File: | out/../deps/icu-small/source/i18n/rematch.cpp |
Warning: | line 2754, column 19 Dereference of null pointer |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | // © 2016 and later: Unicode, Inc. and others. | |||
2 | // License & terms of use: http://www.unicode.org/copyright.html | |||
3 | /* | |||
4 | ************************************************************************** | |||
5 | * Copyright (C) 2002-2016 International Business Machines Corporation | |||
6 | * and others. All rights reserved. | |||
7 | ************************************************************************** | |||
8 | */ | |||
9 | // | |||
10 | // file: rematch.cpp | |||
11 | // | |||
12 | // Contains the implementation of class RegexMatcher, | |||
13 | // which is one of the main API classes for the ICU regular expression package. | |||
14 | // | |||
15 | ||||
16 | #include "unicode/utypes.h" | |||
17 | #if !UCONFIG_NO_REGULAR_EXPRESSIONS0 | |||
18 | ||||
19 | #include "unicode/regex.h" | |||
20 | #include "unicode/uniset.h" | |||
21 | #include "unicode/uchar.h" | |||
22 | #include "unicode/ustring.h" | |||
23 | #include "unicode/rbbi.h" | |||
24 | #include "unicode/utf.h" | |||
25 | #include "unicode/utf16.h" | |||
26 | #include "uassert.h" | |||
27 | #include "cmemory.h" | |||
28 | #include "cstr.h" | |||
29 | #include "uvector.h" | |||
30 | #include "uvectr32.h" | |||
31 | #include "uvectr64.h" | |||
32 | #include "regeximp.h" | |||
33 | #include "regexst.h" | |||
34 | #include "regextxt.h" | |||
35 | #include "ucase.h" | |||
36 | ||||
37 | // #include <malloc.h> // Needed for heapcheck testing | |||
38 | ||||
39 | ||||
40 | U_NAMESPACE_BEGINnamespace icu_71 { | |||
41 | ||||
42 | // Default limit for the size of the back track stack, to avoid system | |||
43 | // failures causedby heap exhaustion. Units are in 32 bit words, not bytes. | |||
44 | // This value puts ICU's limits higher than most other regexp implementations, | |||
45 | // which use recursion rather than the heap, and take more storage per | |||
46 | // backtrack point. | |||
47 | // | |||
48 | static const int32_t DEFAULT_BACKTRACK_STACK_CAPACITY = 8000000; | |||
49 | ||||
50 | // Time limit counter constant. | |||
51 | // Time limits for expression evaluation are in terms of quanta of work by | |||
52 | // the engine, each of which is 10,000 state saves. | |||
53 | // This constant determines that state saves per tick number. | |||
54 | static const int32_t TIMER_INITIAL_VALUE = 10000; | |||
55 | ||||
56 | ||||
57 | // Test for any of the Unicode line terminating characters. | |||
58 | static inline UBool isLineTerminator(UChar32 c) { | |||
59 | if (c & ~(0x0a | 0x0b | 0x0c | 0x0d | 0x85 | 0x2028 | 0x2029)) { | |||
60 | return false; | |||
61 | } | |||
62 | return (c<=0x0d && c>=0x0a) || c==0x85 || c==0x2028 || c==0x2029; | |||
63 | } | |||
64 | ||||
65 | //----------------------------------------------------------------------------- | |||
66 | // | |||
67 | // Constructor and Destructor | |||
68 | // | |||
69 | //----------------------------------------------------------------------------- | |||
70 | RegexMatcher::RegexMatcher(const RegexPattern *pat) { | |||
71 | fDeferredStatus = U_ZERO_ERROR; | |||
72 | init(fDeferredStatus); | |||
73 | if (U_FAILURE(fDeferredStatus)) { | |||
74 | return; | |||
75 | } | |||
76 | if (pat==NULL__null) { | |||
77 | fDeferredStatus = U_ILLEGAL_ARGUMENT_ERROR; | |||
78 | return; | |||
79 | } | |||
80 | fPattern = pat; | |||
81 | init2(RegexStaticSets::gStaticSets->fEmptyText, fDeferredStatus); | |||
82 | } | |||
83 | ||||
84 | ||||
85 | ||||
86 | RegexMatcher::RegexMatcher(const UnicodeString ®exp, const UnicodeString &input, | |||
87 | uint32_t flags, UErrorCode &status) { | |||
88 | init(status); | |||
89 | if (U_FAILURE(status)) { | |||
90 | return; | |||
91 | } | |||
92 | UParseError pe; | |||
93 | fPatternOwned = RegexPattern::compile(regexp, flags, pe, status); | |||
94 | fPattern = fPatternOwned; | |||
95 | ||||
96 | UText inputText = UTEXT_INITIALIZER{ UTEXT_MAGIC, 0, 0, sizeof(UText), 0, 0, 0, 0, 0, 0, __null, __null, __null, __null, __null, __null, __null, __null, 0, 0 , 0, 0, 0, 0 }; | |||
97 | utext_openConstUnicodeStringutext_openConstUnicodeString_71(&inputText, &input, &status); | |||
98 | init2(&inputText, status); | |||
99 | utext_closeutext_close_71(&inputText); | |||
100 | ||||
101 | fInputUniStrMaybeMutable = TRUE1; | |||
102 | } | |||
103 | ||||
104 | ||||
105 | RegexMatcher::RegexMatcher(UText *regexp, UText *input, | |||
106 | uint32_t flags, UErrorCode &status) { | |||
107 | init(status); | |||
108 | if (U_FAILURE(status)) { | |||
109 | return; | |||
110 | } | |||
111 | UParseError pe; | |||
112 | fPatternOwned = RegexPattern::compile(regexp, flags, pe, status); | |||
113 | if (U_FAILURE(status)) { | |||
114 | return; | |||
115 | } | |||
116 | ||||
117 | fPattern = fPatternOwned; | |||
118 | init2(input, status); | |||
119 | } | |||
120 | ||||
121 | ||||
122 | RegexMatcher::RegexMatcher(const UnicodeString ®exp, | |||
123 | uint32_t flags, UErrorCode &status) { | |||
124 | init(status); | |||
125 | if (U_FAILURE(status)) { | |||
126 | return; | |||
127 | } | |||
128 | UParseError pe; | |||
129 | fPatternOwned = RegexPattern::compile(regexp, flags, pe, status); | |||
130 | if (U_FAILURE(status)) { | |||
131 | return; | |||
132 | } | |||
133 | fPattern = fPatternOwned; | |||
134 | init2(RegexStaticSets::gStaticSets->fEmptyText, status); | |||
135 | } | |||
136 | ||||
137 | RegexMatcher::RegexMatcher(UText *regexp, | |||
138 | uint32_t flags, UErrorCode &status) { | |||
139 | init(status); | |||
140 | if (U_FAILURE(status)) { | |||
141 | return; | |||
142 | } | |||
143 | UParseError pe; | |||
144 | fPatternOwned = RegexPattern::compile(regexp, flags, pe, status); | |||
145 | if (U_FAILURE(status)) { | |||
146 | return; | |||
147 | } | |||
148 | ||||
149 | fPattern = fPatternOwned; | |||
150 | init2(RegexStaticSets::gStaticSets->fEmptyText, status); | |||
151 | } | |||
152 | ||||
153 | ||||
154 | ||||
155 | ||||
156 | RegexMatcher::~RegexMatcher() { | |||
157 | delete fStack; | |||
158 | if (fData != fSmallData) { | |||
159 | uprv_freeuprv_free_71(fData); | |||
160 | fData = NULL__null; | |||
161 | } | |||
162 | if (fPatternOwned) { | |||
163 | delete fPatternOwned; | |||
164 | fPatternOwned = NULL__null; | |||
165 | fPattern = NULL__null; | |||
166 | } | |||
167 | ||||
168 | if (fInput) { | |||
169 | delete fInput; | |||
170 | } | |||
171 | if (fInputText) { | |||
172 | utext_closeutext_close_71(fInputText); | |||
173 | } | |||
174 | if (fAltInputText) { | |||
175 | utext_closeutext_close_71(fAltInputText); | |||
176 | } | |||
177 | ||||
178 | #if UCONFIG_NO_BREAK_ITERATION0==0 | |||
179 | delete fWordBreakItr; | |||
180 | delete fGCBreakItr; | |||
181 | #endif | |||
182 | } | |||
183 | ||||
184 | // | |||
185 | // init() common initialization for use by all constructors. | |||
186 | // Initialize all fields, get the object into a consistent state. | |||
187 | // This must be done even when the initial status shows an error, | |||
188 | // so that the object is initialized sufficiently well for the destructor | |||
189 | // to run safely. | |||
190 | // | |||
191 | void RegexMatcher::init(UErrorCode &status) { | |||
192 | fPattern = NULL__null; | |||
193 | fPatternOwned = NULL__null; | |||
194 | fFrameSize = 0; | |||
195 | fRegionStart = 0; | |||
196 | fRegionLimit = 0; | |||
197 | fAnchorStart = 0; | |||
198 | fAnchorLimit = 0; | |||
199 | fLookStart = 0; | |||
200 | fLookLimit = 0; | |||
201 | fActiveStart = 0; | |||
202 | fActiveLimit = 0; | |||
203 | fTransparentBounds = FALSE0; | |||
204 | fAnchoringBounds = TRUE1; | |||
205 | fMatch = FALSE0; | |||
206 | fMatchStart = 0; | |||
207 | fMatchEnd = 0; | |||
208 | fLastMatchEnd = -1; | |||
209 | fAppendPosition = 0; | |||
210 | fHitEnd = FALSE0; | |||
211 | fRequireEnd = FALSE0; | |||
212 | fStack = NULL__null; | |||
213 | fFrame = NULL__null; | |||
214 | fTimeLimit = 0; | |||
215 | fTime = 0; | |||
216 | fTickCounter = 0; | |||
217 | fStackLimit = DEFAULT_BACKTRACK_STACK_CAPACITY; | |||
218 | fCallbackFn = NULL__null; | |||
219 | fCallbackContext = NULL__null; | |||
220 | fFindProgressCallbackFn = NULL__null; | |||
221 | fFindProgressCallbackContext = NULL__null; | |||
222 | fTraceDebug = FALSE0; | |||
223 | fDeferredStatus = status; | |||
224 | fData = fSmallData; | |||
225 | fWordBreakItr = NULL__null; | |||
226 | fGCBreakItr = NULL__null; | |||
227 | ||||
228 | fStack = NULL__null; | |||
229 | fInputText = NULL__null; | |||
230 | fAltInputText = NULL__null; | |||
231 | fInput = NULL__null; | |||
232 | fInputLength = 0; | |||
233 | fInputUniStrMaybeMutable = FALSE0; | |||
234 | } | |||
235 | ||||
236 | // | |||
237 | // init2() Common initialization for use by RegexMatcher constructors, part 2. | |||
238 | // This handles the common setup to be done after the Pattern is available. | |||
239 | // | |||
240 | void RegexMatcher::init2(UText *input, UErrorCode &status) { | |||
241 | if (U_FAILURE(status)) { | |||
242 | fDeferredStatus = status; | |||
243 | return; | |||
244 | } | |||
245 | ||||
246 | if (fPattern->fDataSize > UPRV_LENGTHOF(fSmallData)(int32_t)(sizeof(fSmallData)/sizeof((fSmallData)[0]))) { | |||
247 | fData = (int64_t *)uprv_mallocuprv_malloc_71(fPattern->fDataSize * sizeof(int64_t)); | |||
248 | if (fData == NULL__null) { | |||
249 | status = fDeferredStatus = U_MEMORY_ALLOCATION_ERROR; | |||
250 | return; | |||
251 | } | |||
252 | } | |||
253 | ||||
254 | fStack = new UVector64(status); | |||
255 | if (fStack == NULL__null) { | |||
256 | status = fDeferredStatus = U_MEMORY_ALLOCATION_ERROR; | |||
257 | return; | |||
258 | } | |||
259 | ||||
260 | reset(input); | |||
261 | setStackLimit(DEFAULT_BACKTRACK_STACK_CAPACITY, status); | |||
262 | if (U_FAILURE(status)) { | |||
263 | fDeferredStatus = status; | |||
264 | return; | |||
265 | } | |||
266 | } | |||
267 | ||||
268 | ||||
269 | static const UChar BACKSLASH = 0x5c; | |||
270 | static const UChar DOLLARSIGN = 0x24; | |||
271 | static const UChar LEFTBRACKET = 0x7b; | |||
272 | static const UChar RIGHTBRACKET = 0x7d; | |||
273 | ||||
274 | //-------------------------------------------------------------------------------- | |||
275 | // | |||
276 | // appendReplacement | |||
277 | // | |||
278 | //-------------------------------------------------------------------------------- | |||
279 | RegexMatcher &RegexMatcher::appendReplacement(UnicodeString &dest, | |||
280 | const UnicodeString &replacement, | |||
281 | UErrorCode &status) { | |||
282 | UText replacementText = UTEXT_INITIALIZER{ UTEXT_MAGIC, 0, 0, sizeof(UText), 0, 0, 0, 0, 0, 0, __null, __null, __null, __null, __null, __null, __null, __null, 0, 0 , 0, 0, 0, 0 }; | |||
283 | ||||
284 | utext_openConstUnicodeStringutext_openConstUnicodeString_71(&replacementText, &replacement, &status); | |||
285 | if (U_SUCCESS(status)) { | |||
286 | UText resultText = UTEXT_INITIALIZER{ UTEXT_MAGIC, 0, 0, sizeof(UText), 0, 0, 0, 0, 0, 0, __null, __null, __null, __null, __null, __null, __null, __null, 0, 0 , 0, 0, 0, 0 }; | |||
287 | utext_openUnicodeStringutext_openUnicodeString_71(&resultText, &dest, &status); | |||
288 | ||||
289 | if (U_SUCCESS(status)) { | |||
290 | appendReplacement(&resultText, &replacementText, status); | |||
291 | utext_closeutext_close_71(&resultText); | |||
292 | } | |||
293 | utext_closeutext_close_71(&replacementText); | |||
294 | } | |||
295 | ||||
296 | return *this; | |||
297 | } | |||
298 | ||||
299 | // | |||
300 | // appendReplacement, UText mode | |||
301 | // | |||
302 | RegexMatcher &RegexMatcher::appendReplacement(UText *dest, | |||
303 | UText *replacement, | |||
304 | UErrorCode &status) { | |||
305 | if (U_FAILURE(status)) { | |||
306 | return *this; | |||
307 | } | |||
308 | if (U_FAILURE(fDeferredStatus)) { | |||
309 | status = fDeferredStatus; | |||
310 | return *this; | |||
311 | } | |||
312 | if (fMatch == FALSE0) { | |||
313 | status = U_REGEX_INVALID_STATE; | |||
314 | return *this; | |||
315 | } | |||
316 | ||||
317 | // Copy input string from the end of previous match to start of current match | |||
318 | int64_t destLen = utext_nativeLengthutext_nativeLength_71(dest); | |||
319 | if (fMatchStart > fAppendPosition) { | |||
320 | if (UTEXT_FULL_TEXT_IN_CHUNK(fInputText, fInputLength)((0==((fInputText)->chunkNativeStart))&&((fInputLength )==((fInputText)->chunkNativeLimit))&&((fInputLength )==((fInputText)->nativeIndexingLimit)))) { | |||
321 | destLen += utext_replaceutext_replace_71(dest, destLen, destLen, fInputText->chunkContents+fAppendPosition, | |||
322 | (int32_t)(fMatchStart-fAppendPosition), &status); | |||
323 | } else { | |||
324 | int32_t len16; | |||
325 | if (UTEXT_USES_U16(fInputText)(__null==((fInputText)->pFuncs->mapNativeIndexToUTF16))) { | |||
326 | len16 = (int32_t)(fMatchStart-fAppendPosition); | |||
327 | } else { | |||
328 | UErrorCode lengthStatus = U_ZERO_ERROR; | |||
329 | len16 = utext_extractutext_extract_71(fInputText, fAppendPosition, fMatchStart, NULL__null, 0, &lengthStatus); | |||
330 | } | |||
331 | UChar *inputChars = (UChar *)uprv_mallocuprv_malloc_71(sizeof(UChar)*(len16+1)); | |||
332 | if (inputChars == NULL__null) { | |||
333 | status = U_MEMORY_ALLOCATION_ERROR; | |||
334 | return *this; | |||
335 | } | |||
336 | utext_extractutext_extract_71(fInputText, fAppendPosition, fMatchStart, inputChars, len16+1, &status); | |||
337 | destLen += utext_replaceutext_replace_71(dest, destLen, destLen, inputChars, len16, &status); | |||
338 | uprv_freeuprv_free_71(inputChars); | |||
339 | } | |||
340 | } | |||
341 | fAppendPosition = fMatchEnd; | |||
342 | ||||
343 | ||||
344 | // scan the replacement text, looking for substitutions ($n) and \escapes. | |||
345 | // TODO: optimize this loop by efficiently scanning for '$' or '\', | |||
346 | // move entire ranges not containing substitutions. | |||
347 | UTEXT_SETNATIVEINDEX(replacement, 0)do { int64_t __offset = (0) - (replacement)->chunkNativeStart ; if (__offset>=0 && __offset<(int64_t)(replacement )->nativeIndexingLimit && (replacement)->chunkContents [__offset]<0xdc00) { (replacement)->chunkOffset=(int32_t )__offset; } else { utext_setNativeIndex_71((replacement), (0 )); } } while (false); | |||
348 | for (UChar32 c = UTEXT_NEXT32(replacement)((replacement)->chunkOffset < (replacement)->chunkLength && ((replacement)->chunkContents)[(replacement)-> chunkOffset]<0xd800 ? ((replacement)->chunkContents)[(( replacement)->chunkOffset)++] : utext_next32_71(replacement )); U_SUCCESS(status) && c != U_SENTINEL(-1); c = UTEXT_NEXT32(replacement)((replacement)->chunkOffset < (replacement)->chunkLength && ((replacement)->chunkContents)[(replacement)-> chunkOffset]<0xd800 ? ((replacement)->chunkContents)[(( replacement)->chunkOffset)++] : utext_next32_71(replacement ))) { | |||
349 | if (c == BACKSLASH) { | |||
350 | // Backslash Escape. Copy the following char out without further checks. | |||
351 | // Note: Surrogate pairs don't need any special handling | |||
352 | // The second half wont be a '$' or a '\', and | |||
353 | // will move to the dest normally on the next | |||
354 | // loop iteration. | |||
355 | c = UTEXT_CURRENT32(replacement)((replacement)->chunkOffset < (replacement)->chunkLength && ((replacement)->chunkContents)[(replacement)-> chunkOffset]<0xd800 ? ((replacement)->chunkContents)[(( replacement)->chunkOffset)] : utext_current32_71(replacement )); | |||
356 | if (c == U_SENTINEL(-1)) { | |||
357 | break; | |||
358 | } | |||
359 | ||||
360 | if (c==0x55/*U*/ || c==0x75/*u*/) { | |||
361 | // We have a \udddd or \Udddddddd escape sequence. | |||
362 | int32_t offset = 0; | |||
363 | struct URegexUTextUnescapeCharContext context = U_REGEX_UTEXT_UNESCAPE_CONTEXT(replacement){ (replacement), -1 }; | |||
364 | UChar32 escapedChar = u_unescapeAtu_unescapeAt_71(uregex_utext_unescape_charAturegex_utext_unescape_charAt_71, &offset, INT32_MAX(2147483647), &context); | |||
365 | if (escapedChar != (UChar32)0xFFFFFFFF) { | |||
366 | if (U_IS_BMP(escapedChar)((uint32_t)(escapedChar)<=0xffff)) { | |||
367 | UChar c16 = (UChar)escapedChar; | |||
368 | destLen += utext_replaceutext_replace_71(dest, destLen, destLen, &c16, 1, &status); | |||
369 | } else { | |||
370 | UChar surrogate[2]; | |||
371 | surrogate[0] = U16_LEAD(escapedChar)(UChar)(((escapedChar)>>10)+0xd7c0); | |||
372 | surrogate[1] = U16_TRAIL(escapedChar)(UChar)(((escapedChar)&0x3ff)|0xdc00); | |||
373 | if (U_SUCCESS(status)) { | |||
374 | destLen += utext_replaceutext_replace_71(dest, destLen, destLen, surrogate, 2, &status); | |||
375 | } | |||
376 | } | |||
377 | // TODO: Report errors for mal-formed \u escapes? | |||
378 | // As this is, the original sequence is output, which may be OK. | |||
379 | if (context.lastOffset == offset) { | |||
380 | (void)UTEXT_PREVIOUS32(replacement)((replacement)->chunkOffset > 0 && (replacement )->chunkContents[(replacement)->chunkOffset-1] < 0xd800 ? (replacement)->chunkContents[--((replacement)->chunkOffset )] : utext_previous32_71(replacement)); | |||
381 | } else if (context.lastOffset != offset-1) { | |||
382 | utext_moveIndex32utext_moveIndex32_71(replacement, offset - context.lastOffset - 1); | |||
383 | } | |||
384 | } | |||
385 | } else { | |||
386 | (void)UTEXT_NEXT32(replacement)((replacement)->chunkOffset < (replacement)->chunkLength && ((replacement)->chunkContents)[(replacement)-> chunkOffset]<0xd800 ? ((replacement)->chunkContents)[(( replacement)->chunkOffset)++] : utext_next32_71(replacement )); | |||
387 | // Plain backslash escape. Just put out the escaped character. | |||
388 | if (U_IS_BMP(c)((uint32_t)(c)<=0xffff)) { | |||
389 | UChar c16 = (UChar)c; | |||
390 | destLen += utext_replaceutext_replace_71(dest, destLen, destLen, &c16, 1, &status); | |||
391 | } else { | |||
392 | UChar surrogate[2]; | |||
393 | surrogate[0] = U16_LEAD(c)(UChar)(((c)>>10)+0xd7c0); | |||
