB_NAME(WasmTableSet) RUNTIME_STUB_NAME(WasmStackGuard ) RUNTIME_STUB_NAME(WasmStackOverflow) RUNTIME_STUB_NAME(WasmAllocateFixedArray ) RUNTIME_STUB_NAME(WasmThrow) RUNTIME_STUB_NAME(WasmRethrow) RUNTIME_STUB_NAME(WasmRethrowExplicitContext) RUNTIME_STUB_NAME (WasmTraceEnter) RUNTIME_STUB_NAME(WasmTraceExit) RUNTIME_STUB_NAME (WasmTraceMemory) RUNTIME_STUB_NAME(BigIntToI32Pair) RUNTIME_STUB_NAME (BigIntToI64) RUNTIME_STUB_NAME(CallRefIC) RUNTIME_STUB_NAME( DoubleToI) RUNTIME_STUB_NAME(I32PairToBigInt) RUNTIME_STUB_NAME (I64ToBigInt) RUNTIME_STUB_NAME(RecordWriteEmitRememberedSetSaveFP ) RUNTIME_STUB_NAME(RecordWriteOmitRememberedSetSaveFP) RUNTIME_STUB_NAME (RecordWriteEmitRememberedSetIgnoreFP) RUNTIME_STUB_NAME(RecordWriteOmitRememberedSetIgnoreFP ) RUNTIME_STUB_NAME(ToNumber) RUNTIME_STUB_NAME(WasmAllocateArray_Uninitialized ) RUNTIME_STUB_NAME(WasmAllocateArray_InitNull) RUNTIME_STUB_NAME (WasmAllocateArray_InitZero) RUNTIME_STUB_NAME(WasmArrayCopy) RUNTIME_STUB_NAME(WasmArrayCopyWithChecks) RUNTIME_STUB_NAME (WasmArrayInitFromData) RUNTIME_STUB_NAME(WasmAllocateStructWithRtt ) RUNTIME_STUB_NAME(WasmSubtypeCheck) RUNTIME_STUB_NAME(WasmOnStackReplace ) RUNTIME_STUB_NAME(WasmSuspend) |
2555 | RUNTIME_STUB_NAME, RUNTIME_STUB_NAME_TRAP)RUNTIME_STUB_NAME_TRAP(TrapUnreachable) RUNTIME_STUB_NAME_TRAP (TrapMemOutOfBounds) RUNTIME_STUB_NAME_TRAP(TrapUnalignedAccess ) RUNTIME_STUB_NAME_TRAP(TrapDivByZero) RUNTIME_STUB_NAME_TRAP (TrapDivUnrepresentable) RUNTIME_STUB_NAME_TRAP(TrapRemByZero ) RUNTIME_STUB_NAME_TRAP(TrapFloatUnrepresentable) RUNTIME_STUB_NAME_TRAP (TrapFuncSigMismatch) RUNTIME_STUB_NAME_TRAP(TrapDataSegmentOutOfBounds ) RUNTIME_STUB_NAME_TRAP(TrapElemSegmentDropped) RUNTIME_STUB_NAME_TRAP (TrapTableOutOfBounds) RUNTIME_STUB_NAME_TRAP(TrapRethrowNull ) RUNTIME_STUB_NAME_TRAP(TrapNullDereference) RUNTIME_STUB_NAME_TRAP (TrapIllegalCast) RUNTIME_STUB_NAME_TRAP(TrapArrayOutOfBounds ) RUNTIME_STUB_NAME_TRAP(TrapArrayTooLarge) RUNTIME_STUB_NAME (WasmCompileLazy) RUNTIME_STUB_NAME(WasmTriggerTierUp) RUNTIME_STUB_NAME (WasmDebugBreak) RUNTIME_STUB_NAME(WasmInt32ToHeapNumber) RUNTIME_STUB_NAME (WasmTaggedNonSmiToInt32) RUNTIME_STUB_NAME(WasmFloat32ToNumber ) RUNTIME_STUB_NAME(WasmFloat64ToNumber) RUNTIME_STUB_NAME(WasmTaggedToFloat64 ) RUNTIME_STUB_NAME(WasmAllocateJSArray) RUNTIME_STUB_NAME(WasmAtomicNotify ) RUNTIME_STUB_NAME(WasmI32AtomicWait32) RUNTIME_STUB_NAME(WasmI32AtomicWait64 ) RUNTIME_STUB_NAME(WasmI64AtomicWait32) RUNTIME_STUB_NAME(WasmI64AtomicWait64 ) RUNTIME_STUB_NAME(WasmGetOwnProperty) RUNTIME_STUB_NAME(WasmRefFunc ) RUNTIME_STUB_NAME(WasmMemoryGrow) RUNTIME_STUB_NAME(WasmTableInit ) RUNTIME_STUB_NAME(WasmTableCopy) RUNTIME_STUB_NAME(WasmTableFill ) RUNTIME_STUB_NAME(WasmTableGrow) RUNTIME_STUB_NAME(WasmTableGet ) RUNTIME_STUB_NAME(WasmTableSet) RUNTIME_STUB_NAME(WasmStackGuard ) RUNTIME_STUB_NAME(WasmStackOverflow) RUNTIME_STUB_NAME(WasmAllocateFixedArray ) RUNTIME_STUB_NAME(WasmThrow) RUNTIME_STUB_NAME(WasmRethrow) RUNTIME_STUB_NAME(WasmRethrowExplicitContext) RUNTIME_STUB_NAME (WasmTraceEnter) RUNTIME_STUB_NAME(WasmTraceExit) RUNTIME_STUB_NAME (WasmTraceMemory) RUNTIME_STUB_NAME(BigIntToI32Pair) RUNTIME_STUB_NAME (BigIntToI64) RUNTIME_STUB_NAME(CallRefIC) RUNTIME_STUB_NAME( DoubleToI) RUNTIME_STUB_NAME(I32PairToBigInt) RUNTIME_STUB_NAME (I64ToBigInt) RUNTIME_STUB_NAME(RecordWriteEmitRememberedSetSaveFP ) RUNTIME_STUB_NAME(RecordWriteOmitRememberedSetSaveFP) RUNTIME_STUB_NAME (RecordWriteEmitRememberedSetIgnoreFP) RUNTIME_STUB_NAME(RecordWriteOmitRememberedSetIgnoreFP ) RUNTIME_STUB_NAME(ToNumber) RUNTIME_STUB_NAME(WasmAllocateArray_Uninitialized ) RUNTIME_STUB_NAME(WasmAllocateArray_InitNull) RUNTIME_STUB_NAME (WasmAllocateArray_InitZero) RUNTIME_STUB_NAME(WasmArrayCopy) RUNTIME_STUB_NAME(WasmArrayCopyWithChecks) RUNTIME_STUB_NAME (WasmArrayInitFromData) RUNTIME_STUB_NAME(WasmAllocateStructWithRtt ) RUNTIME_STUB_NAME(WasmSubtypeCheck) RUNTIME_STUB_NAME(WasmOnStackReplace ) RUNTIME_STUB_NAME(WasmSuspend) "<unknown>"}; |
2556 | #undef RUNTIME_STUB_NAME |
2557 | #undef RUNTIME_STUB_NAME_TRAP |
2558 | STATIC_ASSERT(arraysize(runtime_stub_names) ==static_assert((sizeof(ArraySizeHelper(runtime_stub_names))) == WasmCode::kRuntimeStubCount + 1, "arraysize(runtime_stub_names) == WasmCode::kRuntimeStubCount + 1" ) |
2559 | WasmCode::kRuntimeStubCount + 1)static_assert((sizeof(ArraySizeHelper(runtime_stub_names))) == WasmCode::kRuntimeStubCount + 1, "arraysize(runtime_stub_names) == WasmCode::kRuntimeStubCount + 1" ); |
2560 | |
2561 | DCHECK_GT(arraysize(runtime_stub_names), stub_id)((void) 0); |
2562 | return runtime_stub_names[stub_id]; |
2563 | } |
2564 | |
2565 | } // namespace wasm |
2566 | } // namespace internal |
2567 | } // namespace v8 |
2568 | #undef TRACE_HEAP |