394 | surrogate[1] = U16_TRAIL(c)(UChar)(((c)&0x3ff)|0xdc00); | |||
395 | if (U_SUCCESS(status)) { | |||
396 | destLen += utext_replaceutext_replace_71(dest, destLen, destLen, surrogate, 2, &status); | |||
397 | } | |||
398 | } | |||
399 | } | |||
400 | } else if (c != DOLLARSIGN) { | |||
401 | // Normal char, not a $. Copy it out without further checks. | |||
402 | if (U_IS_BMP(c)((uint32_t)(c)<=0xffff)) { | |||
403 | UChar c16 = (UChar)c; | |||
404 | destLen += utext_replaceutext_replace_71(dest, destLen, destLen, &c16, 1, &status); | |||
405 | } else { | |||
406 | UChar surrogate[2]; | |||
407 | surrogate[0] = U16_LEAD(c)(UChar)(((c)>>10)+0xd7c0); | |||
408 | surrogate[1] = U16_TRAIL(c)(UChar)(((c)&0x3ff)|0xdc00); | |||
409 | if (U_SUCCESS(status)) { | |||
410 | destLen += utext_replaceutext_replace_71(dest, destLen, destLen, surrogate, 2, &status); | |||
411 | } | |||
412 | } | |||
413 | } else { | |||
414 | // We've got a $. Pick up a capture group name or number if one follows. | |||
415 | // Consume digits so long as the resulting group number <= the number of | |||
416 | // number of capture groups in the pattern. | |||
417 | ||||
418 | int32_t groupNum = 0; | |||
419 | int32_t numDigits = 0; | |||
420 | UChar32 nextChar = utext_current32utext_current32_71(replacement); | |||
421 | if (nextChar == LEFTBRACKET) { | |||
422 | // Scan for a Named Capture Group, ${name}. | |||
423 | UnicodeString groupName; | |||
424 | utext_next32utext_next32_71(replacement); | |||
425 | while(U_SUCCESS(status) && nextChar != RIGHTBRACKET) { | |||
426 | nextChar = utext_next32utext_next32_71(replacement); | |||
427 | if (nextChar == U_SENTINEL(-1)) { | |||
428 | status = U_REGEX_INVALID_CAPTURE_GROUP_NAME; | |||
429 | } else if ((nextChar >= 0x41 && nextChar <= 0x5a) || // A..Z | |||
430 | (nextChar >= 0x61 && nextChar <= 0x7a) || // a..z | |||
431 | (nextChar >= 0x31 && nextChar <= 0x39)) { // 0..9 | |||
432 | groupName.append(nextChar); | |||
433 | } else if (nextChar == RIGHTBRACKET) { | |||
434 | groupNum = fPattern->fNamedCaptureMap ? uhash_getiuhash_geti_71(fPattern->fNamedCaptureMap, &groupName) : 0; | |||
435 | if (groupNum == 0) { | |||
436 | status = U_REGEX_INVALID_CAPTURE_GROUP_NAME; | |||
437 | } | |||
438 | } else { | |||
439 | // Character was something other than a name char or a closing '}' | |||
440 | status = U_REGEX_INVALID_CAPTURE_GROUP_NAME; | |||
441 | } | |||
442 | } | |||
443 | ||||
444 | } else if (u_isdigitu_isdigit_71(nextChar)) { | |||
445 | // $n Scan for a capture group number | |||
446 | int32_t numCaptureGroups = fPattern->fGroupMap->size(); | |||
447 | for (;;) { | |||
448 | nextChar = UTEXT_CURRENT32(replacement)((replacement)->chunkOffset < (replacement)->chunkLength && ((replacement)->chunkContents)[(replacement)-> chunkOffset]<0xd800 ? ((replacement)->chunkContents)[(( replacement)->chunkOffset)] : utext_current32_71(replacement )); | |||
449 | if (nextChar == U_SENTINEL(-1)) { | |||
450 | break; | |||
451 | } | |||
452 | if (u_isdigitu_isdigit_71(nextChar) == FALSE0) { | |||
453 | break; | |||
454 | } | |||
455 | int32_t nextDigitVal = u_charDigitValueu_charDigitValue_71(nextChar); | |||
456 | if (groupNum*10 + nextDigitVal > numCaptureGroups) { | |||
457 | // Don't consume the next digit if it makes the capture group number too big. | |||
458 | if (numDigits == 0) { | |||
459 | status = U_INDEX_OUTOFBOUNDS_ERROR; | |||
460 | } | |||
461 | break; | |||
462 | } | |||
463 | (void)UTEXT_NEXT32(replacement)((replacement)->chunkOffset < (replacement)->chunkLength && ((replacement)->chunkContents)[(replacement)-> chunkOffset]<0xd800 ? ((replacement)->chunkContents)[(( replacement)->chunkOffset)++] : utext_next32_71(replacement )); | |||
464 | groupNum=groupNum*10 + nextDigitVal; | |||
465 | ++numDigits; | |||
466 | } | |||
467 | } else { | |||
468 | // $ not followed by capture group name or number. | |||
469 | status = U_REGEX_INVALID_CAPTURE_GROUP_NAME; | |||
470 | } | |||
471 | ||||
472 | if (U_SUCCESS(status)) { | |||
473 | destLen += appendGroup(groupNum, dest, status); | |||
474 | } | |||
475 | } // End of $ capture group handling | |||
476 | } // End of per-character loop through the replacement string. | |||
477 | ||||
478 | return *this; | |||
479 | } | |||
480 | ||||
481 | ||||
482 | ||||
483 | //-------------------------------------------------------------------------------- | |||
484 | // | |||
485 | // appendTail Intended to be used in conjunction with appendReplacement() | |||
486 | // To the destination string, append everything following | |||
487 | // the last match position from the input string. | |||
488 | // | |||
489 | // Note: Match ranges do not affect appendTail or appendReplacement | |||
490 | // | |||
491 | //-------------------------------------------------------------------------------- | |||
492 | UnicodeString &RegexMatcher::appendTail(UnicodeString &dest) { | |||
493 | UErrorCode status = U_ZERO_ERROR; | |||
494 | UText resultText = UTEXT_INITIALIZER{ UTEXT_MAGIC, 0, 0, sizeof(UText), 0, 0, 0, 0, 0, 0, __null, __null, __null, __null, __null, __null, __null, __null, 0, 0 , 0, 0, 0, 0 }; | |||
495 | utext_openUnicodeStringutext_openUnicodeString_71(&resultText, &dest, &status); | |||
496 | ||||
497 | if (U_SUCCESS(status)) { | |||
498 | appendTail(&resultText, status); | |||
499 | utext_closeutext_close_71(&resultText); | |||
500 | } | |||
501 | ||||
502 | return dest; | |||
503 | } | |||
504 | ||||
505 | // | |||
506 | // appendTail, UText mode | |||
507 | // | |||
508 | UText *RegexMatcher::appendTail(UText *dest, UErrorCode &status) { | |||
509 | if (U_FAILURE(status)) { | |||
510 | return dest; | |||
511 | } | |||
512 | if (U_FAILURE(fDeferredStatus)) { | |||
513 | status = fDeferredStatus; | |||
514 | return dest; | |||
515 | } | |||
516 | ||||
517 | if (fInputLength > fAppendPosition) { | |||
518 | if (UTEXT_FULL_TEXT_IN_CHUNK(fInputText, fInputLength)((0==((fInputText)->chunkNativeStart))&&((fInputLength )==((fInputText)->chunkNativeLimit))&&((fInputLength )==((fInputText)->nativeIndexingLimit)))) { | |||
519 | int64_t destLen = utext_nativeLengthutext_nativeLength_71(dest); | |||
520 | utext_replaceutext_replace_71(dest, destLen, destLen, fInputText->chunkContents+fAppendPosition, | |||
521 | (int32_t)(fInputLength-fAppendPosition), &status); | |||
522 | } else { | |||
523 | int32_t len16; | |||
524 | if (UTEXT_USES_U16(fInputText)(__null==((fInputText)->pFuncs->mapNativeIndexToUTF16))) { | |||
525 | len16 = (int32_t)(fInputLength-fAppendPosition); | |||
526 | } else { | |||
527 | len16 = utext_extractutext_extract_71(fInputText, fAppendPosition, fInputLength, NULL__null, 0, &status); | |||
528 | status = U_ZERO_ERROR; // buffer overflow | |||
529 | } | |||
530 | ||||
531 | UChar *inputChars = (UChar *)uprv_mallocuprv_malloc_71(sizeof(UChar)*(len16)); | |||
532 | if (inputChars == NULL__null) { | |||
533 | fDeferredStatus = U_MEMORY_ALLOCATION_ERROR; | |||
534 | } else { | |||
535 | utext_extractutext_extract_71(fInputText, fAppendPosition, fInputLength, inputChars, len16, &status); // unterminated | |||
536 | int64_t destLen = utext_nativeLengthutext_nativeLength_71(dest); | |||
537 | utext_replaceutext_replace_71(dest, destLen, destLen, inputChars, len16, &status); | |||
538 | uprv_freeuprv_free_71(inputChars); | |||
539 | } | |||
540 | } | |||
541 | } | |||
542 | return dest; | |||
543 | } | |||
544 | ||||
545 | ||||
546 | ||||
547 | //-------------------------------------------------------------------------------- | |||
548 | // | |||
549 | // end | |||
550 | // | |||
551 | //-------------------------------------------------------------------------------- | |||
552 | int32_t RegexMatcher::end(UErrorCode &err) const { | |||
553 | return end(0, err); | |||
554 | } | |||
555 | ||||
556 | int64_t RegexMatcher::end64(UErrorCode &err) const { | |||
557 | return end64(0, err); | |||
558 | } | |||
559 | ||||
560 | int64_t RegexMatcher::end64(int32_t group, UErrorCode &err) const { | |||
561 | if (U_FAILURE(err)) { | |||
562 | return -1; | |||
563 | } | |||
564 | if (fMatch == FALSE0) { | |||
565 | err = U_REGEX_INVALID_STATE; | |||
566 | return -1; | |||
567 | } | |||
568 | if (group < 0 || group > fPattern->fGroupMap->size()) { | |||
569 | err = U_INDEX_OUTOFBOUNDS_ERROR; | |||
570 | return -1; | |||
571 | } | |||
572 | int64_t e = -1; | |||
573 | if (group == 0) { | |||
574 | e = fMatchEnd; | |||
575 | } else { | |||
576 | // Get the position within the stack frame of the variables for | |||
577 | // this capture group. | |||
578 | int32_t groupOffset = fPattern->fGroupMap->elementAti(group-1); | |||
579 | U_ASSERT(groupOffset < fPattern->fFrameSize)(void)0; | |||
580 | U_ASSERT(groupOffset >= 0)(void)0; | |||
581 | e = fFrame->fExtra[groupOffset + 1]; | |||
582 | } | |||
583 | ||||
584 | return e; | |||
585 | } | |||
586 | ||||
587 | int32_t RegexMatcher::end(int32_t group, UErrorCode &err) const { | |||
588 | return (int32_t)end64(group, err); | |||
589 | } | |||
590 | ||||
591 | //-------------------------------------------------------------------------------- | |||
592 | // | |||
593 | // findProgressInterrupt This function is called once for each advance in the target | |||
594 | // string from the find() function, and calls the user progress callback | |||
595 | // function if there is one installed. | |||
596 | // | |||
597 | // Return: TRUE if the find operation is to be terminated. | |||
598 | // FALSE if the find operation is to continue running. | |||
599 | // | |||
600 | //-------------------------------------------------------------------------------- | |||
601 | UBool RegexMatcher::findProgressInterrupt(int64_t pos, UErrorCode &status) { | |||
602 | if (fFindProgressCallbackFn && !(*fFindProgressCallbackFn)(fFindProgressCallbackContext, pos)) { | |||
603 | status = U_REGEX_STOPPED_BY_CALLER; | |||
604 | return TRUE1; | |||
605 | } | |||
606 | return FALSE0; | |||
607 | } | |||
608 | ||||
609 | //-------------------------------------------------------------------------------- | |||
610 | // | |||
611 | // find() | |||
612 | // | |||
613 | //-------------------------------------------------------------------------------- | |||
614 | UBool RegexMatcher::find() { | |||
615 | if (U_FAILURE(fDeferredStatus)) { | |||
616 | return FALSE0; | |||
617 | } | |||
618 | UErrorCode status = U_ZERO_ERROR; | |||
619 | UBool result = find(status); | |||
620 | return result; | |||
621 | } | |||
622 | ||||
623 | //-------------------------------------------------------------------------------- | |||
624 | // | |||
625 | // find() | |||
626 | // | |||
627 | //-------------------------------------------------------------------------------- | |||
628 | UBool RegexMatcher::find(UErrorCode &status) { | |||
629 | // Start at the position of the last match end. (Will be zero if the | |||
630 | // matcher has been reset.) | |||
631 | // | |||
632 | if (U_FAILURE(status)) { | |||
633 | return FALSE0; | |||
634 | } | |||
635 | if (U_FAILURE(fDeferredStatus)) { | |||
636 | status = fDeferredStatus; | |||
637 | return FALSE0; | |||
638 | } | |||
639 | ||||
640 | if (UTEXT_FULL_TEXT_IN_CHUNK(fInputText, fInputLength)((0==((fInputText)->chunkNativeStart))&&((fInputLength )==((fInputText)->chunkNativeLimit))&&((fInputLength )==((fInputText)->nativeIndexingLimit)))) { | |||
641 | return findUsingChunk(status); | |||
642 | } | |||
643 | ||||
644 | int64_t startPos = fMatchEnd; | |||
645 | if (startPos==0) { | |||
646 | startPos = fActiveStart; | |||
647 | } | |||
648 | ||||
649 | if (fMatch) { | |||
650 | // Save the position of any previous successful match. | |||
651 | fLastMatchEnd = fMatchEnd; | |||
652 | ||||
653 | if (fMatchStart == fMatchEnd) { | |||
654 | // Previous match had zero length. Move start position up one position | |||
655 | // to avoid sending find() into a loop on zero-length matches. | |||
656 | if (startPos >= fActiveLimit) { | |||
657 | fMatch = FALSE0; | |||
658 | fHitEnd = TRUE1; | |||
659 | return FALSE0; | |||
660 | } | |||
661 | UTEXT_SETNATIVEINDEX(fInputText, startPos)do { int64_t __offset = (startPos) - (fInputText)->chunkNativeStart ; if (__offset>=0 && __offset<(int64_t)(fInputText )->nativeIndexingLimit && (fInputText)->chunkContents [__offset]<0xdc00) { (fInputText)->chunkOffset=(int32_t )__offset; } else { utext_setNativeIndex_71((fInputText), (startPos )); } } while (false); | |||
662 | (void)UTEXT_NEXT32(fInputText)((fInputText)->chunkOffset < (fInputText)->chunkLength && ((fInputText)->chunkContents)[(fInputText)-> chunkOffset]<0xd800 ? ((fInputText)->chunkContents)[((fInputText )->chunkOffset)++] : utext_next32_71(fInputText)); | |||
663 | startPos = UTEXT_GETNATIVEINDEX(fInputText)((fInputText)->chunkOffset <= (fInputText)->nativeIndexingLimit ? (fInputText)->chunkNativeStart+(fInputText)->chunkOffset : (fInputText)->pFuncs->mapOffsetToNative(fInputText)); | |||
664 | } | |||
665 | } else { | |||
666 | if (fLastMatchEnd >= 0) { | |||
667 | // A previous find() failed to match. Don't try again. | |||
668 | // (without this test, a pattern with a zero-length match | |||
669 | // could match again at the end of an input string.) | |||
670 | fHitEnd = TRUE1; | |||
671 | return FALSE0; | |||
672 | } | |||
673 | } | |||
674 | ||||
675 | ||||
676 | // Compute the position in the input string beyond which a match can not begin, because | |||
677 | // the minimum length match would extend past the end of the input. | |||
678 | // Note: some patterns that cannot match anything will have fMinMatchLength==Max Int. | |||
679 | // Be aware of possible overflows if making changes here. | |||
680 | int64_t testStartLimit; | |||
681 | if (UTEXT_USES_U16(fInputText)(__null==((fInputText)->pFuncs->mapNativeIndexToUTF16))) { | |||
682 | testStartLimit = fActiveLimit - fPattern->fMinMatchLen; | |||
683 | if (startPos > testStartLimit) { | |||
684 | fMatch = FALSE0; | |||
685 | fHitEnd = TRUE1; | |||
686 | return FALSE0; | |||
687 | } | |||
688 | } else { | |||
689 | // We don't know exactly how long the minimum match length is in native characters. | |||
690 | // Treat anything > 0 as 1. | |||
691 | testStartLimit = fActiveLimit - (fPattern->fMinMatchLen > 0 ? 1 : 0); | |||
692 | } | |||
693 | ||||
694 | UChar32 c; | |||
695 | U_ASSERT(startPos >= 0)(void)0; | |||
696 | ||||
697 | switch (fPattern->fStartType) { | |||
698 | case START_NO_INFO: | |||
699 | // No optimization was found. | |||
700 | // Try a match at each input position. | |||
701 | for (;;) { | |||
702 | MatchAt(startPos, FALSE0, status); | |||
703 | if (U_FAILURE(status)) { | |||
704 | return FALSE0; | |||
705 | } | |||
706 | if (fMatch) { | |||
707 | return TRUE1; | |||
708 | } | |||
709 | if (startPos >= testStartLimit) { | |||
710 | fHitEnd = TRUE1; | |||
711 | return FALSE0; | |||
712 | } | |||
713 | UTEXT_SETNATIVEINDEX(fInputText, startPos)do { int64_t __offset = (startPos) - (fInputText)->chunkNativeStart ; if (__offset>=0 && __offset<(int64_t)(fInputText )->nativeIndexingLimit && (fInputText)->chunkContents [__offset]<0xdc00) { (fInputText)->chunkOffset=(int32_t )__offset; } else { utext_setNativeIndex_71((fInputText), (startPos )); } } while (false); | |||
714 | (void)UTEXT_NEXT32(fInputText)((fInputText)->chunkOffset < (fInputText)->chunkLength && ((fInputText)->chunkContents)[(fInputText)-> chunkOffset]<0xd800 ? ((fInputText)->chunkContents)[((fInputText )->chunkOffset)++] : utext_next32_71(fInputText)); | |||
715 | startPos = UTEXT_GETNATIVEINDEX(fInputText)((fInputText)->chunkOffset <= (fInputText)->nativeIndexingLimit ? (fInputText)->chunkNativeStart+(fInputText)->chunkOffset : (fInputText)->pFuncs->mapOffsetToNative(fInputText)); | |||
716 | // Note that it's perfectly OK for a pattern to have a zero-length | |||
717 | // match at the end of a string, so we must make sure that the loop | |||
718 | // runs with startPos == testStartLimit the last time through. | |||
719 | if (findProgressInterrupt(startPos, status)) | |||
720 | return FALSE0; | |||
721 | } | |||
722 | UPRV_UNREACHABLE_EXITabort(); | |||
723 | ||||
724 | case START_START: | |||
725 | // Matches are only possible at the start of the input string | |||
726 | // (pattern begins with ^ or \A) | |||
727 | if (startPos > fActiveStart) { | |||
728 | fMatch = FALSE0; | |||
729 | return FALSE0; | |||
730 | } | |||
731 | MatchAt(startPos, FALSE0, status); | |||
732 | if (U_FAILURE(status)) { | |||
733 | return FALSE0; | |||
734 | } | |||
735 | return fMatch; | |||
736 | ||||
737 | ||||
738 | case START_SET: | |||
739 | { | |||
740 | // Match may start on any char from a pre-computed set. | |||
741 | U_ASSERT(fPattern->fMinMatchLen > 0)(void)0; | |||
742 | UTEXT_SETNATIVEINDEX(fInputText, startPos)do { int64_t __offset = (startPos) - (fInputText)->chunkNativeStart ; if (__offset>=0 && __offset<(int64_t)(fInputText )->nativeIndexingLimit && (fInputText)->chunkContents [__offset]<0xdc00) { (fInputText)->chunkOffset=(int32_t )__offset; } else { utext_setNativeIndex_71((fInputText), (startPos )); } } while (false); | |||
743 | for (;;) { | |||
744 | int64_t pos = startPos; | |||
745 | c = UTEXT_NEXT32(fInputText)((fInputText)->chunkOffset < (fInputText)->chunkLength && ((fInputText)->chunkContents)[(fInputText)-> chunkOffset]<0xd800 ? ((fInputText)->chunkContents)[((fInputText )->chunkOffset)++] : utext_next32_71(fInputText)); | |||
746 | startPos = UTEXT_GETNATIVEINDEX(fInputText)((fInputText)->chunkOffset <= (fInputText)->nativeIndexingLimit ? (fInputText)->chunkNativeStart+(fInputText)->chunkOffset : (fInputText)->pFuncs->mapOffsetToNative(fInputText)); | |||
747 | // c will be -1 (U_SENTINEL) at end of text, in which case we | |||
748 | // skip this next block (so we don't have a negative array index) | |||
749 | // and handle end of text in the following block. | |||
750 | if (c >= 0 && ((c<256 && fPattern->fInitialChars8->contains(c)) || | |||
751 | (c>=256 && fPattern->fInitialChars->contains(c)))) { | |||
752 | MatchAt(pos, FALSE0, status); | |||
753 | if (U_FAILURE(status)) { | |||
754 | return FALSE0; | |||
755 | } | |||
756 | if (fMatch) { | |||
757 | return TRUE1; | |||
758 | } | |||
759 | UTEXT_SETNATIVEINDEX(fInputText, pos)do { int64_t __offset = (pos) - (fInputText)->chunkNativeStart ; if (__offset>=0 && __offset<(int64_t)(fInputText )->nativeIndexingLimit && (fInputText)->chunkContents [__offset]<0xdc00) { (fInputText)->chunkOffset=(int32_t )__offset; } else { utext_setNativeIndex_71((fInputText), (pos )); } } while (false); | |||
760 | } | |||
761 | if (startPos > testStartLimit) { | |||
762 | fMatch = FALSE0; | |||
763 | fHitEnd = TRUE1; | |||
764 | return FALSE0; | |||
765 | } | |||
766 | if (findProgressInterrupt(startPos, status)) | |||
767 | return FALSE0; | |||
768 | } | |||
769 | } | |||
770 | UPRV_UNREACHABLE_EXITabort(); | |||
771 | ||||
772 | case START_STRING: | |||
773 | case START_CHAR: | |||
774 | { | |||
775 | // Match starts on exactly one char. | |||
776 | U_ASSERT(fPattern->fMinMatchLen > 0)(void)0; | |||
777 | UChar32 theChar = fPattern->fInitialChar; | |||
778 | UTEXT_SETNATIVEINDEX(fInputText, startPos)do { int64_t __offset = (startPos) - (fInputText)->chunkNativeStart ; if (__offset>=0 && __offset<(int64_t)(fInputText )->nativeIndexingLimit && (fInputText)->chunkContents [__offset]<0xdc00) { (fInputText)->chunkOffset=(int32_t )__offset; } else { utext_setNativeIndex_71((fInputText), (startPos )); } } while (false); | |||
779 | for (;;) { | |||
780 | int64_t pos = startPos; | |||
781 | c = UTEXT_NEXT32(fInputText)((fInputText)->chunkOffset < (fInputText)->chunkLength && ((fInputText)->chunkContents)[(fInputText)-> chunkOffset]<0xd800 ? ((fInputText)->chunkContents)[((fInputText )->chunkOffset)++] : utext_next32_71(fInputText)); | |||
782 | startPos = UTEXT_GETNATIVEINDEX(fInputText)((fInputText)->chunkOffset <= (fInputText)->nativeIndexingLimit ? (fInputText)->chunkNativeStart+(fInputText)->chunkOffset : (fInputText)->pFuncs->mapOffsetToNative(fInputText)); | |||
783 | if (c == theChar) { | |||
784 | MatchAt(pos, FALSE0, status); | |||
785 | if (U_FAILURE(status)) { | |||
786 | return FALSE0; | |||
787 | } | |||
788 | if (fMatch) { | |||
789 | return TRUE1; | |||
790 | } | |||
791 | UTEXT_SETNATIVEINDEX(fInputText, startPos)do { int64_t __offset = (startPos) - (fInputText)->chunkNativeStart ; if (__offset>=0 && __offset<(int64_t)(fInputText )->nativeIndexingLimit && (fInputText)->chunkContents [__offset]<0xdc00) { (fInputText)->chunkOffset=(int32_t )__offset; } else { utext_setNativeIndex_71((fInputText), (startPos )); } } while (false); | |||
792 | } | |||
793 | if (startPos > testStartLimit) { | |||
794 | fMatch = FALSE0; | |||
795 | fHitEnd = TRUE1; | |||
796 | return FALSE0; | |||
797 | } | |||
798 | if (findProgressInterrupt(startPos, status)) | |||
799 | return FALSE0; | |||
800 | } | |||
801 | } | |||
802 | UPRV_UNREACHABLE_EXITabort(); | |||
803 | ||||
804 | case START_LINE: | |||
805 | { | |||
806 | UChar32 ch; | |||
807 | if (startPos == fAnchorStart) { | |||
808 | MatchAt(startPos, FALSE0, status); | |||
809 | if (U_FAILURE(status)) { | |||
810 | return FALSE0; | |||
811 | } | |||
812 | if (fMatch) { | |||
813 | return TRUE1; | |||
814 | } | |||
815 | UTEXT_SETNATIVEINDEX(fInputText, startPos)do { int64_t __offset = (startPos) - (fInputText)->chunkNativeStart ; if (__offset>=0 && __offset<(int64_t)(fInputText )->nativeIndexingLimit && (fInputText)->chunkContents [__offset]<0xdc00) { (fInputText)->chunkOffset=(int32_t )__offset; } else { utext_setNativeIndex_71((fInputText), (startPos )); } } while (false); | |||
816 | ch = UTEXT_NEXT32(fInputText)((fInputText)->chunkOffset < (fInputText)->chunkLength && ((fInputText)->chunkContents)[(fInputText)-> chunkOffset]<0xd800 ? ((fInputText)->chunkContents)[((fInputText )->chunkOffset)++] : utext_next32_71(fInputText)); | |||
817 | startPos = UTEXT_GETNATIVEINDEX(fInputText)((fInputText)->chunkOffset <= (fInputText)->nativeIndexingLimit ? (fInputText)->chunkNativeStart+(fInputText)->chunkOffset : (fInputText)->pFuncs->mapOffsetToNative(fInputText)); | |||
818 | } else { | |||
819 | UTEXT_SETNATIVEINDEX(fInputText, startPos)do { int64_t __offset = (startPos) - (fInputText)->chunkNativeStart ; if (__offset>=0 && __offset<(int64_t)(fInputText )->nativeIndexingLimit && (fInputText)->chunkContents [__offset]<0xdc00) { (fInputText)->chunkOffset=(int32_t )__offset; } else { utext_setNativeIndex_71((fInputText), (startPos )); } } while (false); | |||
820 | ch = UTEXT_PREVIOUS32(fInputText)((fInputText)->chunkOffset > 0 && (fInputText)-> chunkContents[(fInputText)->chunkOffset-1] < 0xd800 ? ( fInputText)->chunkContents[--((fInputText)->chunkOffset )] : utext_previous32_71(fInputText)); | |||
821 | UTEXT_SETNATIVEINDEX(fInputText, startPos)do { int64_t __offset = (startPos) - (fInputText)->chunkNativeStart ; if (__offset>=0 && __offset<(int64_t)(fInputText )->nativeIndexingLimit && (fInputText)->chunkContents [__offset]<0xdc00) { (fInputText)->chunkOffset=(int32_t )__offset; } else { utext_setNativeIndex_71((fInputText), (startPos )); } } while (false); | |||
822 | } | |||
823 | ||||
824 | if (fPattern->fFlags & UREGEX_UNIX_LINES) { | |||
825 | for (;;) { | |||
826 | if (ch == 0x0a) { | |||
827 | MatchAt(startPos, FALSE0, status); | |||
828 | if (U_FAILURE(status)) { | |||
829 | return FALSE0; | |||
830 | } | |||
831 | if (fMatch) { | |||
832 | return TRUE1; | |||
833 | } | |||
834 | UTEXT_SETNATIVEINDEX(fInputText, startPos)do { int64_t __offset = (startPos) - (fInputText)->chunkNativeStart ; if (__offset>=0 && __offset<(int64_t)(fInputText )->nativeIndexingLimit && (fInputText)->chunkContents [__offset]<0xdc00) { (fInputText)->chunkOffset=(int32_t )__offset; } else { utext_setNativeIndex_71((fInputText), (startPos )); } } while (false); | |||
835 | } | |||
836 | if (startPos >= testStartLimit) { | |||
837 | fMatch = FALSE0; | |||
838 | fHitEnd = TRUE1; | |||
839 | return FALSE0; | |||
840 | } | |||
841 | ch = UTEXT_NEXT32(fInputText)((fInputText)->chunkOffset < (fInputText)->chunkLength && ((fInputText)->chunkContents)[(fInputText)-> chunkOffset]<0xd800 ? ((fInputText)->chunkContents)[((fInputText )->chunkOffset)++] : utext_next32_71(fInputText)); | |||
842 | startPos = UTEXT_GETNATIVEINDEX(fInputText)((fInputText)->chunkOffset <= (fInputText)->nativeIndexingLimit ? (fInputText)->chunkNativeStart+(fInputText)->chunkOffset : (fInputText)->pFuncs->mapOffsetToNative(fInputText)); | |||
843 | // Note that it's perfectly OK for a pattern to have a zero-length | |||
844 | // match at the end of a string, so we must make sure that the loop | |||
845 | // runs with startPos == testStartLimit the last time through. | |||
846 | if (findProgressInterrupt(startPos, status)) | |||
847 | return FALSE0; | |||
848 | } | |||
849 | } else { | |||
850 | for (;;) { | |||
851 | if (isLineTerminator(ch)) { | |||
852 | if (ch == 0x0d && startPos < fActiveLimit && UTEXT_CURRENT32(fInputText)((fInputText)->chunkOffset < (fInputText)->chunkLength && ((fInputText)->chunkContents)[(fInputText)-> chunkOffset]<0xd800 ? ((fInputText)->chunkContents)[((fInputText )->chunkOffset)] : utext_current32_71(fInputText)) == 0x0a) { | |||
853 | (void)UTEXT_NEXT32(fInputText)((fInputText)->chunkOffset < (fInputText)->chunkLength && ((fInputText)->chunkContents)[(fInputText)-> chunkOffset]<0xd800 ? ((fInputText)->chunkContents)[((fInputText )->chunkOffset)++] : utext_next32_71(fInputText)); | |||
854 | startPos = UTEXT_GETNATIVEINDEX(fInputText)((fInputText)->chunkOffset <= (fInputText)->nativeIndexingLimit ? (fInputText)->chunkNativeStart+(fInputText)->chunkOffset : (fInputText)->pFuncs->mapOffsetToNative(fInputText)); | |||
855 | } | |||
856 | MatchAt(startPos, FALSE0, status); | |||
857 | if (U_FAILURE(status)) { | |||
858 | return FALSE0; | |||
859 | } | |||
860 | if (fMatch) { | |||
861 | return TRUE1; | |||
862 | } | |||
863 | UTEXT_SETNATIVEINDEX(fInputText, startPos)do { int64_t __offset = (startPos) - (fInputText)->chunkNativeStart ; if (__offset>=0 && __offset<(int64_t)(fInputText )->nativeIndexingLimit && (fInputText)->chunkContents [__offset]<0xdc00) { (fInputText)->chunkOffset=(int32_t )__offset; } else { utext_setNativeIndex_71((fInputText), (startPos )); } } while (false); | |||
864 | } | |||
865 | if (startPos >= testStartLimit) { | |||
866 | fMatch = FALSE0; | |||
867 | fHitEnd = TRUE1; | |||
868 | return FALSE0; | |||
869 | } | |||
870 | ch = UTEXT_NEXT32(fInputText)((fInputText)->chunkOffset < (fInputText)->chunkLength && ((fInputText)->chunkContents)[(fInputText)-> chunkOffset]<0xd800 ? ((fInputText)->chunkContents)[((fInputText )->chunkOffset)++] : utext_next32_71(fInputText)); | |||
871 | startPos = UTEXT_GETNATIVEINDEX(fInputText)((fInputText)->chunkOffset <= (fInputText)->nativeIndexingLimit ? (fInputText)->chunkNativeStart+(fInputText)->chunkOffset : (fInputText)->pFuncs->mapOffsetToNative(fInputText)); | |||
872 | // Note that it's perfectly OK for a pattern to have a zero-length | |||
873 | // match at the end of a string, so we must make sure that the loop | |||
874 | // runs with startPos == testStartLimit the last time through. | |||
875 | if (findProgressInterrupt(startPos, status)) | |||
876 | return FALSE0; | |||
877 | } | |||
878 | } | |||
879 | } | |||
880 | ||||
881 | default: | |||
882 | UPRV_UNREACHABLE_ASSERT(void)0; | |||
883 | // Unknown value in fPattern->fStartType, should be from StartOfMatch enum. But | |||
884 | // we have reports of this in production code, don't use UPRV_UNREACHABLE_EXIT. | |||
885 | // See ICU-21669. | |||
886 | status = U_INTERNAL_PROGRAM_ERROR; | |||
887 | return FALSE0; | |||
888 | } | |||
889 | ||||
890 | UPRV_UNREACHABLE_EXITabort(); | |||
891 | } | |||
892 | ||||
893 | ||||
894 | ||||
895 | UBool RegexMatcher::find(int64_t start, UErrorCode &status) { | |||
896 | if (U_FAILURE(status)) { | |||
897 | return FALSE0; | |||
898 | } | |||
899 | if (U_FAILURE(fDeferredStatus)) { | |||
900 | status = fDeferredStatus; | |||
901 | return FALSE0; | |||
902 | } | |||
903 | this->reset(); // Note: Reset() is specified by Java Matcher documentation. | |||
904 | // This will reset the region to be the full input length. | |||
905 | if (start < 0) { | |||
906 | status = U_INDEX_OUTOFBOUNDS_ERROR; | |||
907 | return FALSE0; | |||
908 | } | |||
909 | ||||
910 | int64_t nativeStart = start; | |||
911 | if (nativeStart < fActiveStart || nativeStart > fActiveLimit) { | |||
912 | status = U_INDEX_OUTOFBOUNDS_ERROR; | |||
913 | return FALSE0; | |||
914 | } | |||
915 | fMatchEnd = nativeStart; | |||
916 | return find(status); | |||
917 | } | |||
918 | ||||
919 | ||||
920 | //-------------------------------------------------------------------------------- | |||
921 | // | |||
922 | // findUsingChunk() -- like find(), but with the advance knowledge that the | |||
923 | // entire string is available in the UText's chunk buffer. | |||
924 | // | |||
925 | //-------------------------------------------------------------------------------- | |||
926 | UBool RegexMatcher::findUsingChunk(UErrorCode &status) { | |||
927 | // Start at the position of the last match end. (Will be zero if the | |||
928 | // matcher has been reset. | |||
929 | // | |||
930 | ||||
931 | int32_t startPos = (int32_t)fMatchEnd; | |||
932 | if (startPos==0) { | |||
933 | startPos = (int32_t)fActiveStart; | |||
934 | } | |||
935 | ||||
936 | const UChar *inputBuf = fInputText->chunkContents; | |||
937 | ||||
938 | if (fMatch) { | |||
939 | // Save the position of any previous successful match. | |||
940 | fLastMatchEnd = fMatchEnd; | |||
941 | ||||
942 | if (fMatchStart == fMatchEnd) { | |||
943 | // Previous match had zero length. Move start position up one position | |||
944 | // to avoid sending find() into a loop on zero-length matches. | |||
945 | if (startPos >= fActiveLimit) { | |||
946 | fMatch = FALSE0; | |||
947 | fHitEnd = TRUE1; | |||
948 | return FALSE0; | |||
949 | } | |||
950 | U16_FWD_1(inputBuf, startPos, fInputLength)do { if(((((inputBuf)[(startPos)++])&0xfffffc00)==0xd800) && (startPos)!=(fInputLength) && ((((inputBuf )[startPos])&0xfffffc00)==0xdc00)) { ++(startPos); } } while (false); | |||
951 | } | |||
952 | } else { | |||
953 | if (fLastMatchEnd >= 0) { | |||
954 | // A previous find() failed to match. Don't try again. | |||
955 | // (without this test, a pattern with a zero-length match | |||
956 | // could match again at the end of an input string.) | |||
957 | fHitEnd = TRUE1; | |||
958 | return FALSE0; | |||
959 | } | |||
960 | } | |||
961 | ||||
962 | ||||
963 | // Compute the position in the input string beyond which a match can not begin, because | |||
964 | // the minimum length match would extend past the end of the input. | |||
965 | // Note: some patterns that cannot match anything will have fMinMatchLength==Max Int. | |||
966 | // Be aware of possible overflows if making changes here. | |||
967 | // Note: a match can begin at inputBuf + testLen; it is an inclusive limit. | |||
968 | int32_t testLen = (int32_t)(fActiveLimit - fPattern->fMinMatchLen); | |||
969 | if (startPos > testLen) { | |||
970 | fMatch = FALSE0; | |||
971 | fHitEnd = TRUE1; | |||
972 | return FALSE0; | |||
973 | } | |||
974 | ||||
975 | UChar32 c; | |||
976 | U_ASSERT(startPos >= 0)(void)0; | |||
977 | ||||
978 | switch (fPattern->fStartType) { | |||
979 | case START_NO_INFO: | |||
980 | // No optimization was found. | |||
981 | // Try a match at each input position. | |||
982 | for (;;) { | |||
983 | MatchChunkAt(startPos, FALSE0, status); | |||
984 | if (U_FAILURE(status)) { | |||
985 | return FALSE0; | |||
986 | } | |||
987 | if (fMatch) { | |||
988 | return TRUE1; | |||
989 | } | |||
990 | if (startPos >= testLen) { | |||
991 | fHitEnd = TRUE1; | |||
992 | return FALSE0; | |||
993 | } | |||
994 | U16_FWD_1(inputBuf, startPos, fActiveLimit)do { if(((((inputBuf)[(startPos)++])&0xfffffc00)==0xd800) && (startPos)!=(fActiveLimit) && ((((inputBuf )[startPos])&0xfffffc00)==0xdc00)) { ++(startPos); } } while (false); | |||
995 | // Note that it's perfectly OK for a pattern to have a zero-length | |||
996 | // match at the end of a string, so we must make sure that the loop | |||
997 | // runs with startPos == testLen the last time through. | |||
998 | if (findProgressInterrupt(startPos, status)) | |||
999 | return FALSE0; | |||
1000 | } | |||
1001 | UPRV_UNREACHABLE_EXITabort(); | |||
1002 | ||||
1003 | case START_START: | |||
1004 | // Matches are only possible at the start of the input string | |||
1005 | // (pattern begins with ^ or \A) | |||
1006 | if (startPos > fActiveStart) { | |||
1007 | fMatch = FALSE0; | |||
1008 | return FALSE0; | |||
1009 | } | |||
1010 | MatchChunkAt(startPos, FALSE0, status); | |||
1011 | if (U_FAILURE(status)) { | |||
1012 | return FALSE0; | |||
1013 | } | |||
1014 | return fMatch; | |||
1015 | ||||
1016 | ||||
1017 | case START_SET: | |||
1018 | { | |||
1019 | // Match may start on any char from a pre-computed set. | |||
1020 | U_ASSERT(fPattern->fMinMatchLen > 0)(void)0; | |||
1021 | for (;;) { | |||
1022 | int32_t pos = startPos; | |||
1023 | U16_NEXT(inputBuf, startPos, fActiveLimit, c)do { (c)=(inputBuf)[(startPos)++]; if((((c)&0xfffffc00)== 0xd800)) { uint16_t __c2; if((startPos)!=(fActiveLimit) && (((__c2=(inputBuf)[(startPos)])&0xfffffc00)==0xdc00)) { ++ (startPos); (c)=(((UChar32)((c))<<10UL)+(UChar32)(__c2) -((0xd800<<10UL)+0xdc00-0x10000)); } } } while (false); // like c = inputBuf[startPos++]; | |||
1024 | if ((c<256 && fPattern->fInitialChars8->contains(c)) || | |||
1025 | (c>=256 && fPattern->fInitialChars->contains(c))) { | |||
1026 | MatchChunkAt(pos, FALSE0, status); | |||
1027 | if (U_FAILURE(status)) { | |||
1028 | return FALSE0; | |||
1029 | } | |||
1030 | if (fMatch) { | |||
1031 | return TRUE1; | |||
1032 | } | |||
1033 | } | |||
1034 | if (startPos > testLen) { | |||
1035 | fMatch = FALSE0; | |||
1036 | fHitEnd = TRUE1; | |||
1037 | return FALSE0; | |||
1038 | } | |||
1039 | if (findProgressInterrupt(startPos, status)) | |||
1040 | return FALSE0; | |||
1041 | } | |||
1042 | } | |||
1043 | UPRV_UNREACHABLE_EXITabort(); | |||
1044 | ||||
1045 | case START_STRING: | |||
1046 | case START_CHAR: | |||
1047 | { | |||
1048 | // Match starts on exactly one char. | |||
1049 | U_ASSERT(fPattern->fMinMatchLen > 0)(void)0; | |||
1050 | UChar32 theChar = fPattern->fInitialChar; | |||
1051 | for (;;) { | |||
1052 | int32_t pos = startPos; | |||
1053 | U16_NEXT(inputBuf, startPos, fActiveLimit, c)do { (c)=(inputBuf)[(startPos)++]; if((((c)&0xfffffc00)== 0xd800)) { uint16_t __c2; if((startPos)!=(fActiveLimit) && (((__c2=(inputBuf)[(startPos)])&0xfffffc00)==0xdc00)) { ++ (startPos); (c)=(((UChar32)((c))<<10UL)+(UChar32)(__c2) -((0xd800<<10UL)+0xdc00-0x10000)); } } } while (false); // like c = inputBuf[startPos++]; | |||
1054 | if (c == theChar) { | |||
1055 | MatchChunkAt(pos, FALSE0, status); | |||
1056 | if (U_FAILURE(status)) { | |||
1057 | return FALSE0; | |||
1058 | } | |||
1059 | if (fMatch) { | |||
1060 | return TRUE1; | |||
1061 | } | |||
1062 | } | |||
1063 | if (startPos > testLen) { | |||
1064 | fMatch = FALSE0; | |||
1065 | fHitEnd = TRUE1; | |||
1066 | return FALSE0; | |||
1067 | } | |||
1068 | if (findProgressInterrupt(startPos, status)) | |||
1069 | return FALSE0; | |||
1070 | } | |||
1071 | } | |||
1072 | UPRV_UNREACHABLE_EXITabort(); | |||
1073 | ||||
1074 | case START_LINE: | |||
1075 | { | |||
1076 | UChar32 ch; | |||
1077 | if (startPos == fAnchorStart) { | |||
1078 | MatchChunkAt(startPos, FALSE0, status); | |||
1079 | if (U_FAILURE(status)) { | |||
1080 | return FALSE0; | |||
1081 | } | |||
1082 | if (fMatch) { | |||
1083 | return TRUE1; | |||
1084 | } | |||
1085 | U16_FWD_1(inputBuf, startPos, fActiveLimit)do { if(((((inputBuf)[(startPos)++])&0xfffffc00)==0xd800) && (startPos)!=(fActiveLimit) && ((((inputBuf )[startPos])&0xfffffc00)==0xdc00)) { ++(startPos); } } while (false); | |||
1086 | } | |||
1087 | ||||
1088 | if (fPattern->fFlags & UREGEX_UNIX_LINES) { | |||
1089 | for (;;) { | |||
1090 | ch = inputBuf[startPos-1]; | |||
1091 | if (ch == 0x0a) { | |||
1092 | MatchChunkAt(startPos, FALSE0, status); | |||
1093 | if (U_FAILURE(status)) { | |||
1094 | return FALSE0; | |||
1095 | } | |||
1096 | if (fMatch) { | |||
1097 | return TRUE1; | |||
1098 | } | |||
1099 | } | |||
1100 | if (startPos >= testLen) { | |||
1101 | fMatch = FALSE0; | |||
1102 | fHitEnd = TRUE1; | |||
1103 | return FALSE0; | |||
1104 | } | |||
1105 | U16_FWD_1(inputBuf, startPos, fActiveLimit)do { if(((((inputBuf)[(startPos)++])&0xfffffc00)==0xd800) && (startPos)!=(fActiveLimit) && ((((inputBuf )[startPos])&0xfffffc00)==0xdc00)) { ++(startPos); } } while (false); | |||
1106 | // Note that it's perfectly OK for a pattern to have a zero-length | |||
1107 | // match at the end of a string, so we must make sure that the loop | |||
1108 | // runs with startPos == testLen the last time through. | |||
1109 | if (findProgressInterrupt(startPos, status)) | |||
1110 | return FALSE0; | |||
1111 | } | |||
1112 | } else { | |||
1113 | for (;;) { | |||
1114 | ch = inputBuf[startPos-1]; | |||
1115 | if (isLineTerminator(ch)) { | |||
1116 | if (ch == 0x0d && startPos < fActiveLimit && inputBuf[startPos] == 0x0a) { | |||
1117 | startPos++; | |||
1118 | } | |||
1119 | MatchChunkAt(startPos, FALSE0, status); | |||
1120 | if (U_FAILURE(status)) { | |||
1121 | return FALSE0; | |||
1122 | } | |||
1123 | if (fMatch) { | |||
1124 | return TRUE1; | |||
1125 | } | |||
1126 | } | |||
1127 | if (startPos >= testLen) { | |||
1128 | fMatch = FALSE0; | |||
1129 | fHitEnd = TRUE1; | |||
1130 | return FALSE0; | |||
1131 | } | |||
1132 | U16_FWD_1(inputBuf, startPos, fActiveLimit)do { if(((((inputBuf)[(startPos)++])&0xfffffc00)==0xd800) && (startPos)!=(fActiveLimit) && ((((inputBuf )[startPos])&0xfffffc00)==0xdc00)) { ++(startPos); } } while (false); | |||
1133 | // Note that it's perfectly OK for a pattern to have a zero-length | |||
1134 | // match at the end of a string, so we must make sure that the loop | |||
1135 | // runs with startPos == testLen the last time through. | |||
1136 | if (findProgressInterrupt(startPos, status)) | |||
1137 | return FALSE0; | |||
1138 | } | |||
1139 | } | |||
1140 | } | |||
1141 | ||||
1142 | default: | |||
1143 | UPRV_UNREACHABLE_ASSERT(void)0; | |||
1144 | // Unknown value in fPattern->fStartType, should be from StartOfMatch enum. But | |||
1145 | // we have reports of this in production code, don't use UPRV_UNREACHABLE_EXIT. | |||
1146 | // See ICU-21669. | |||
1147 | status = U_INTERNAL_PROGRAM_ERROR; | |||
1148 | return FALSE0; | |||
1149 | } | |||
1150 | ||||
1151 | UPRV_UNREACHABLE_EXITabort(); | |||
1152 | } | |||
1153 | ||||
1154 | ||||
1155 | ||||
1156 | //-------------------------------------------------------------------------------- | |||
1157 | // | |||
1158 | // group() | |||
1159 | // | |||
1160 | //-------------------------------------------------------------------------------- | |||
1161 | UnicodeString RegexMatcher::group(UErrorCode &status) const { | |||
1162 | return group(0, status); | |||
1163 | } | |||
1164 | ||||
1165 | // Return immutable shallow clone | |||
1166 | UText *RegexMatcher::group(UText *dest, int64_t &group_len, UErrorCode &status) const { | |||
1167 | return group(0, dest, group_len, status); | |||
1168 | } | |||
1169 | ||||
1170 | // Return immutable shallow clone | |||
1171 | UText *RegexMatcher::group(int32_t groupNum, UText *dest, int64_t &group_len, UErrorCode &status) const { | |||
1172 | group_len = 0; | |||
1173 | if (U_FAILURE(status)) { | |||
1174 | return dest; | |||
1175 | } | |||
1176 | if (U_FAILURE(fDeferredStatus)) { | |||
1177 | status = fDeferredStatus; | |||
1178 | } else if (fMatch == FALSE0) { | |||
1179 | status = U_REGEX_INVALID_STATE; | |||
1180 | } else if (groupNum < 0 || groupNum > fPattern->fGroupMap->size()) { | |||
1181 | status = U_INDEX_OUTOFBOUNDS_ERROR; | |||
1182 | } | |||
1183 | ||||
1184 | if (U_FAILURE(status)) { | |||
1185 | return dest; | |||
1186 | } | |||
1187 | ||||
1188 | int64_t s, e; | |||
1189 | if (groupNum == 0) { | |||
1190 | s = fMatchStart; | |||
1191 | e = fMatchEnd; | |||
1192 | } else { | |||
1193 | int32_t groupOffset = fPattern->fGroupMap->elementAti(groupNum-1); | |||
1194 | U_ASSERT(groupOffset < fPattern->fFrameSize)(void)0; | |||
1195 | U_ASSERT(groupOffset >= 0)(void)0; | |||
1196 | s = fFrame->fExtra[groupOffset]; | |||
1197 | e = fFrame->fExtra[groupOffset+1]; | |||
1198 | } | |||
1199 | ||||
1200 | if (s < 0) { | |||
1201 | // A capture group wasn't part of the match | |||
1202 | return utext_cloneutext_clone_71(dest, fInputText, FALSE0, TRUE1, &status); | |||
1203 | } | |||
1204 | U_ASSERT(s <= e)(void)0; | |||
1205 | group_len = e - s; | |||
1206 | ||||
1207 | dest = utext_cloneutext_clone_71(dest, fInputText, FALSE0, TRUE1, &status); | |||
1208 | if (dest) | |||
1209 | UTEXT_SETNATIVEINDEX(dest, s)do { int64_t __offset = (s) - (dest)->chunkNativeStart; if (__offset>=0 && __offset<(int64_t)(dest)->nativeIndexingLimit && (dest)->chunkContents[__offset]<0xdc00) { ( dest)->chunkOffset=(int32_t)__offset; } else { utext_setNativeIndex_71 ((dest), (s)); } } while (false); | |||
1210 | return dest; | |||
1211 | } | |||
1212 | ||||
1213 | UnicodeString RegexMatcher::group(int32_t groupNum, UErrorCode &status) const { | |||
1214 | UnicodeString result; | |||
1215 | int64_t groupStart = start64(groupNum, status); | |||
1216 | int64_t groupEnd = end64(groupNum, status); | |||
1217 | if (U_FAILURE(status) || groupStart == -1 || groupStart == groupEnd) { | |||
1218 | return result; | |||
1219 | } | |||
1220 | ||||
1221 | // Get the group length using a utext_extract preflight. | |||
1222 | // UText is actually pretty efficient at this when underlying encoding is UTF-16. | |||
1223 | int32_t length = utext_extractutext_extract_71(fInputText, groupStart, groupEnd, NULL__null, 0, &status); | |||
1224 | if (status != U_BUFFER_OVERFLOW_ERROR) { | |||
1225 | return result; | |||
1226 | } | |||
1227 | ||||
1228 | status = U_ZERO_ERROR; | |||
1229 | UChar *buf = result.getBuffer(length); | |||
1230 | if (buf == NULL__null) { | |||
1231 | status = U_MEMORY_ALLOCATION_ERROR; | |||
1232 | } else { | |||
1233 | int32_t extractLength = utext_extractutext_extract_71(fInputText, groupStart, groupEnd, buf, length, &status); | |||
1234 | result.releaseBuffer(extractLength); | |||
1235 | U_ASSERT(length == extractLength)(void)0; | |||
1236 | } | |||
1237 | return result; | |||
1238 | } | |||
1239 | ||||
1240 | ||||
1241 | //-------------------------------------------------------------------------------- | |||
1242 | // | |||
1243 | // appendGroup() -- currently internal only, appends a group to a UText rather | |||
1244 | // than replacing its contents | |||
1245 | // | |||
1246 | //-------------------------------------------------------------------------------- | |||
1247 | ||||
1248 | int64_t RegexMatcher::appendGroup(int32_t groupNum, UText *dest, UErrorCode &status) const { | |||
1249 | if (U_FAILURE(status)) { | |||
1250 | return 0; | |||
1251 | } | |||
1252 | if (U_FAILURE(fDeferredStatus)) { | |||
1253 | status = fDeferredStatus; | |||
1254 | return 0; | |||
1255 | } | |||
1256 | int64_t destLen = utext_nativeLengthutext_nativeLength_71(dest); | |||
1257 | ||||
1258 | if (fMatch == FALSE0) { | |||
1259 | status = U_REGEX_INVALID_STATE; | |||
1260 | return utext_replaceutext_replace_71(dest, destLen, destLen, NULL__null, 0, &status); | |||
1261 | } | |||
1262 | if (groupNum < 0 || groupNum > fPattern->fGroupMap->size()) { | |||
1263 | status = U_INDEX_OUTOFBOUNDS_ERROR; | |||
1264 | return utext_replaceutext_replace_71(dest, destLen, destLen, NULL__null, 0, &status); | |||
1265 | } | |||
1266 | ||||
1267 | int64_t s, e; | |||
1268 | if (groupNum == 0) { | |||
1269 | s = fMatchStart; | |||
1270 | e = fMatchEnd; | |||
1271 | } else { | |||
1272 | int32_t groupOffset = fPattern->fGroupMap->elementAti(groupNum-1); | |||
1273 | U_ASSERT(groupOffset < fPattern->fFrameSize)(void)0; | |||
1274 | U_ASSERT(groupOffset >= 0)(void)0; | |||
1275 | s = fFrame->fExtra[groupOffset]; | |||
1276 | e = fFrame->fExtra[groupOffset+1]; | |||
1277 | } | |||
1278 | ||||
1279 | if (s < 0) { | |||
1280 | // A capture group wasn't part of the match | |||
1281 | return utext_replaceutext_replace_71(dest, destLen, destLen, NULL__null, 0, &status); | |||
1282 | } | |||
1283 | U_ASSERT(s <= e)(void)0; | |||
1284 | ||||
1285 | int64_t deltaLen; | |||
1286 | if (UTEXT_FULL_TEXT_IN_CHUNK(fInputText, fInputLength)((0==((fInputText)->chunkNativeStart))&&((fInputLength )==((fInputText)->chunkNativeLimit))&&((fInputLength )==((fInputText)->nativeIndexingLimit)))) { | |||
1287 | U_ASSERT(e <= fInputLength)(void)0; | |||
1288 | deltaLen = utext_replaceutext_replace_71(dest, destLen, destLen, fInputText->chunkContents+s, (int32_t)(e-s), &status); | |||
1289 | } else { | |||
1290 | int32_t len16; | |||
1291 | if (UTEXT_USES_U16(fInputText)(__null==((fInputText)->pFuncs->mapNativeIndexToUTF16))) { | |||
1292 | len16 = (int32_t)(e-s); | |||
1293 | } else { | |||
1294 | UErrorCode lengthStatus = U_ZERO_ERROR; | |||
1295 | len16 = utext_extractutext_extract_71(fInputText, s, e, NULL__null, 0, &lengthStatus); | |||
1296 | } | |||
1297 | UChar *groupChars = (UChar *)uprv_mallocuprv_malloc_71(sizeof(UChar)*(len16+1)); | |||
1298 | if (groupChars == NULL__null) { | |||
1299 | status = U_MEMORY_ALLOCATION_ERROR; | |||
1300 | return 0; | |||
1301 | } | |||
1302 | utext_extractutext_extract_71(fInputText, s, e, groupChars, len16+1, &status); | |||
1303 | ||||
1304 | deltaLen = utext_replaceutext_replace_71(dest, destLen, destLen, groupChars, len16, &status); | |||
1305 | uprv_freeuprv_free_71(groupChars); | |||
1306 | } | |||
1307 | return deltaLen; | |||
1308 | } | |||
1309 | ||||
1310 | ||||
1311 | ||||
1312 | //-------------------------------------------------------------------------------- | |||
1313 | // | |||
1314 | // groupCount() | |||
1315 | // | |||
1316 | //-------------------------------------------------------------------------------- | |||
1317 | int32_t RegexMatcher::groupCount() const { | |||
1318 | return fPattern->fGroupMap->size(); | |||
1319 | } | |||
1320 | ||||
1321 | //-------------------------------------------------------------------------------- | |||
1322 | // | |||
1323 | // hasAnchoringBounds() | |||
1324 | // | |||
1325 | //-------------------------------------------------------------------------------- | |||
1326 | UBool RegexMatcher::hasAnchoringBounds() const { | |||
1327 | return fAnchoringBounds; | |||
1328 | } | |||
1329 | ||||
1330 | ||||
1331 | //-------------------------------------------------------------------------------- | |||
1332 | // | |||
1333 | // hasTransparentBounds() | |||
1334 | // | |||
1335 | //-------------------------------------------------------------------------------- | |||
1336 | UBool RegexMatcher::hasTransparentBounds() const { | |||
1337 | return fTransparentBounds; | |||
1338 | } | |||
1339 | ||||
1340 | ||||
1341 | ||||
1342 | //-------------------------------------------------------------------------------- | |||
1343 | // | |||
1344 | // hitEnd() | |||
1345 | // | |||
1346 | //-------------------------------------------------------------------------------- | |||
1347 | UBool RegexMatcher::hitEnd() const { | |||
1348 | return fHitEnd; | |||
1349 | } | |||
1350 | ||||
1351 | ||||
1352 | //-------------------------------------------------------------------------------- | |||
1353 | // | |||
1354 | // input() | |||
1355 | // | |||
1356 | //-------------------------------------------------------------------------------- | |||
1357 | const UnicodeString &RegexMatcher::input() const { | |||
1358 | if (!fInput) { | |||
1359 | UErrorCode status = U_ZERO_ERROR; | |||
1360 | int32_t len16; | |||
1361 | if (UTEXT_USES_U16(fInputText)(__null==((fInputText)->pFuncs->mapNativeIndexToUTF16))) { | |||
1362 | len16 = (int32_t)fInputLength; | |||
1363 | } else { | |||
1364 | len16 = utext_extractutext_extract_71(fInputText, 0, fInputLength, NULL__null, 0, &status); | |||
1365 | status = U_ZERO_ERROR; // overflow, length status | |||
1366 | } | |||
1367 | UnicodeString *result = new UnicodeString(len16, 0, 0); | |||
1368 | ||||
1369 | UChar *inputChars = result->getBuffer(len16); | |||
1370 | utext_extractutext_extract_71(fInputText, 0, fInputLength, inputChars, len16, &status); // unterminated warning | |||
1371 | result->releaseBuffer(len16); | |||
1372 | ||||
1373 | (*(const UnicodeString **)&fInput) = result; // pointer assignment, rather than operator= | |||
1374 | } | |||
1375 | ||||
1376 | return *fInput; | |||
1377 | } | |||
1378 | ||||
1379 | //-------------------------------------------------------------------------------- | |||
1380 | // | |||
1381 | // inputText() | |||
1382 | // | |||
1383 | //-------------------------------------------------------------------------------- | |||
1384 | UText *RegexMatcher::inputText() const { | |||
1385 | return fInputText; | |||
1386 | } | |||
1387 | ||||
1388 | ||||
1389 | //-------------------------------------------------------------------------------- | |||
1390 | // | |||
1391 | // getInput() -- like inputText(), but makes a clone or copies into another UText | |||
1392 | // | |||
1393 | //-------------------------------------------------------------------------------- | |||
1394 | UText *RegexMatcher::getInput (UText *dest, UErrorCode &status) const { | |||
1395 | if (U_FAILURE(status)) { | |||
1396 | return dest; | |||
1397 | } | |||
1398 | if (U_FAILURE(fDeferredStatus)) { | |||
1399 | status = fDeferredStatus; | |||
1400 | return dest; | |||
1401 | } | |||
1402 | ||||
1403 | if (dest) { | |||
1404 | if (UTEXT_FULL_TEXT_IN_CHUNK(fInputText, fInputLength)((0==((fInputText)->chunkNativeStart))&&((fInputLength )==((fInputText)->chunkNativeLimit))&&((fInputLength )==((fInputText)->nativeIndexingLimit)))) { | |||
1405 | utext_replaceutext_replace_71(dest, 0, utext_nativeLengthutext_nativeLength_71(dest), fInputText->chunkContents, (int32_t)fInputLength, &status); | |||
1406 | } else { | |||
1407 | int32_t input16Len; | |||
1408 | if (UTEXT_USES_U16(fInputText)(__null==((fInputText)->pFuncs->mapNativeIndexToUTF16))) { | |||
1409 | input16Len = (int32_t)fInputLength; | |||
1410 | } else { | |||
1411 | UErrorCode lengthStatus = U_ZERO_ERROR; | |||
1412 | input16Len = utext_extractutext_extract_71(fInputText, 0, fInputLength, NULL__null, 0, &lengthStatus); // buffer overflow error | |||
1413 | } | |||
1414 | UChar *inputChars = (UChar *)uprv_mallocuprv_malloc_71(sizeof(UChar)*(input16Len)); | |||
1415 | if (inputChars == NULL__null) { | |||
1416 | return dest; | |||
1417 | } | |||
1418 | ||||
1419 | status = U_ZERO_ERROR; | |||
1420 | utext_extractutext_extract_71(fInputText, 0, fInputLength, inputChars, input16Len, &status); // not terminated warning | |||
1421 | status = U_ZERO_ERROR; | |||
1422 | utext_replaceutext_replace_71(dest, 0, utext_nativeLengthutext_nativeLength_71(dest), inputChars, input16Len, &status); | |||
1423 | ||||
1424 | uprv_freeuprv_free_71(inputChars); | |||
1425 | } | |||
1426 | return dest; | |||
1427 | } else { | |||
1428 | return utext_cloneutext_clone_71(NULL__null, fInputText, FALSE0, TRUE1, &status); | |||
1429 | } | |||
1430 | } | |||
1431 | ||||
1432 | ||||
1433 | static UBool compat_SyncMutableUTextContents(UText *ut); | |||
1434 | static UBool compat_SyncMutableUTextContents(UText *ut) { | |||
1435 | UBool retVal = FALSE0; | |||
1436 | ||||
1437 | // In the following test, we're really only interested in whether the UText should switch | |||
1438 | // between heap and stack allocation. If length hasn't changed, we won't, so the chunkContents | |||
1439 | // will still point to the correct data. | |||
1440 | if (utext_nativeLengthutext_nativeLength_71(ut) != ut->nativeIndexingLimit) { | |||
1441 | UnicodeString *us=(UnicodeString *)ut->context; | |||
1442 | ||||
1443 | // Update to the latest length. | |||
1444 | // For example, (utext_nativeLength(ut) != ut->nativeIndexingLimit). | |||
1445 | int32_t newLength = us->length(); | |||
1446 | ||||
1447 | // Update the chunk description. | |||
1448 | // The buffer may have switched between stack- and heap-based. | |||
1449 | ut->chunkContents = us->getBuffer(); | |||
1450 | ut->chunkLength = newLength; | |||
1451 | ut->chunkNativeLimit = newLength; | |||
1452 | ut->nativeIndexingLimit = newLength; | |||
1453 | retVal = TRUE1; | |||
1454 | } | |||
1455 | ||||
1456 | return retVal; | |||
1457 | } | |||
1458 | ||||
1459 | //-------------------------------------------------------------------------------- | |||
1460 | // | |||
1461 | // lookingAt() | |||
1462 | // | |||
1463 | //-------------------------------------------------------------------------------- | |||
1464 | UBool RegexMatcher::lookingAt(UErrorCode &status) { | |||
1465 | if (U_FAILURE(status)) { | |||
1466 | return FALSE0; | |||
1467 | } | |||
1468 | if (U_FAILURE(fDeferredStatus)) { | |||
1469 | status = fDeferredStatus; | |||
1470 | return FALSE0; | |||
1471 | } | |||
1472 | ||||
1473 | if (fInputUniStrMaybeMutable) { | |||
1474 | if (compat_SyncMutableUTextContents(fInputText)) { | |||
1475 | fInputLength = utext_nativeLengthutext_nativeLength_71(fInputText); | |||
1476 | reset(); | |||
1477 | } | |||
1478 | } | |||
1479 | else { | |||
1480 | resetPreserveRegion(); | |||
1481 | } | |||
1482 | if (UTEXT_FULL_TEXT_IN_CHUNK(fInputText, fInputLength)((0==((fInputText)->chunkNativeStart))&&((fInputLength )==((fInputText)->chunkNativeLimit))&&((fInputLength )==((fInputText)->nativeIndexingLimit)))) { | |||
1483 | MatchChunkAt((int32_t)fActiveStart, FALSE0, status); | |||
1484 | } else { | |||
1485 | MatchAt(fActiveStart, FALSE0, status); | |||
1486 | } | |||
1487 | return fMatch; | |||
1488 | } | |||
1489 | ||||
1490 | ||||
1491 | UBool RegexMatcher::lookingAt(int64_t start, UErrorCode &status) { | |||
1492 | if (U_FAILURE(status)) { | |||
1493 | return FALSE0; | |||
1494 | } | |||
1495 | if (U_FAILURE(fDeferredStatus)) { | |||
1496 | status = fDeferredStatus; | |||
1497 | return FALSE0; | |||
1498 | } | |||
1499 | reset(); | |||
1500 | ||||
1501 | if (start < 0) { | |||
1502 | status = U_INDEX_OUTOFBOUNDS_ERROR; | |||
1503 | return FALSE0; | |||
1504 | } | |||
1505 | ||||
1506 | if (fInputUniStrMaybeMutable) { | |||
1507 | if (compat_SyncMutableUTextContents(fInputText)) { | |||
1508 | fInputLength = utext_nativeLengthutext_nativeLength_71(fInputText); | |||
1509 | reset(); | |||
1510 | } | |||
1511 | } | |||
1512 | ||||
1513 | int64_t nativeStart; | |||
1514 | nativeStart = start; | |||
1515 | if (nativeStart < fActiveStart || nativeStart > fActiveLimit) { | |||
1516 | status = U_INDEX_OUTOFBOUNDS_ERROR; | |||
1517 | return FALSE0; | |||
1518 | } | |||
1519 | ||||
1520 | if (UTEXT_FULL_TEXT_IN_CHUNK(fInputText, fInputLength)((0==((fInputText)->chunkNativeStart))&&((fInputLength )==((fInputText)->chunkNativeLimit))&&((fInputLength )==((fInputText)->nativeIndexingLimit)))) { | |||
1521 | MatchChunkAt((int32_t)nativeStart, FALSE0, status); | |||
1522 | } else { | |||
1523 | MatchAt(nativeStart, FALSE0, status); | |||
1524 | } | |||
1525 | return fMatch; | |||
1526 | } | |||
1527 | ||||
1528 | ||||
1529 | ||||
1530 | //-------------------------------------------------------------------------------- | |||
1531 | // | |||
1532 | // matches() | |||
1533 | // | |||
1534 | //-------------------------------------------------------------------------------- | |||
1535 | UBool RegexMatcher::matches(UErrorCode &status) { | |||
1536 | if (U_FAILURE(status)) { | |||
1537 | return FALSE0; | |||
1538 | } | |||
1539 | if (U_FAILURE(fDeferredStatus)) { | |||
1540 | status = fDeferredStatus; | |||
1541 | return FALSE0; | |||
1542 | } | |||
1543 | ||||
1544 | if (fInputUniStrMaybeMutable) { | |||
1545 | if (compat_SyncMutableUTextContents(fInputText)) { | |||
1546 | fInputLength = utext_nativeLengthutext_nativeLength_71(fInputText); | |||
1547 | reset(); | |||
1548 | } | |||
1549 | } | |||
1550 | else { | |||
1551 | resetPreserveRegion(); | |||
1552 | } | |||
1553 | ||||
1554 | if (UTEXT_FULL_TEXT_IN_CHUNK(fInputText, fInputLength)((0==((fInputText)->chunkNativeStart))&&((fInputLength )==((fInputText)->chunkNativeLimit))&&((fInputLength )==((fInputText)->nativeIndexingLimit)))) { | |||
1555 | MatchChunkAt((int32_t)fActiveStart, TRUE1, status); | |||
1556 | } else { | |||
1557 | MatchAt(fActiveStart, TRUE1, status); | |||
1558 | } | |||
1559 | return fMatch; | |||
1560 | } | |||
1561 | ||||
1562 | ||||
1563 | UBool RegexMatcher::matches(int64_t start, UErrorCode &status) { | |||
1564 | if (U_FAILURE(status)) { | |||
1565 | return FALSE0; | |||
1566 | } | |||
1567 | if (U_FAILURE(fDeferredStatus)) { | |||
1568 | status = fDeferredStatus; | |||
1569 | return FALSE0; | |||
1570 | } | |||
1571 | reset(); | |||
1572 | ||||
1573 | if (start < 0) { | |||
1574 | status = U_INDEX_OUTOFBOUNDS_ERROR; | |||
1575 | return FALSE0; | |||
1576 | } | |||
1577 | ||||
1578 | if (fInputUniStrMaybeMutable) { | |||
1579 | if (compat_SyncMutableUTextContents(fInputText)) { | |||
1580 | fInputLength = utext_nativeLengthutext_nativeLength_71(fInputText); | |||
1581 | reset(); | |||
1582 | } | |||
1583 | } | |||
1584 | ||||
1585 | int64_t nativeStart; | |||
1586 | nativeStart = start; | |||
1587 | if (nativeStart < fActiveStart || nativeStart > fActiveLimit) { | |||
1588 | status = U_INDEX_OUTOFBOUNDS_ERROR; | |||
1589 | return FALSE0; | |||
1590 | } | |||
1591 | ||||
1592 | if (UTEXT_FULL_TEXT_IN_CHUNK(fInputText, fInputLength)((0==((fInputText)->chunkNativeStart))&&((fInputLength )==((fInputText)->chunkNativeLimit))&&((fInputLength )==((fInputText)->nativeIndexingLimit)))) { | |||
1593 | MatchChunkAt((int32_t)nativeStart, TRUE1, status); | |||
1594 | } else { | |||
1595 | MatchAt(nativeStart, TRUE1, status); | |||
1596 | } | |||
1597 | return fMatch; | |||
1598 | } | |||
1599 | ||||
1600 | ||||
1601 | ||||
1602 | //-------------------------------------------------------------------------------- | |||
1603 | // | |||
1604 | // pattern | |||
1605 | // | |||
1606 | //-------------------------------------------------------------------------------- | |||
1607 | const RegexPattern &RegexMatcher::pattern() const { | |||
1608 | return *fPattern; | |||
1609 | } | |||
1610 | ||||
1611 | ||||
1612 | ||||
1613 | //-------------------------------------------------------------------------------- | |||
1614 | // | |||
1615 | // region | |||
1616 | // | |||
1617 | //-------------------------------------------------------------------------------- | |||
1618 | RegexMatcher &RegexMatcher::region(int64_t regionStart, int64_t regionLimit, int64_t startIndex, UErrorCode &status) { | |||
1619 | if (U_FAILURE(status)) { | |||
1620 | return *this; | |||
1621 | } | |||
1622 | ||||
1623 | if (regionStart>regionLimit || regionStart<0 || regionLimit<0) { | |||
1624 | status = U_ILLEGAL_ARGUMENT_ERROR; | |||
1625 | } | |||
1626 | ||||
1627 | int64_t nativeStart = regionStart; | |||
1628 | int64_t nativeLimit = regionLimit; | |||
1629 | if (nativeStart > fInputLength || nativeLimit > fInputLength) { | |||
1630 | status = U_ILLEGAL_ARGUMENT_ERROR; | |||
1631 | } | |||
1632 | ||||
1633 | if (startIndex == -1) | |||
1634 | this->reset(); | |||
1635 | else | |||
1636 | resetPreserveRegion(); | |||
1637 | ||||
1638 | fRegionStart = nativeStart; | |||
1639 | fRegionLimit = nativeLimit; | |||
1640 | fActiveStart = nativeStart; | |||
1641 | fActiveLimit = nativeLimit; | |||
1642 | ||||
1643 | if (startIndex != -1) { | |||
1644 | if (startIndex < fActiveStart || startIndex > fActiveLimit) { | |||
1645 | status = U_INDEX_OUTOFBOUNDS_ERROR; | |||
1646 | } | |||
1647 | fMatchEnd = startIndex; | |||
1648 | } | |||
1649 | ||||
1650 | if (!fTransparentBounds) { | |||
1651 | fLookStart = nativeStart; | |||
1652 | fLookLimit = nativeLimit; | |||
1653 | } | |||
1654 | if (fAnchoringBounds) { | |||
1655 | fAnchorStart = nativeStart; | |||
1656 | fAnchorLimit = nativeLimit; | |||
1657 | } | |||
1658 | return *this; | |||
1659 | } | |||
1660 | ||||
1661 | RegexMatcher &RegexMatcher::region(int64_t start, int64_t limit, UErrorCode &status) { | |||
1662 | return region(start, limit, -1, status); | |||
1663 | } | |||
1664 | ||||
1665 | //-------------------------------------------------------------------------------- | |||
1666 | // | |||
1667 | // regionEnd | |||
1668 | // | |||
1669 | //-------------------------------------------------------------------------------- | |||
1670 | int32_t RegexMatcher::regionEnd() const { | |||
1671 | return (int32_t)fRegionLimit; | |||
1672 | } | |||
1673 | ||||
1674 | int64_t RegexMatcher::regionEnd64() const { | |||
1675 | return fRegionLimit; | |||
1676 | } | |||
1677 | ||||
1678 | //-------------------------------------------------------------------------------- | |||
1679 | // | |||
1680 | // regionStart | |||
1681 | // | |||
1682 | //-------------------------------------------------------------------------------- | |||
1683 | int32_t RegexMatcher::regionStart() const { | |||
1684 | return (int32_t)fRegionStart; | |||
1685 | } | |||
1686 | ||||
1687 | int64_t RegexMatcher::regionStart64() const { | |||
1688 | return fRegionStart; | |||
1689 | } | |||
1690 | ||||
1691 | ||||
1692 | //-------------------------------------------------------------------------------- | |||
1693 | // | |||
1694 | // replaceAll | |||
1695 | // | |||
1696 | //-------------------------------------------------------------------------------- | |||
1697 | UnicodeString RegexMatcher::replaceAll(const UnicodeString &replacement, UErrorCode &status) { | |||
1698 | UText replacementText = UTEXT_INITIALIZER{ UTEXT_MAGIC, 0, 0, sizeof(UText), 0, 0, 0, 0, 0, 0, __null, __null, __null, __null, __null, __null, __null, __null, 0, 0 , 0, 0, 0, 0 }; | |||
1699 | UText resultText = UTEXT_INITIALIZER{ UTEXT_MAGIC, 0, 0, sizeof(UText), 0, 0, 0, 0, 0, 0, __null, __null, __null, __null, __null, __null, __null, __null, 0, 0 , 0, 0, 0, 0 }; | |||
1700 | UnicodeString resultString; | |||
1701 | if (U_FAILURE(status)) { | |||
1702 | return resultString; | |||
1703 | } | |||
1704 | ||||
1705 | utext_openConstUnicodeStringutext_openConstUnicodeString_71(&replacementText, &replacement, &status); | |||
1706 | utext_openUnicodeStringutext_openUnicodeString_71(&resultText, &resultString, &status); | |||
1707 | ||||
1708 | replaceAll(&replacementText, &resultText, status); | |||
1709 | ||||
1710 | utext_closeutext_close_71(&resultText); | |||
1711 | utext_closeutext_close_71(&replacementText); | |||
1712 | ||||
1713 | return resultString; | |||
1714 | } | |||
1715 | ||||
1716 | ||||
1717 | // | |||
1718 | // replaceAll, UText mode | |||
1719 | // | |||
1720 | UText *RegexMatcher::replaceAll(UText *replacement, UText *dest, UErrorCode &status) { | |||
1721 | if (U_FAILURE(status)) { | |||
1722 | return dest; | |||
1723 | } | |||
1724 | if (U_FAILURE(fDeferredStatus)) { | |||
1725 | status = fDeferredStatus; | |||
1726 | return dest; | |||
1727 | } | |||
1728 | ||||
1729 | if (dest == NULL__null) { | |||
1730 | UnicodeString emptyString; | |||
1731 | UText empty = UTEXT_INITIALIZER{ UTEXT_MAGIC, 0, 0, sizeof(UText), 0, 0, 0, 0, 0, 0, __null, __null, __null, __null, __null, __null, __null, __null, 0, 0 , 0, 0, 0, 0 }; | |||
1732 | ||||
1733 | utext_openUnicodeStringutext_openUnicodeString_71(&empty, &emptyString, &status); | |||
1734 | dest = utext_cloneutext_clone_71(NULL__null, &empty, TRUE1, FALSE0, &status); | |||
1735 | utext_closeutext_close_71(&empty); | |||
1736 | } | |||
1737 | ||||
1738 | if (U_SUCCESS(status)) { | |||
1739 | reset(); | |||
1740 | while (find()) { | |||
1741 | appendReplacement(dest, replacement, status); | |||
1742 | if (U_FAILURE(status)) { | |||
1743 | break; | |||
1744 | } | |||
1745 | } | |||
1746 | appendTail(dest, status); | |||
1747 | } | |||
1748 | ||||
1749 | return dest; | |||
1750 | } | |||
1751 | ||||
1752 | ||||
1753 | //-------------------------------------------------------------------------------- | |||
1754 | // | |||
1755 | // replaceFirst | |||
1756 | // | |||
1757 | //-------------------------------------------------------------------------------- | |||
1758 | UnicodeString RegexMatcher::replaceFirst(const UnicodeString &replacement, UErrorCode &status) { | |||
1759 | UText replacementText = UTEXT_INITIALIZER{ UTEXT_MAGIC, 0, 0, sizeof(UText), 0, 0, 0, 0, 0, 0, __null, __null, __null, __null, __null, __null, __null, __null, 0, 0 , 0, 0, 0, 0 }; | |||
1760 | UText resultText = UTEXT_INITIALIZER{ UTEXT_MAGIC, 0, 0, sizeof(UText), 0, 0, 0, 0, 0, 0, __null, __null, __null, __null, __null, __null, __null, __null, 0, 0 , 0, 0, 0, 0 }; | |||
1761 | UnicodeString resultString; | |||
1762 | ||||
1763 | utext_openConstUnicodeStringutext_openConstUnicodeString_71(&replacementText, &replacement, &status); | |||
1764 | utext_openUnicodeStringutext_openUnicodeString_71(&resultText, &resultString, &status); | |||
1765 | ||||
1766 | replaceFirst(&replacementText, &resultText, status); | |||
1767 | ||||
1768 | utext_closeutext_close_71(&resultText); | |||
1769 | utext_closeutext_close_71(&replacementText); | |||
1770 | ||||
1771 | return resultString; | |||
1772 | } | |||
1773 | ||||
1774 | // | |||
1775 | // replaceFirst, UText mode | |||
1776 | // | |||
1777 | UText *RegexMatcher::replaceFirst(UText *replacement, UText *dest, UErrorCode &status) { | |||
1778 | if (U_FAILURE(status)) { | |||
1779 | return dest; | |||
1780 | } | |||
1781 | if (U_FAILURE(fDeferredStatus)) { | |||
1782 | status = fDeferredStatus; | |||
1783 | return dest; | |||
1784 | } | |||
1785 | ||||
1786 | reset(); | |||
1787 | if (!find()) { | |||
1788 | return getInput(dest, status); | |||
1789 | } | |||
1790 | ||||
1791 | if (dest == NULL__null) { | |||
1792 | UnicodeString emptyString; | |||
1793 | UText empty = UTEXT_INITIALIZER{ UTEXT_MAGIC, 0, 0, sizeof(UText), 0, 0, 0, 0, 0, 0, __null, __null, __null, __null, __null, __null, __null, __null, 0, 0 , 0, 0, 0, 0 }; | |||
1794 | ||||
1795 | utext_openUnicodeStringutext_openUnicodeString_71(&empty, &emptyString, &status); | |||
1796 | dest = utext_cloneutext_clone_71(NULL__null, &empty, TRUE1, FALSE0, &status); | |||
1797 | utext_closeutext_close_71(&empty); | |||
1798 | } | |||
1799 | ||||
1800 | appendReplacement(dest, replacement, status); | |||
1801 | appendTail(dest, status); | |||
1802 | ||||
1803 | return dest; | |||
1804 | } | |||
1805 | ||||
1806 | ||||
1807 | //-------------------------------------------------------------------------------- | |||
1808 | // | |||
1809 | // requireEnd | |||
1810 | // | |||
1811 | //-------------------------------------------------------------------------------- | |||
1812 | UBool RegexMatcher::requireEnd() const { | |||
1813 | return fRequireEnd; | |||
1814 | } | |||
1815 | ||||
1816 | ||||
1817 | //-------------------------------------------------------------------------------- | |||
1818 | // | |||
1819 | // reset | |||
1820 | // | |||
1821 | //-------------------------------------------------------------------------------- | |||
1822 | RegexMatcher &RegexMatcher::reset() { | |||
1823 | fRegionStart = 0; | |||
1824 | fRegionLimit = fInputLength; | |||
1825 | fActiveStart = 0; | |||
1826 | fActiveLimit = fInputLength; | |||
1827 | fAnchorStart = 0; | |||
1828 | fAnchorLimit = fInputLength; | |||
1829 | fLookStart = 0; | |||
1830 | fLookLimit = fInputLength; | |||
1831 | resetPreserveRegion(); | |||
1832 | return *this; | |||
1833 | } | |||
1834 | ||||
1835 | ||||
1836 | ||||
1837 | void RegexMatcher::resetPreserveRegion() { | |||
1838 | fMatchStart = 0; | |||
1839 | fMatchEnd = 0; | |||
1840 | fLastMatchEnd = -1; | |||
1841 | fAppendPosition = 0; | |||
1842 | fMatch = FALSE0; | |||
1843 | fHitEnd = FALSE0; | |||
1844 | fRequireEnd = FALSE0; | |||
1845 | fTime = 0; | |||
1846 | fTickCounter = TIMER_INITIAL_VALUE; | |||
1847 | //resetStack(); // more expensive than it looks... | |||
1848 | } | |||
1849 | ||||
1850 | ||||
1851 | RegexMatcher &RegexMatcher::reset(const UnicodeString &input) { | |||
1852 | fInputText = utext_openConstUnicodeStringutext_openConstUnicodeString_71(fInputText, &input, &fDeferredStatus); | |||
1853 | if (fPattern->fNeedsAltInput) { | |||
1854 | fAltInputText = utext_cloneutext_clone_71(fAltInputText, fInputText, FALSE0, TRUE1, &fDeferredStatus); | |||
1855 | } | |||
1856 | if (U_FAILURE(fDeferredStatus)) { | |||
1857 | return *this; | |||
1858 | } | |||
1859 | fInputLength = utext_nativeLengthutext_nativeLength_71(fInputText); | |||
1860 | ||||
1861 | reset(); | |||
1862 | delete fInput; | |||
1863 | fInput = NULL__null; | |||
1864 | ||||
1865 | // Do the following for any UnicodeString. | |||
1866 | // This is for compatibility for those clients who modify the input string "live" during regex operations. | |||
1867 | fInputUniStrMaybeMutable = TRUE1; | |||
1868 | ||||
1869 | #if UCONFIG_NO_BREAK_ITERATION0==0 | |||
1870 | if (fWordBreakItr) { | |||
1871 | fWordBreakItr->setText(fInputText, fDeferredStatus); | |||
1872 | } | |||
1873 | if (fGCBreakItr) { | |||
1874 | fGCBreakItr->setText(fInputText, fDeferredStatus); | |||
1875 | } | |||
1876 | #endif | |||
1877 | ||||
1878 | return *this; | |||
1879 | } | |||
1880 | ||||
1881 | ||||
1882 | RegexMatcher &RegexMatcher::reset(UText *input) { | |||
1883 | if (fInputText != input) { | |||
1884 | fInputText = utext_cloneutext_clone_71(fInputText, input, FALSE0, TRUE1, &fDeferredStatus); | |||
1885 | if (fPattern->fNeedsAltInput) fAltInputText = utext_cloneutext_clone_71(fAltInputText, fInputText, FALSE0, TRUE1, &fDeferredStatus); | |||
1886 | if (U_FAILURE(fDeferredStatus)) { | |||
1887 | return *this; | |||
1888 | } | |||
1889 | fInputLength = utext_nativeLengthutext_nativeLength_71(fInputText); | |||
1890 | ||||
1891 | delete fInput; | |||
1892 | fInput = NULL__null; | |||
1893 | ||||
1894 | #if UCONFIG_NO_BREAK_ITERATION0==0 | |||
1895 | if (fWordBreakItr) { | |||
1896 | fWordBreakItr->setText(input, fDeferredStatus); | |||
1897 | } | |||
1898 | if (fGCBreakItr) { | |||
1899 | fGCBreakItr->setText(fInputText, fDeferredStatus); | |||
1900 | } | |||
1901 | #endif | |||
1902 | } | |||
1903 | reset(); | |||
1904 | fInputUniStrMaybeMutable = FALSE0; | |||
1905 | ||||
1906 | return *this; | |||
1907 | } | |||
1908 | ||||
1909 | /*RegexMatcher &RegexMatcher::reset(const UChar *) { | |||
1910 | fDeferredStatus = U_INTERNAL_PROGRAM_ERROR; | |||
1911 | return *this; | |||
1912 | }*/ | |||
1913 | ||||
1914 | RegexMatcher &RegexMatcher::reset(int64_t position, UErrorCode &status) { | |||
1915 | if (U_FAILURE(status)) { | |||
1916 | return *this; | |||
1917 | } | |||
1918 | reset(); // Reset also resets the region to be the entire string. | |||
1919 | ||||
1920 | if (position < 0 || position > fActiveLimit) { | |||
1921 | status = U_INDEX_OUTOFBOUNDS_ERROR; | |||
1922 | return *this; | |||
1923 | } | |||
1924 | fMatchEnd = position; | |||
1925 | return *this; | |||
1926 | } | |||
1927 | ||||
1928 | ||||
1929 | //-------------------------------------------------------------------------------- | |||
1930 | // | |||
1931 | // refresh | |||
1932 | // | |||
1933 | //-------------------------------------------------------------------------------- | |||
1934 | RegexMatcher &RegexMatcher::refreshInputText(UText *input, UErrorCode &status) { | |||
1935 | if (U_FAILURE(status)) { | |||
1936 | return *this; | |||
1937 | } | |||
1938 | if (input == NULL__null) { | |||
1939 | status = U_ILLEGAL_ARGUMENT_ERROR; | |||
1940 | return *this; | |||
1941 | } | |||
1942 | if (utext_nativeLengthutext_nativeLength_71(fInputText) != utext_nativeLengthutext_nativeLength_71(input)) { | |||
1943 | status = U_ILLEGAL_ARGUMENT_ERROR; | |||
1944 | return *this; | |||
1945 | } | |||
1946 | int64_t pos = utext_getNativeIndexutext_getNativeIndex_71(fInputText); | |||
1947 | // Shallow read-only clone of the new UText into the existing input UText | |||
1948 | fInputText = utext_cloneutext_clone_71(fInputText, input, FALSE0, TRUE1, &status); | |||
1949 | if (U_FAILURE(status)) { | |||
1950 | return *this; | |||
1951 | } | |||
1952 | utext_setNativeIndexutext_setNativeIndex_71(fInputText, pos); | |||
1953 | ||||
1954 | if (fAltInputText != NULL__null) { | |||
1955 | pos = utext_getNativeIndexutext_getNativeIndex_71(fAltInputText); | |||
1956 | fAltInputText = utext_cloneutext_clone_71(fAltInputText, input, FALSE0, TRUE1, &status); | |||
1957 | if (U_FAILURE(status)) { | |||
1958 | return *this; | |||
1959 | } | |||
1960 | utext_setNativeIndexutext_setNativeIndex_71(fAltInputText, pos); | |||
1961 | } | |||
1962 | return *this; | |||
1963 | } | |||
1964 | ||||
1965 | ||||
1966 | ||||
1967 | //-------------------------------------------------------------------------------- | |||
1968 | // | |||
1969 | // setTrace | |||
1970 | // | |||
1971 | //-------------------------------------------------------------------------------- | |||
1972 | void RegexMatcher::setTrace(UBool state) { | |||
1973 | fTraceDebug = state; | |||
1974 | } | |||
1975 | ||||
1976 | ||||
1977 | ||||
1978 | /** | |||
1979 | * UText, replace entire contents of the destination UText with a substring of the source UText. | |||
1980 | * | |||
1981 | * @param src The source UText | |||
1982 | * @param dest The destination UText. Must be writable. | |||
1983 | * May be NULL, in which case a new UText will be allocated. | |||
1984 | * @param start Start index of source substring. | |||
1985 | * @param limit Limit index of source substring. | |||
1986 | * @param status An error code. | |||
1987 | */ | |||
1988 | static UText *utext_extract_replace(UText *src, UText *dest, int64_t start, int64_t limit, UErrorCode *status) { | |||
1989 | if (U_FAILURE(*status)) { | |||
1990 | return dest; | |||
1991 | } | |||
1992 | if (start == limit) { | |||
1993 | if (dest) { | |||
1994 | utext_replaceutext_replace_71(dest, 0, utext_nativeLengthutext_nativeLength_71(dest), NULL__null, 0, status); | |||
1995 | return dest; | |||
1996 | } else { | |||
1997 | return utext_openUCharsutext_openUChars_71(NULL__null, NULL__null, 0, status); | |||
1998 | } | |||
1999 | } | |||
2000 | int32_t length = utext_extractutext_extract_71(src, start, limit, NULL__null, 0, status); | |||
2001 | if (*status != U_BUFFER_OVERFLOW_ERROR && U_FAILURE(*status)) { | |||
2002 | return dest; | |||
2003 | } | |||
2004 | *status = U_ZERO_ERROR; | |||
2005 | MaybeStackArray<UChar, 40> buffer; | |||
2006 | if (length >= buffer.getCapacity()) { | |||
2007 | UChar *newBuf = buffer.resize(length+1); // Leave space for terminating Nul. | |||
2008 | if (newBuf == NULL__null) { | |||
2009 | *status = U_MEMORY_ALLOCATION_ERROR; | |||
2010 | } | |||
2011 | } | |||
2012 | utext_extractutext_extract_71(src, start, limit, buffer.getAlias(), length+1, status); | |||
2013 | if (dest) { | |||
2014 | utext_replaceutext_replace_71(dest, 0, utext_nativeLengthutext_nativeLength_71(dest), buffer.getAlias(), length, status); | |||
2015 | return dest; | |||
2016 | } | |||
2017 | ||||
2018 | // Caller did not provide a preexisting UText. | |||
2019 | // Open a new one, and have it adopt the text buffer storage. | |||
2020 | if (U_FAILURE(*status)) { | |||
2021 | return NULL__null; | |||
2022 | } | |||
2023 | int32_t ownedLength = 0; | |||
2024 | UChar *ownedBuf = buffer.orphanOrClone(length+1, ownedLength); | |||
2025 | if (ownedBuf == NULL__null) { | |||
2026 | *status = U_MEMORY_ALLOCATION_ERROR; | |||
2027 | return NULL__null; | |||
2028 | } | |||
2029 | UText *result = utext_openUCharsutext_openUChars_71(NULL__null, ownedBuf, length, status); | |||
2030 | if (U_FAILURE(*status)) { | |||
2031 | uprv_freeuprv_free_71(ownedBuf); | |||
2032 | return NULL__null; | |||
2033 | } | |||
2034 | result->providerProperties |= (1 << UTEXT_PROVIDER_OWNS_TEXT); | |||
2035 | return result; | |||
2036 | } | |||
2037 | ||||
2038 | ||||
2039 | //--------------------------------------------------------------------- | |||
2040 | // | |||
2041 | // split | |||
2042 | // | |||
2043 | //--------------------------------------------------------------------- | |||
2044 | int32_t RegexMatcher::split(const UnicodeString &input, | |||
2045 | UnicodeString dest[], | |||
2046 | int32_t destCapacity, | |||
2047 | UErrorCode &status) | |||
2048 | { | |||
2049 | UText inputText = UTEXT_INITIALIZER{ UTEXT_MAGIC, 0, 0, sizeof(UText), 0, 0, 0, 0, 0, 0, __null, __null, __null, __null, __null, __null, __null, __null, 0, 0 , 0, 0, 0, 0 }; | |||
2050 | utext_openConstUnicodeStringutext_openConstUnicodeString_71(&inputText, &input, &status); | |||
2051 | if (U_FAILURE(status)) { | |||
2052 | return 0; | |||
2053 | } | |||
2054 | ||||
2055 | UText **destText = (UText **)uprv_mallocuprv_malloc_71(sizeof(UText*)*destCapacity); | |||
2056 | if (destText == NULL__null) { | |||
2057 | status = U_MEMORY_ALLOCATION_ERROR; | |||
2058 | return 0; | |||
2059 | } | |||
2060 | int32_t i; | |||
2061 | for (i = 0; i < destCapacity; i++) { | |||
2062 | destText[i] = utext_openUnicodeStringutext_openUnicodeString_71(NULL__null, &dest[i], &status); | |||
2063 | } | |||
2064 | ||||
2065 | int32_t fieldCount = split(&inputText, destText, destCapacity, status); | |||
2066 | ||||
2067 | for (i = 0; i < destCapacity; i++) { | |||
2068 | utext_closeutext_close_71(destText[i]); | |||
2069 | } | |||
2070 | ||||
2071 | uprv_freeuprv_free_71(destText); | |||
2072 | utext_closeutext_close_71(&inputText); | |||
2073 | return fieldCount; | |||
2074 | } | |||
2075 | ||||
2076 | // | |||
2077 | // split, UText mode | |||
2078 | // | |||
2079 | int32_t RegexMatcher::split(UText *input, | |||
2080 | UText *dest[], | |||
2081 | int32_t destCapacity, | |||
2082 | UErrorCode &status) | |||
2083 | { | |||
2084 | // | |||
2085 | // Check arguments for validity | |||
2086 | // | |||
2087 | if (U_FAILURE(status)) { | |||
2088 | return 0; | |||
2089 | } | |||
2090 | ||||
2091 | if (destCapacity < 1) { | |||
2092 | status = U_ILLEGAL_ARGUMENT_ERROR; | |||
2093 | return 0; | |||
2094 | } | |||
2095 | ||||
2096 | // | |||
2097 | // Reset for the input text | |||
2098 | // | |||
2099 | reset(input); | |||
2100 | int64_t nextOutputStringStart = 0; | |||
2101 | if (fActiveLimit == 0) { | |||
2102 | return 0; | |||
2103 | } | |||
2104 | ||||
2105 | // | |||
2106 | // Loop through the input text, searching for the delimiter pattern | |||
2107 | // | |||
2108 | int32_t i; | |||
2109 | int32_t numCaptureGroups = fPattern->fGroupMap->size(); | |||
2110 | for (i=0; ; i++) { | |||
2111 | if (i>=destCapacity-1) { | |||
2112 | // There is one or zero output string left. | |||
2113 | // Fill the last output string with whatever is left from the input, then exit the loop. | |||
2114 | // ( i will be == destCapacity if we filled the output array while processing | |||
2115 | // capture groups of the delimiter expression, in which case we will discard the | |||
2116 | // last capture group saved in favor of the unprocessed remainder of the | |||
2117 | // input string.) | |||
2118 | i = destCapacity-1; | |||
2119 | if (fActiveLimit > nextOutputStringStart) { | |||
2120 | if (UTEXT_FULL_TEXT_IN_CHUNK(input, fInputLength)((0==((input)->chunkNativeStart))&&((fInputLength) ==((input)->chunkNativeLimit))&&((fInputLength)==( (input)->nativeIndexingLimit)))) { | |||
2121 | if (dest[i]) { | |||
2122 | utext_replaceutext_replace_71(dest[i], 0, utext_nativeLengthutext_nativeLength_71(dest[i]), | |||
2123 | input->chunkContents+nextOutputStringStart, | |||
2124 | (int32_t)(fActiveLimit-nextOutputStringStart), &status); | |||
2125 | } else { | |||
2126 | UText remainingText = UTEXT_INITIALIZER{ UTEXT_MAGIC, 0, 0, sizeof(UText), 0, 0, 0, 0, 0, 0, __null, __null, __null, __null, __null, __null, __null, __null, 0, 0 , 0, 0, 0, 0 }; | |||
2127 | utext_openUCharsutext_openUChars_71(&remainingText, input->chunkContents+nextOutputStringStart, | |||
2128 | fActiveLimit-nextOutputStringStart, &status); | |||
2129 | dest[i] = utext_cloneutext_clone_71(NULL__null, &remainingText, TRUE1, FALSE0, &status); | |||
2130 | utext_closeutext_close_71(&remainingText); | |||
2131 | } | |||
2132 | } else { | |||
2133 | UErrorCode lengthStatus = U_ZERO_ERROR; | |||
2134 | int32_t remaining16Length = | |||
2135 | utext_extractutext_extract_71(input, nextOutputStringStart, fActiveLimit, NULL__null, 0, &lengthStatus); | |||
2136 | UChar *remainingChars = (UChar *)uprv_mallocuprv_malloc_71(sizeof(UChar)*(remaining16Length+1)); | |||
2137 | if (remainingChars == NULL__null) { | |||
2138 | status = U_MEMORY_ALLOCATION_ERROR; | |||
2139 | break; | |||
2140 | } | |||
2141 | ||||
2142 | utext_extractutext_extract_71(input, nextOutputStringStart, fActiveLimit, remainingChars, remaining16Length+1, &status); | |||
2143 | if (dest[i]) { | |||
2144 | utext_replaceutext_replace_71(dest[i], 0, utext_nativeLengthutext_nativeLength_71(dest[i]), remainingChars, remaining16Length, &status); | |||
2145 | } else { | |||
2146 | UText remainingText = UTEXT_INITIALIZER{ UTEXT_MAGIC, 0, 0, sizeof(UText), 0, 0, 0, 0, 0, 0, __null, __null, __null, __null, __null, __null, __null, __null, 0, 0 , 0, 0, 0, 0 }; | |||
2147 | utext_openUCharsutext_openUChars_71(&remainingText, remainingChars, remaining16Length, &status); | |||
2148 | dest[i] = utext_cloneutext_clone_71(NULL__null, &remainingText, TRUE1, FALSE0, &status); | |||
2149 | utext_closeutext_close_71(&remainingText); | |||
2150 | } | |||
2151 | ||||
2152 | uprv_freeuprv_free_71(remainingChars); | |||
2153 | } | |||
2154 | } | |||
2155 | break; | |||
2156 | } | |||
2157 | if (find()) { | |||
2158 | // We found another delimiter. Move everything from where we started looking | |||
2159 | // up until the start of the delimiter into the next output string. | |||
2160 | if (UTEXT_FULL_TEXT_IN_CHUNK(input, fInputLength)((0==((input)->chunkNativeStart))&&((fInputLength) ==((input)->chunkNativeLimit))&&((fInputLength)==( (input)->nativeIndexingLimit)))) { | |||
2161 | if (dest[i]) { | |||
2162 | utext_replaceutext_replace_71(dest[i], 0, utext_nativeLengthutext_nativeLength_71(dest[i]), | |||
2163 | input->chunkContents+nextOutputStringStart, | |||
2164 | (int32_t)(fMatchStart-nextOutputStringStart), &status); | |||
2165 | } else { | |||
2166 | UText remainingText = UTEXT_INITIALIZER{ UTEXT_MAGIC, 0, 0, sizeof(UText), 0, 0, 0, 0, 0, 0, __null, __null, __null, __null, __null, __null, __null, __null, 0, 0 , 0, 0, 0, 0 }; | |||
2167 | utext_openUCharsutext_openUChars_71(&remainingText, input->chunkContents+nextOutputStringStart, | |||
2168 | fMatchStart-nextOutputStringStart, &status); | |||
2169 | dest[i] = utext_cloneutext_clone_71(NULL__null, &remainingText, TRUE1, FALSE0, &status); | |||
2170 | utext_closeutext_close_71(&remainingText); | |||
2171 | } | |||
2172 | } else { | |||
2173 | UErrorCode lengthStatus = U_ZERO_ERROR; | |||
2174 | int32_t remaining16Length = utext_extractutext_extract_71(input, nextOutputStringStart, fMatchStart, NULL__null, 0, &lengthStatus); | |||
2175 | UChar *remainingChars = (UChar *)uprv_mallocuprv_malloc_71(sizeof(UChar)*(remaining16Length+1)); | |||
2176 | if (remainingChars == NULL__null) { | |||
2177 | status = U_MEMORY_ALLOCATION_ERROR; | |||
2178 | break; | |||
2179 | } | |||
2180 | utext_extractutext_extract_71(input, nextOutputStringStart, fMatchStart, remainingChars, remaining16Length+1, &status); | |||
2181 | if (dest[i]) { | |||
2182 | utext_replaceutext_replace_71(dest[i], 0, utext_nativeLengthutext_nativeLength_71(dest[i]), remainingChars, remaining16Length, &status); | |||
2183 | } else { | |||
2184 | UText remainingText = UTEXT_INITIALIZER{ UTEXT_MAGIC, 0, 0, sizeof(UText), 0, 0, 0, 0, 0, 0, __null, __null, __null, __null, __null, __null, __null, __null, 0, 0 , 0, 0, 0, 0 }; | |||
2185 | utext_openUCharsutext_openUChars_71(&remainingText, remainingChars, remaining16Length, &status); | |||
2186 | dest[i] = utext_cloneutext_clone_71(NULL__null, &remainingText, TRUE1, FALSE0, &status); | |||
2187 | utext_closeutext_close_71(&remainingText); | |||
2188 | } | |||
2189 | ||||
2190 | uprv_freeuprv_free_71(remainingChars); | |||
2191 | } | |||
2192 | nextOutputStringStart = fMatchEnd; | |||
2193 | ||||
2194 | // If the delimiter pattern has capturing parentheses, the captured | |||
2195 | // text goes out into the next n destination strings. | |||
2196 | int32_t groupNum; | |||
2197 | for (groupNum=1; groupNum<=numCaptureGroups; groupNum++) { | |||
2198 | if (i >= destCapacity-2) { | |||
2199 | // Never fill the last available output string with capture group text. | |||
2200 | // It will filled with the last field, the remainder of the | |||
2201 | // unsplit input text. | |||
2202 | break; | |||
2203 | } | |||
2204 | i++; | |||
2205 | dest[i] = utext_extract_replace(fInputText, dest[i], | |||
2206 | start64(groupNum, status), end64(groupNum, status), &status); | |||
2207 | } | |||
2208 | ||||
2209 | if (nextOutputStringStart == fActiveLimit) { | |||
2210 | // The delimiter was at the end of the string. We're done, but first | |||
2211 | // we output one last empty string, for the empty field following | |||
2212 | // the delimiter at the end of input. | |||
2213 | if (i+1 < destCapacity) { | |||
2214 | ++i; | |||
2215 | if (dest[i] == NULL__null) { | |||
2216 | dest[i] = utext_openUCharsutext_openUChars_71(NULL__null, NULL__null, 0, &status); | |||
2217 | } else { | |||
2218 | static const UChar emptyString[] = {(UChar)0}; | |||
2219 | utext_replaceutext_replace_71(dest[i], 0, utext_nativeLengthutext_nativeLength_71(dest[i]), emptyString, 0, &status); | |||
2220 | } | |||
2221 | } | |||
2222 | break; | |||
2223 | ||||
2224 | } | |||
2225 | } | |||
2226 | else | |||
2227 | { | |||
2228 | // We ran off the end of the input while looking for the next delimiter. | |||
2229 | // All the remaining text goes into the current output string. | |||
2230 | if (UTEXT_FULL_TEXT_IN_CHUNK(input, fInputLength)((0==((input)->chunkNativeStart))&&((fInputLength) ==((input)->chunkNativeLimit))&&((fInputLength)==( (input)->nativeIndexingLimit)))) { | |||
2231 | if (dest[i]) { | |||
2232 | utext_replaceutext_replace_71(dest[i], 0, utext_nativeLengthutext_nativeLength_71(dest[i]), | |||
2233 | input->chunkContents+nextOutputStringStart, | |||
2234 | (int32_t)(fActiveLimit-nextOutputStringStart), &status); | |||
2235 | } else { | |||
2236 | UText remainingText = UTEXT_INITIALIZER{ UTEXT_MAGIC, 0, 0, sizeof(UText), 0, 0, 0, 0, 0, 0, __null, __null, __null, __null, __null, __null, __null, __null, 0, 0 , 0, 0, 0, 0 }; | |||
2237 | utext_openUCharsutext_openUChars_71(&remainingText, input->chunkContents+nextOutputStringStart, | |||
2238 | fActiveLimit-nextOutputStringStart, &status); | |||
2239 | dest[i] = utext_cloneutext_clone_71(NULL__null, &remainingText, TRUE1, FALSE0, &status); | |||
2240 | utext_closeutext_close_71(&remainingText); | |||
2241 | } | |||
2242 | } else { | |||
2243 | UErrorCode lengthStatus = U_ZERO_ERROR; | |||
2244 | int32_t remaining16Length = utext_extractutext_extract_71(input, nextOutputStringStart, fActiveLimit, NULL__null, 0, &lengthStatus); | |||
2245 | UChar *remainingChars = (UChar *)uprv_mallocuprv_malloc_71(sizeof(UChar)*(remaining16Length+1)); | |||
2246 | if (remainingChars == NULL__null) { | |||
2247 | status = U_MEMORY_ALLOCATION_ERROR; | |||
2248 | break; | |||
2249 | } | |||
2250 | ||||
2251 | utext_extractutext_extract_71(input, nextOutputStringStart, fActiveLimit, remainingChars, remaining16Length+1, &status); | |||
2252 | if (dest[i]) { | |||
2253 | utext_replaceutext_replace_71(dest[i], 0, utext_nativeLengthutext_nativeLength_71(dest[i]), remainingChars, remaining16Length, &status); | |||
2254 | } else { | |||
2255 | UText remainingText = UTEXT_INITIALIZER{ UTEXT_MAGIC, 0, 0, sizeof(UText), 0, 0, 0, 0, 0, 0, __null, __null, __null, __null, __null, __null, __null, __null, 0, 0 , 0, 0, 0, 0 }; | |||
2256 | utext_openUCharsutext_openUChars_71(&remainingText, remainingChars, remaining16Length, &status); | |||
2257 | dest[i] = utext_cloneutext_clone_71(NULL__null, &remainingText, TRUE1, FALSE0, &status); | |||
2258 | utext_closeutext_close_71(&remainingText); | |||
2259 | } | |||
2260 | ||||
2261 | uprv_freeuprv_free_71(remainingChars); | |||
2262 | } | |||
2263 | break; | |||
2264 | } | |||
2265 | if (U_FAILURE(status)) { | |||
2266 | break; | |||
2267 | } | |||
2268 | } // end of for loop | |||
2269 | return i+1; | |||
2270 | } | |||
2271 | ||||
2272 | ||||
2273 | //-------------------------------------------------------------------------------- | |||
2274 | // | |||
2275 | // start | |||
2276 | // | |||
2277 | //-------------------------------------------------------------------------------- | |||
2278 | int32_t RegexMatcher::start(UErrorCode &status) const { | |||
2279 | return start(0, status); | |||
2280 | } | |||
2281 | ||||
2282 | int64_t RegexMatcher::start64(UErrorCode &status) const { | |||
2283 | return start64(0, status); | |||
2284 | } | |||
2285 | ||||
2286 | //-------------------------------------------------------------------------------- | |||
2287 | // | |||
2288 | // start(int32_t group, UErrorCode &status) | |||
2289 | // | |||
2290 | //-------------------------------------------------------------------------------- | |||
2291 | ||||
2292 | int64_t RegexMatcher::start64(int32_t group, UErrorCode &status) const { | |||
2293 | if (U_FAILURE(status)) { | |||
2294 | return -1; | |||
2295 | } | |||
2296 | if (U_FAILURE(fDeferredStatus)) { | |||
2297 | status = fDeferredStatus; | |||
2298 | return -1; | |||
2299 | } | |||
2300 | if (fMatch == FALSE0) { | |||
2301 | status = U_REGEX_INVALID_STATE; | |||
2302 | return -1; | |||
2303 | } | |||
2304 | if (group < 0 || group > fPattern->fGroupMap->size()) { | |||
2305 | status = U_INDEX_OUTOFBOUNDS_ERROR; | |||
2306 | return -1; | |||
2307 | } | |||
2308 | int64_t s; | |||
2309 | if (group == 0) { | |||
2310 | s = fMatchStart; | |||
2311 | } else { | |||
2312 | int32_t groupOffset = fPattern->fGroupMap->elementAti(group-1); | |||
2313 | U_ASSERT(groupOffset < fPattern->fFrameSize)(void)0; | |||
2314 | U_ASSERT(groupOffset >= 0)(void)0; | |||
2315 | s = fFrame->fExtra[groupOffset]; | |||
2316 | } | |||
2317 | ||||
2318 | return s; | |||
2319 | } | |||
2320 | ||||
2321 | ||||
2322 | int32_t RegexMatcher::start(int32_t group, UErrorCode &status) const { | |||
2323 | return (int32_t)start64(group, status); | |||
2324 | } | |||
2325 | ||||
2326 | //-------------------------------------------------------------------------------- | |||
2327 | // | |||
2328 | // useAnchoringBounds | |||
2329 | // | |||
2330 | //-------------------------------------------------------------------------------- | |||
2331 | RegexMatcher &RegexMatcher::useAnchoringBounds(UBool b) { | |||
2332 | fAnchoringBounds = b; | |||
2333 | fAnchorStart = (fAnchoringBounds ? fRegionStart : 0); | |||
2334 | fAnchorLimit = (fAnchoringBounds ? fRegionLimit : fInputLength); | |||
2335 | return *this; | |||
2336 | } | |||
2337 | ||||
2338 | ||||
2339 | //-------------------------------------------------------------------------------- | |||
2340 | // | |||
2341 | // useTransparentBounds | |||
2342 | // | |||
2343 | //-------------------------------------------------------------------------------- | |||
2344 | RegexMatcher &RegexMatcher::useTransparentBounds(UBool b) { | |||
2345 | fTransparentBounds = b; | |||
2346 | fLookStart = (fTransparentBounds ? 0 : fRegionStart); | |||
2347 | fLookLimit = (fTransparentBounds ? fInputLength : fRegionLimit); | |||
2348 | return *this; | |||
2349 | } | |||
2350 | ||||
2351 | //-------------------------------------------------------------------------------- | |||
2352 | // | |||
2353 | // setTimeLimit | |||
2354 | // | |||
2355 | //-------------------------------------------------------------------------------- | |||
2356 | void RegexMatcher::setTimeLimit(int32_t limit, UErrorCode &status) { | |||
2357 | if (U_FAILURE(status)) { | |||
2358 | return; | |||
2359 | } | |||
2360 | if (U_FAILURE(fDeferredStatus)) { | |||
2361 | status = fDeferredStatus; | |||
2362 | return; | |||
2363 | } | |||
2364 | if (limit < 0) { | |||
2365 | status = U_ILLEGAL_ARGUMENT_ERROR; | |||
2366 | return; | |||
2367 | } | |||
2368 | fTimeLimit = limit; | |||
2369 | } | |||
2370 | ||||
2371 | ||||
2372 | //-------------------------------------------------------------------------------- | |||
2373 | // | |||
2374 | // getTimeLimit | |||
2375 | // | |||
2376 | //-------------------------------------------------------------------------------- | |||
2377 | int32_t RegexMatcher::getTimeLimit() const { | |||
2378 | return fTimeLimit; | |||
2379 | } | |||
2380 | ||||
2381 | ||||
2382 | //-------------------------------------------------------------------------------- | |||
2383 | // | |||
2384 | // setStackLimit | |||
2385 | // | |||
2386 | //-------------------------------------------------------------------------------- | |||
2387 | void RegexMatcher::setStackLimit(int32_t limit, UErrorCode &status) { | |||
2388 | if (U_FAILURE(status)) { | |||
2389 | return; | |||
2390 | } | |||
2391 | if (U_FAILURE(fDeferredStatus)) { | |||
2392 | status = fDeferredStatus; | |||
2393 | return; | |||
2394 | } | |||
2395 | if (limit < 0) { | |||
2396 | status = U_ILLEGAL_ARGUMENT_ERROR; | |||
2397 | return; | |||
2398 | } | |||
2399 | ||||
2400 | // Reset the matcher. This is needed here in case there is a current match | |||
2401 | // whose final stack frame (containing the match results, pointed to by fFrame) | |||
2402 | // would be lost by resizing to a smaller stack size. | |||
2403 | reset(); | |||
2404 | ||||
2405 | if (limit == 0) { | |||
2406 | // Unlimited stack expansion | |||
2407 | fStack->setMaxCapacity(0); | |||
2408 | } else { | |||
2409 | // Change the units of the limit from bytes to ints, and bump the size up | |||
2410 | // to be big enough to hold at least one stack frame for the pattern, | |||
2411 | // if it isn't there already. | |||
2412 | int32_t adjustedLimit = limit / sizeof(int32_t); | |||
2413 | if (adjustedLimit < fPattern->fFrameSize) { | |||
2414 | adjustedLimit = fPattern->fFrameSize; | |||
2415 | } | |||
2416 | fStack->setMaxCapacity(adjustedLimit); | |||
2417 | } | |||
2418 | fStackLimit = limit; | |||
2419 | } | |||
2420 | ||||
2421 | ||||
2422 | //-------------------------------------------------------------------------------- | |||
2423 | // | |||
2424 | // getStackLimit | |||
2425 | // | |||
2426 | //-------------------------------------------------------------------------------- | |||
2427 | int32_t RegexMatcher::getStackLimit() const { | |||
2428 | return fStackLimit; | |||
2429 | } | |||
2430 | ||||
2431 | ||||
2432 | //-------------------------------------------------------------------------------- | |||
2433 | // | |||
2434 | // setMatchCallback | |||
2435 | // | |||
2436 | //-------------------------------------------------------------------------------- | |||
2437 | void RegexMatcher::setMatchCallback(URegexMatchCallback *callback, | |||
2438 | const void *context, | |||
2439 | UErrorCode &status) { | |||
2440 | if (U_FAILURE(status)) { | |||
2441 | return; | |||
2442 | } | |||
2443 | fCallbackFn = callback; | |||
2444 | fCallbackContext = context; | |||
2445 | } | |||
2446 | ||||
2447 | ||||
2448 | //-------------------------------------------------------------------------------- | |||
2449 | // | |||
2450 | // getMatchCallback | |||
2451 | // | |||
2452 | //-------------------------------------------------------------------------------- | |||
2453 | void RegexMatcher::getMatchCallback(URegexMatchCallback *&callback, | |||
2454 | const void *&context, | |||
2455 | UErrorCode &status) { | |||
2456 | if (U_FAILURE(status)) { | |||
2457 | return; | |||
2458 | } | |||
2459 | callback = fCallbackFn; | |||
2460 | context = fCallbackContext; | |||
2461 | } | |||
2462 | ||||
2463 | ||||
2464 | //-------------------------------------------------------------------------------- | |||
2465 | // | |||
2466 | // setMatchCallback | |||
2467 | // | |||
2468 | //-------------------------------------------------------------------------------- | |||
2469 | void RegexMatcher::setFindProgressCallback(URegexFindProgressCallback *callback, | |||
2470 | const void *context, | |||
2471 | UErrorCode &status) { | |||
2472 | if (U_FAILURE(status)) { | |||
2473 | return; | |||
2474 | } | |||
2475 | fFindProgressCallbackFn = callback; | |||
2476 | fFindProgressCallbackContext = context; | |||
2477 | } | |||
2478 | ||||
2479 | ||||
2480 | //-------------------------------------------------------------------------------- | |||
2481 | // | |||
2482 | // getMatchCallback | |||
2483 | // | |||
2484 | //-------------------------------------------------------------------------------- | |||
2485 | void RegexMatcher::getFindProgressCallback(URegexFindProgressCallback *&callback, | |||
2486 | const void *&context, | |||
2487 | UErrorCode &status) { | |||
2488 | if (U_FAILURE(status)) { | |||
2489 | return; | |||
2490 | } | |||
2491 | callback = fFindProgressCallbackFn; | |||
2492 | context = fFindProgressCallbackContext; | |||
2493 | } | |||
2494 | ||||
2495 | ||||
2496 | //================================================================================ | |||
2497 | // | |||
2498 | // Code following this point in this file is the internal | |||
2499 | // Match Engine Implementation. | |||
2500 | // | |||
2501 | //================================================================================ | |||
2502 | ||||
2503 | ||||
2504 | //-------------------------------------------------------------------------------- | |||
2505 | // | |||
2506 | // resetStack | |||
2507 | // Discard any previous contents of the state save stack, and initialize a | |||
2508 | // new stack frame to all -1. The -1s are needed for capture group limits, | |||
2509 | // where they indicate that a group has not yet matched anything. | |||
2510 | //-------------------------------------------------------------------------------- | |||
2511 | REStackFrame *RegexMatcher::resetStack() { | |||
2512 | // Discard any previous contents of the state save stack, and initialize a | |||
2513 | // new stack frame with all -1 data. The -1s are needed for capture group limits, | |||
2514 | // where they indicate that a group has not yet matched anything. | |||
2515 | fStack->removeAllElements(); | |||
2516 | ||||
2517 | REStackFrame *iFrame = (REStackFrame *)fStack->reserveBlock(fPattern->fFrameSize, fDeferredStatus); | |||
2518 | if(U_FAILURE(fDeferredStatus)) { | |||
2519 | return NULL__null; | |||
2520 | } | |||
2521 | ||||
2522 | int32_t i; | |||
2523 | for (i=0; i<fPattern->fFrameSize-RESTACKFRAME_HDRCOUNT2; i++) { | |||
2524 | iFrame->fExtra[i] = -1; | |||
2525 | } | |||
2526 | return iFrame; | |||
2527 | } | |||
2528 | ||||
2529 | ||||
2530 | ||||
2531 | //-------------------------------------------------------------------------------- | |||
2532 | // | |||
2533 | // isWordBoundary | |||
2534 | // in perl, "xab..cd..", \b is true at positions 0,3,5,7 | |||
2535 | // For us, | |||
2536 | // If the current char is a combining mark, | |||
2537 | // \b is FALSE. | |||
2538 | // Else Scan backwards to the first non-combining char. | |||
2539 | // We are at a boundary if the this char and the original chars are | |||
2540 | // opposite in membership in \w set | |||
2541 | // | |||
2542 | // parameters: pos - the current position in the input buffer | |||
2543 | // | |||
2544 | // TODO: double-check edge cases at region boundaries. | |||
2545 | // | |||
2546 | //-------------------------------------------------------------------------------- | |||
2547 | UBool RegexMatcher::isWordBoundary(int64_t pos) { | |||
2548 | UBool isBoundary = FALSE0; | |||
2549 | UBool cIsWord = FALSE0; | |||
2550 | ||||
2551 | if (pos >= fLookLimit) { | |||
2552 | fHitEnd = TRUE1; | |||
2553 | } else { | |||
2554 | // Determine whether char c at current position is a member of the word set of chars. | |||
2555 | // If we're off the end of the string, behave as though we're not at a word char. | |||
2556 | UTEXT_SETNATIVEINDEX(fInputText, pos)do { int64_t __offset = (pos) - (fInputText)->chunkNativeStart ; if (__offset>=0 && __offset<(int64_t)(fInputText )->nativeIndexingLimit && (fInputText)->chunkContents [__offset]<0xdc00) { (fInputText)->chunkOffset=(int32_t )__offset; } else { utext_setNativeIndex_71((fInputText), (pos )); } } while (false); | |||
2557 | UChar32 c = UTEXT_CURRENT32(fInputText)((fInputText)->chunkOffset < (fInputText)->chunkLength && ((fInputText)->chunkContents)[(fInputText)-> chunkOffset]<0xd800 ? ((fInputText)->chunkContents)[((fInputText )->chunkOffset)] : utext_current32_71(fInputText)); | |||
2558 | if (u_hasBinaryPropertyu_hasBinaryProperty_71(c, UCHAR_GRAPHEME_EXTEND) || u_charTypeu_charType_71(c) == U_FORMAT_CHAR) { | |||
2559 | // Current char is a combining one. Not a boundary. | |||
2560 | return FALSE0; | |||
2561 | } | |||
2562 | cIsWord = RegexStaticSets::gStaticSets->fPropSets[URX_ISWORD_SET].contains(c); | |||
2563 | } | |||
2564 | ||||
2565 | // Back up until we come to a non-combining char, determine whether | |||
2566 | // that char is a word char. | |||
2567 | UBool prevCIsWord = FALSE0; | |||
2568 | for (;;) { | |||
2569 | if (UTEXT_GETNATIVEINDEX(fInputText)((fInputText)->chunkOffset <= (fInputText)->nativeIndexingLimit ? (fInputText)->chunkNativeStart+(fInputText)->chunkOffset : (fInputText)->pFuncs->mapOffsetToNative(fInputText)) <= fLookStart) { | |||
2570 | break; | |||
2571 | } | |||
2572 | UChar32 prevChar = UTEXT_PREVIOUS32(fInputText)((fInputText)->chunkOffset > 0 && (fInputText)-> chunkContents[(fInputText)->chunkOffset-1] < 0xd800 ? ( fInputText)->chunkContents[--((fInputText)->chunkOffset )] : utext_previous32_71(fInputText)); | |||
2573 | if (!(u_hasBinaryPropertyu_hasBinaryProperty_71(prevChar, UCHAR_GRAPHEME_EXTEND) | |||
2574 | || u_charTypeu_charType_71(prevChar) == U_FORMAT_CHAR)) { | |||
2575 | prevCIsWord = RegexStaticSets::gStaticSets->fPropSets[URX_ISWORD_SET].contains(prevChar); | |||
2576 | break; | |||
2577 | } | |||
2578 | } | |||
2579 | isBoundary = cIsWord ^ prevCIsWord; | |||
2580 | return isBoundary; | |||
2581 | } | |||
2582 | ||||
2583 | UBool RegexMatcher::isChunkWordBoundary(int32_t pos) { | |||
2584 | UBool isBoundary = FALSE0; | |||
2585 | UBool cIsWord = FALSE0; | |||
2586 | ||||
2587 | const UChar *inputBuf = fInputText->chunkContents; | |||
2588 | ||||
2589 | if (pos >= fLookLimit) { | |||
2590 | fHitEnd = TRUE1; | |||
2591 | } else { | |||
2592 | // Determine whether char c at current position is a member of the word set of chars. | |||
2593 | // If we're off the end of the string, behave as though we're not at a word char. | |||
2594 | UChar32 c; | |||
2595 | U16_GET(inputBuf, fLookStart, pos, fLookLimit, c)do { (c)=(inputBuf)[pos]; if((((c)&0xfffff800)==0xd800)) { uint16_t __c2; if((((c)&0x400)==0)) { if((pos)+1!=(fLookLimit ) && (((__c2=(inputBuf)[(pos)+1])&0xfffffc00)==0xdc00 )) { (c)=(((UChar32)((c))<<10UL)+(UChar32)(__c2)-((0xd800 <<10UL)+0xdc00-0x10000)); } } else { if((pos)>(fLookStart ) && (((__c2=(inputBuf)[(pos)-1])&0xfffffc00)==0xd800 )) { (c)=(((UChar32)(__c2)<<10UL)+(UChar32)((c))-((0xd800 <<10UL)+0xdc00-0x10000)); } } } } while (false); | |||
2596 | if (u_hasBinaryPropertyu_hasBinaryProperty_71(c, UCHAR_GRAPHEME_EXTEND) || u_charTypeu_charType_71(c) == U_FORMAT_CHAR) { | |||
2597 | // Current char is a combining one. Not a boundary. | |||
2598 | return FALSE0; | |||
2599 | } | |||
2600 | cIsWord = RegexStaticSets::gStaticSets->fPropSets[URX_ISWORD_SET].contains(c); | |||
2601 | } | |||
2602 | ||||
2603 | // Back up until we come to a non-combining char, determine whether | |||
2604 | // that char is a word char. | |||
2605 | UBool prevCIsWord = FALSE0; | |||
2606 | for (;;) { | |||
2607 | if (pos <= fLookStart) { | |||
2608 | break; | |||
2609 | } | |||
2610 | UChar32 prevChar; | |||
2611 | U16_PREV(inputBuf, fLookStart, pos, prevChar)do { (prevChar)=(inputBuf)[--(pos)]; if((((prevChar)&0xfffffc00 )==0xdc00)) { uint16_t __c2; if((pos)>(fLookStart) && (((__c2=(inputBuf)[(pos)-1])&0xfffffc00)==0xd800)) { --( pos); (prevChar)=(((UChar32)(__c2)<<10UL)+(UChar32)((prevChar ))-((0xd800<<10UL)+0xdc00-0x10000)); } } } while (false ); | |||
2612 | if (!(u_hasBinaryPropertyu_hasBinaryProperty_71(prevChar, UCHAR_GRAPHEME_EXTEND) | |||
2613 | || u_charTypeu_charType_71(prevChar) == U_FORMAT_CHAR)) { | |||
2614 | prevCIsWord = RegexStaticSets::gStaticSets->fPropSets[URX_ISWORD_SET].contains(prevChar); | |||
2615 | break; | |||
2616 | } | |||
2617 | } | |||
2618 | isBoundary = cIsWord ^ prevCIsWord; | |||
2619 | return isBoundary; | |||
2620 | } | |||
2621 | ||||
2622 | //-------------------------------------------------------------------------------- | |||
2623 | // | |||
2624 | // isUWordBoundary | |||
2625 | // | |||
2626 | // Test for a word boundary using RBBI word break. | |||
2627 | // | |||
2628 | // parameters: pos - the current position in the input buffer | |||
2629 | // | |||
2630 | //-------------------------------------------------------------------------------- | |||
2631 | UBool RegexMatcher::isUWordBoundary(int64_t pos, UErrorCode &status) { | |||
2632 | UBool returnVal = FALSE0; | |||
2633 | ||||
2634 | #if UCONFIG_NO_BREAK_ITERATION0==0 | |||
2635 | // Note: this point will never be reached if break iteration is configured out. | |||
2636 | // Regex patterns that would require this function will fail to compile. | |||
2637 | ||||
2638 | // If we haven't yet created a break iterator for this matcher, do it now. | |||
2639 | if (fWordBreakItr == nullptr) { | |||
2640 | fWordBreakItr = BreakIterator::createWordInstance(Locale::getEnglish(), status); | |||
2641 | if (U_FAILURE(status)) { | |||
2642 | return FALSE0; | |||
2643 | } | |||
2644 | fWordBreakItr->setText(fInputText, status); | |||
2645 | } | |||
2646 | ||||
2647 | // Note: zero width boundary tests like \b see through transparent region bounds, | |||
2648 | // which is why fLookLimit is used here, rather than fActiveLimit. | |||
2649 | if (pos >= fLookLimit) { | |||
2650 | fHitEnd = TRUE1; | |||
2651 | returnVal = TRUE1; // With Unicode word rules, only positions within the interior of "real" | |||
2652 | // words are not boundaries. All non-word chars stand by themselves, | |||
2653 | // with word boundaries on both sides. | |||
2654 | } else { | |||
2655 | returnVal = fWordBreakItr->isBoundary((int32_t)pos); | |||
2656 | } | |||
2657 | #endif | |||
2658 | return returnVal; | |||
2659 | } | |||
2660 | ||||
2661 | ||||
2662 | int64_t RegexMatcher::followingGCBoundary(int64_t pos, UErrorCode &status) { | |||
2663 | int64_t result = pos; | |||
2664 | ||||
2665 | #if UCONFIG_NO_BREAK_ITERATION0==0 | |||
2666 | // Note: this point will never be reached if break iteration is configured out. | |||
2667 | // Regex patterns that would require this function will fail to compile. | |||
2668 | ||||
2669 | // If we haven't yet created a break iterator for this matcher, do it now. | |||
2670 | if (fGCBreakItr == nullptr) { | |||
2671 | fGCBreakItr = BreakIterator::createCharacterInstance(Locale::getEnglish(), status); | |||
2672 | if (U_FAILURE(status)) { | |||
2673 | return pos; | |||
2674 | } | |||
2675 | fGCBreakItr->setText(fInputText, status); | |||
2676 | } | |||
2677 | result = fGCBreakItr->following(pos); | |||
2678 | if (result == BreakIterator::DONE) { | |||
2679 | result = pos; | |||
2680 | } | |||
2681 | #endif | |||
2682 | return result; | |||
2683 | } | |||
2684 | ||||
2685 | //-------------------------------------------------------------------------------- | |||
2686 | // | |||
2687 | // IncrementTime This function is called once each TIMER_INITIAL_VALUE state | |||
2688 | // saves. Increment the "time" counter, and call the | |||
2689 | // user callback function if there is one installed. | |||
2690 | // | |||
2691 | // If the match operation needs to be aborted, either for a time-out | |||
2692 | // or because the user callback asked for it, just set an error status. | |||
2693 | // The engine will pick that up and stop in its outer loop. | |||
2694 | // | |||
2695 | //-------------------------------------------------------------------------------- | |||
2696 | void RegexMatcher::IncrementTime(UErrorCode &status) { | |||
2697 | fTickCounter = TIMER_INITIAL_VALUE; | |||
2698 | fTime++; | |||
2699 | if (fCallbackFn != NULL__null) { | |||
2700 | if ((*fCallbackFn)(fCallbackContext, fTime) == FALSE0) { | |||
2701 | status = U_REGEX_STOPPED_BY_CALLER; | |||
2702 | return; | |||
2703 | } | |||
2704 | } | |||
2705 | if (fTimeLimit > 0 && fTime >= fTimeLimit) { | |||
2706 | status = U_REGEX_TIME_OUT; | |||
2707 | } | |||
2708 | } | |||
2709 | ||||
2710 | //-------------------------------------------------------------------------------- | |||
2711 | // | |||
2712 | // StateSave | |||
2713 | // Make a new stack frame, initialized as a copy of the current stack frame. | |||
2714 | // Set the pattern index in the original stack frame from the operand value | |||
2715 | // in the opcode. Execution of the engine continues with the state in | |||
2716 | // the newly created stack frame | |||
2717 | // | |||
2718 | // Note that reserveBlock() may grow the stack, resulting in the | |||
2719 | // whole thing being relocated in memory. | |||
2720 | // | |||
2721 | // Parameters: | |||
2722 | // fp The top frame pointer when called. At return, a new | |||
2723 | // fame will be present | |||
2724 | // savePatIdx An index into the compiled pattern. Goes into the original | |||
2725 | // (not new) frame. If execution ever back-tracks out of the | |||
2726 | // new frame, this will be where we continue from in the pattern. | |||
2727 | // Return | |||
2728 | // The new frame pointer. | |||
2729 | // | |||
2730 | //-------------------------------------------------------------------------------- | |||
2731 | inline REStackFrame *RegexMatcher::StateSave(REStackFrame *fp, int64_t savePatIdx, UErrorCode &status) { | |||
2732 | if (U_FAILURE(status)) { | |||
2733 | return fp; | |||
2734 | } | |||
2735 | // push storage for a new frame. | |||
2736 | int64_t *newFP = fStack->reserveBlock(fFrameSize, status); | |||
2737 | if (U_FAILURE(status)) { | |||
2738 | // Failure on attempted stack expansion. | |||
2739 | // Stack function set some other error code, change it to a more | |||
2740 | // specific one for regular expressions. | |||
2741 | status = U_REGEX_STACK_OVERFLOW; | |||
2742 | // We need to return a writable stack frame, so just return the | |||
2743 | // previous frame. The match operation will stop quickly | |||
2744 | // because of the error status, after which the frame will never | |||
2745 | // be looked at again. | |||
2746 | return fp; | |||
2747 | } | |||
2748 | fp = (REStackFrame *)(newFP - fFrameSize); // in case of realloc of stack. | |||
2749 | ||||
2750 | // New stack frame = copy of old top frame. | |||
2751 | int64_t *source = (int64_t *)fp; | |||
2752 | int64_t *dest = newFP; | |||
2753 | for (;;) { | |||
2754 | *dest++ = *source++; | |||
| ||||
2755 | if (source == newFP) { | |||
2756 | break; | |||
2757 | } | |||
2758 | } | |||
2759 | ||||
2760 | fTickCounter--; | |||
2761 | if (fTickCounter <= 0) { | |||
2762 | IncrementTime(status); // Re-initializes fTickCounter | |||
2763 | } | |||
2764 | fp->fPatIdx = savePatIdx; | |||
2765 | return (REStackFrame *)newFP; | |||
2766 | } | |||
2767 | ||||
2768 | #if defined(REGEX_DEBUG) | |||
2769 | namespace { | |||
2770 | UnicodeString StringFromUText(UText *ut) { | |||
2771 | UnicodeString result; | |||
2772 | for (UChar32 c = utext_next32Fromutext_next32From_71(ut, 0); c != U_SENTINEL(-1); c = UTEXT_NEXT32(ut)((ut)->chunkOffset < (ut)->chunkLength && (( ut)->chunkContents)[(ut)->chunkOffset]<0xd800 ? ((ut )->chunkContents)[((ut)->chunkOffset)++] : utext_next32_71 (ut))) { | |||
2773 | result.append(c); | |||
2774 | } | |||
2775 | return result; | |||
2776 | } | |||
2777 | } | |||
2778 | #endif // REGEX_DEBUG | |||
2779 | ||||
2780 | ||||
2781 | //-------------------------------------------------------------------------------- | |||
2782 | // | |||
2783 | // MatchAt This is the actual matching engine. | |||
2784 | // | |||
2785 | // startIdx: begin matching a this index. | |||
2786 | // toEnd: if true, match must extend to end of the input region | |||
2787 | // | |||
2788 | //-------------------------------------------------------------------------------- | |||
2789 | void RegexMatcher::MatchAt(int64_t startIdx, UBool toEnd, UErrorCode &status) { | |||
2790 | UBool isMatch = FALSE0; // True if the we have a match. | |||
2791 | ||||
2792 | int64_t backSearchIndex = U_INT64_MAX((int64_t)(9223372036854775807L)); // used after greedy single-character matches for searching backwards | |||
2793 | ||||
2794 | int32_t op; // Operation from the compiled pattern, split into | |||
2795 | int32_t opType; // the opcode | |||
2796 | int32_t opValue; // and the operand value. | |||
2797 | ||||
2798 | #ifdef REGEX_RUN_DEBUG | |||
2799 | if (fTraceDebug) { | |||
2800 | printf("MatchAt(startIdx=%ld)\n", startIdx); | |||
2801 | printf("Original Pattern: \"%s\"\n", CStr(StringFromUText(fPattern->fPattern))()); | |||
2802 | printf("Input String: \"%s\"\n\n", CStr(StringFromUText(fInputText))()); | |||
2803 | } | |||
2804 | #endif | |||
2805 | ||||
2806 | if (U_FAILURE(status)) { | |||
| ||||
2807 | return; | |||
2808 | } | |||
2809 | ||||
2810 | // Cache frequently referenced items from the compiled pattern | |||
2811 | // | |||
2812 | int64_t *pat = fPattern->fCompiledPat->getBuffer(); | |||
2813 | ||||
2814 | const UChar *litText = fPattern->fLiteralText.getBuffer(); | |||
2815 | UVector *fSets = fPattern->fSets; | |||
2816 | ||||
2817 | fFrameSize = fPattern->fFrameSize; | |||
2818 | REStackFrame *fp = resetStack(); | |||
2819 | if (U_FAILURE(fDeferredStatus)) { | |||
2820 | status = fDeferredStatus; | |||
2821 | return; | |||
2822 | } | |||
2823 | ||||
2824 | fp->fPatIdx = 0; | |||
2825 | fp->fInputIdx = startIdx; | |||
2826 | ||||
2827 | // Zero out the pattern's static data | |||
2828 | int32_t i; | |||
2829 | for (i = 0; i<fPattern->fDataSize; i++) { | |||
2830 | fData[i] = 0; | |||
2831 | } | |||
2832 | ||||
2833 | // | |||
2834 | // Main loop for interpreting the compiled pattern. | |||
2835 | // One iteration of the loop per pattern operation performed. | |||
2836 | // | |||
2837 | for (;;) { | |||
2838 | op = (int32_t)pat[fp->fPatIdx]; | |||
2839 | opType = URX_TYPE(op)((uint32_t)(op) >> 24); | |||
2840 | opValue = URX_VAL(op)((op) & 0xffffff); | |||
2841 | #ifdef REGEX_RUN_DEBUG | |||
2842 | if (fTraceDebug) { | |||
2843 | UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx)do { int64_t __offset = (fp->fInputIdx) - (fInputText)-> chunkNativeStart; if (__offset>=0 && __offset<( int64_t)(fInputText)->nativeIndexingLimit && (fInputText )->chunkContents[__offset]<0xdc00) { (fInputText)->chunkOffset =(int32_t)__offset; } else { utext_setNativeIndex_71((fInputText ), (fp->fInputIdx)); } } while (false); | |||
2844 | printf("inputIdx=%ld inputChar=%x sp=%3ld activeLimit=%ld ", fp->fInputIdx, | |||
2845 | UTEXT_CURRENT32(fInputText)((fInputText)->chunkOffset < (fInputText)->chunkLength && ((fInputText)->chunkContents)[(fInputText)-> chunkOffset]<0xd800 ? ((fInputText)->chunkContents)[((fInputText )->chunkOffset)] : utext_current32_71(fInputText)), (int64_t *)fp-fStack->getBuffer(), fActiveLimit); | |||
2846 | fPattern->dumpOp(fp->fPatIdx); | |||
2847 | } | |||
2848 | #endif | |||
2849 | fp->fPatIdx++; | |||
2850 | ||||
2851 | switch (opType) { | |||
2852 | ||||
2853 | ||||
2854 | case URX_NOP: | |||
2855 | break; | |||
2856 | ||||
2857 | ||||
2858 | case URX_BACKTRACK: | |||
2859 | // Force a backtrack. In some circumstances, the pattern compiler | |||
2860 | // will notice that the pattern can't possibly match anything, and will | |||
2861 | // emit one of these at that point. | |||
2862 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); | |||
2863 | break; | |||
2864 | ||||
2865 | ||||
2866 | case URX_ONECHAR: | |||
2867 | if (fp->fInputIdx < fActiveLimit) { | |||
2868 | UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx)do { int64_t __offset = (fp->fInputIdx) - (fInputText)-> chunkNativeStart; if (__offset>=0 && __offset<( int64_t)(fInputText)->nativeIndexingLimit && (fInputText )->chunkContents[__offset]<0xdc00) { (fInputText)->chunkOffset =(int32_t)__offset; } else { utext_setNativeIndex_71((fInputText ), (fp->fInputIdx)); } } while (false); | |||
2869 | UChar32 c = UTEXT_NEXT32(fInputText)((fInputText)->chunkOffset < (fInputText)->chunkLength && ((fInputText)->chunkContents)[(fInputText)-> chunkOffset]<0xd800 ? ((fInputText)->chunkContents)[((fInputText )->chunkOffset)++] : utext_next32_71(fInputText)); | |||
2870 | if (c == opValue) { | |||
2871 | fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText)((fInputText)->chunkOffset <= (fInputText)->nativeIndexingLimit ? (fInputText)->chunkNativeStart+(fInputText)->chunkOffset : (fInputText)->pFuncs->mapOffsetToNative(fInputText)); | |||
2872 | break; | |||
2873 | } | |||
2874 | } else { | |||
2875 | fHitEnd = TRUE1; | |||
2876 | } | |||
2877 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); | |||
2878 | break; | |||
2879 | ||||
2880 | ||||
2881 | case URX_STRING: | |||
2882 | { | |||
2883 | // Test input against a literal string. | |||
2884 | // Strings require two slots in the compiled pattern, one for the | |||
2885 | // offset to the string text, and one for the length. | |||
2886 | ||||
2887 | int32_t stringStartIdx = opValue; | |||
2888 | op = (int32_t)pat[fp->fPatIdx]; // Fetch the second operand | |||
2889 | fp->fPatIdx++; | |||
2890 | opType = URX_TYPE(op)((uint32_t)(op) >> 24); | |||
2891 | int32_t stringLen = URX_VAL(op)((op) & 0xffffff); | |||
2892 | U_ASSERT(opType == URX_STRING_LEN)(void)0; | |||
2893 | U_ASSERT(stringLen >= 2)(void)0; | |||
2894 | ||||
2895 | const UChar *patternString = litText+stringStartIdx; | |||
2896 | int32_t patternStringIndex = 0; | |||
2897 | UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx)do { int64_t __offset = (fp->fInputIdx) - (fInputText)-> chunkNativeStart; if (__offset>=0 && __offset<( int64_t)(fInputText)->nativeIndexingLimit && (fInputText )->chunkContents[__offset]<0xdc00) { (fInputText)->chunkOffset =(int32_t)__offset; } else { utext_setNativeIndex_71((fInputText ), (fp->fInputIdx)); } } while (false); | |||
2898 | UChar32 inputChar; | |||
2899 | UChar32 patternChar; | |||
2900 | UBool success = TRUE1; | |||
2901 | while (patternStringIndex < stringLen) { | |||
2902 | if (UTEXT_GETNATIVEINDEX(fInputText)((fInputText)->chunkOffset <= (fInputText)->nativeIndexingLimit ? (fInputText)->chunkNativeStart+(fInputText)->chunkOffset : (fInputText)->pFuncs->mapOffsetToNative(fInputText)) >= fActiveLimit) { | |||
2903 | success = FALSE0; | |||
2904 | fHitEnd = TRUE1; | |||
2905 | break; | |||
2906 | } | |||
2907 | inputChar = UTEXT_NEXT32(fInputText)((fInputText)->chunkOffset < (fInputText)->chunkLength && ((fInputText)->chunkContents)[(fInputText)-> chunkOffset]<0xd800 ? ((fInputText)->chunkContents)[((fInputText )->chunkOffset)++] : utext_next32_71(fInputText)); | |||
2908 | U16_NEXT(patternString, patternStringIndex, stringLen, patternChar)do { (patternChar)=(patternString)[(patternStringIndex)++]; if ((((patternChar)&0xfffffc00)==0xd800)) { uint16_t __c2; if ((patternStringIndex)!=(stringLen) && (((__c2=(patternString )[(patternStringIndex)])&0xfffffc00)==0xdc00)) { ++(patternStringIndex ); (patternChar)=(((UChar32)((patternChar))<<10UL)+(UChar32 )(__c2)-((0xd800<<10UL)+0xdc00-0x10000)); } } } while ( false); | |||
2909 | if (patternChar != inputChar) { | |||
2910 | success = FALSE0; | |||
2911 | break; | |||
2912 | } | |||
2913 | } | |||
2914 | ||||
2915 | if (success) { | |||
2916 | fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText)((fInputText)->chunkOffset <= (fInputText)->nativeIndexingLimit ? (fInputText)->chunkNativeStart+(fInputText)->chunkOffset : (fInputText)->pFuncs->mapOffsetToNative(fInputText)); | |||
2917 | } else { | |||
2918 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); | |||
2919 | } | |||
2920 | } | |||
2921 | break; | |||
2922 | ||||
2923 | ||||
2924 | case URX_STATE_SAVE: | |||
2925 | fp = StateSave(fp, opValue, status); | |||
2926 | break; | |||
2927 | ||||
2928 | ||||
2929 | case URX_END: | |||
2930 | // The match loop will exit via this path on a successful match, | |||
2931 | // when we reach the end of the pattern. | |||
2932 | if (toEnd && fp->fInputIdx != fActiveLimit) { | |||
2933 | // The pattern matched, but not to the end of input. Try some more. | |||
2934 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); | |||
2935 | break; | |||
2936 | } | |||
2937 | isMatch = TRUE1; | |||
2938 | goto breakFromLoop; | |||
2939 | ||||
2940 | // Start and End Capture stack frame variables are laid out out like this: | |||
2941 | // fp->fExtra[opValue] - The start of a completed capture group | |||
2942 | // opValue+1 - The end of a completed capture group | |||
2943 | // opValue+2 - the start of a capture group whose end | |||
2944 | // has not yet been reached (and might not ever be). | |||
2945 | case URX_START_CAPTURE: | |||
2946 | U_ASSERT(opValue >= 0 && opValue < fFrameSize-3)(void)0; | |||
2947 | fp->fExtra[opValue+2] = fp->fInputIdx; | |||
2948 | break; | |||
2949 | ||||
2950 | ||||
2951 | case URX_END_CAPTURE: | |||
2952 | U_ASSERT(opValue >= 0 && opValue < fFrameSize-3)(void)0; | |||
2953 | U_ASSERT(fp->fExtra[opValue+2] >= 0)(void)0; // Start pos for this group must be set. | |||
2954 | fp->fExtra[opValue] = fp->fExtra[opValue+2]; // Tentative start becomes real. | |||
2955 | fp->fExtra[opValue+1] = fp->fInputIdx; // End position | |||
2956 | U_ASSERT(fp->fExtra[opValue] <= fp->fExtra[opValue+1])(void)0; | |||
2957 | break; | |||
2958 | ||||
2959 | ||||
2960 | case URX_DOLLAR: // $, test for End of line | |||
2961 | // or for position before new line at end of input | |||
2962 | { | |||
2963 | if (fp->fInputIdx >= fAnchorLimit) { | |||
2964 | // We really are at the end of input. Success. | |||
2965 | fHitEnd = TRUE1; | |||
2966 | fRequireEnd = TRUE1; | |||
2967 | break; | |||
2968 | } | |||
2969 | ||||
2970 | UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx)do { int64_t __offset = (fp->fInputIdx) - (fInputText)-> chunkNativeStart; if (__offset>=0 && __offset<( int64_t)(fInputText)->nativeIndexingLimit && (fInputText )->chunkContents[__offset]<0xdc00) { (fInputText)->chunkOffset =(int32_t)__offset; } else { utext_setNativeIndex_71((fInputText ), (fp->fInputIdx)); } } while (false); | |||
2971 | ||||
2972 | // If we are positioned just before a new-line that is located at the | |||
2973 | // end of input, succeed. | |||
2974 | UChar32 c = UTEXT_NEXT32(fInputText)((fInputText)->chunkOffset < (fInputText)->chunkLength && ((fInputText)->chunkContents)[(fInputText)-> chunkOffset]<0xd800 ? ((fInputText)->chunkContents)[((fInputText )->chunkOffset)++] : utext_next32_71(fInputText)); | |||
2975 | if (UTEXT_GETNATIVEINDEX(fInputText)((fInputText)->chunkOffset <= (fInputText)->nativeIndexingLimit ? (fInputText)->chunkNativeStart+(fInputText)->chunkOffset : (fInputText)->pFuncs->mapOffsetToNative(fInputText)) >= fAnchorLimit) { | |||
2976 | if (isLineTerminator(c)) { | |||
2977 | // If not in the middle of a CR/LF sequence | |||
2978 | if ( !(c==0x0a && fp->fInputIdx>fAnchorStart && ((void)UTEXT_PREVIOUS32(fInputText)((fInputText)->chunkOffset > 0 && (fInputText)-> chunkContents[(fInputText)->chunkOffset-1] < 0xd800 ? ( fInputText)->chunkContents[--((fInputText)->chunkOffset )] : utext_previous32_71(fInputText)), UTEXT_PREVIOUS32(fInputText)((fInputText)->chunkOffset > 0 && (fInputText)-> chunkContents[(fInputText)->chunkOffset-1] < 0xd800 ? ( fInputText)->chunkContents[--((fInputText)->chunkOffset )] : utext_previous32_71(fInputText)))==0x0d)) { | |||
2979 | // At new-line at end of input. Success | |||
2980 | fHitEnd = TRUE1; | |||
2981 | fRequireEnd = TRUE1; | |||
2982 | ||||
2983 | break; | |||
2984 | } | |||
2985 | } | |||
2986 | } else { | |||
2987 | UChar32 nextC = UTEXT_NEXT32(fInputText)((fInputText)->chunkOffset < (fInputText)->chunkLength && ((fInputText)->chunkContents)[(fInputText)-> chunkOffset]<0xd800 ? ((fInputText)->chunkContents)[((fInputText )->chunkOffset)++] : utext_next32_71(fInputText)); | |||
2988 | if (c == 0x0d && nextC == 0x0a && UTEXT_GETNATIVEINDEX(fInputText)((fInputText)->chunkOffset <= (fInputText)->nativeIndexingLimit ? (fInputText)->chunkNativeStart+(fInputText)->chunkOffset : (fInputText)->pFuncs->mapOffsetToNative(fInputText)) >= fAnchorLimit) { | |||
2989 | fHitEnd = TRUE1; | |||
2990 | fRequireEnd = TRUE1; | |||
2991 | break; // At CR/LF at end of input. Success | |||
2992 | } | |||
2993 | } | |||
2994 | ||||
2995 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); | |||
2996 | } | |||
2997 | break; | |||
2998 | ||||
2999 | ||||
3000 | case URX_DOLLAR_D: // $, test for End of Line, in UNIX_LINES mode. | |||
3001 | if (fp->fInputIdx >= fAnchorLimit) { | |||
3002 | // Off the end of input. Success. | |||
3003 | fHitEnd = TRUE1; | |||
3004 | fRequireEnd = TRUE1; | |||
3005 | break; | |||
3006 | } else { | |||
3007 | UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx)do { int64_t __offset = (fp->fInputIdx) - (fInputText)-> chunkNativeStart; if (__offset>=0 && __offset<( int64_t)(fInputText)->nativeIndexingLimit && (fInputText )->chunkContents[__offset]<0xdc00) { (fInputText)->chunkOffset =(int32_t)__offset; } else { utext_setNativeIndex_71((fInputText ), (fp->fInputIdx)); } } while (false); | |||
3008 | UChar32 c = UTEXT_NEXT32(fInputText)((fInputText)->chunkOffset < (fInputText)->chunkLength && ((fInputText)->chunkContents)[(fInputText)-> chunkOffset]<0xd800 ? ((fInputText)->chunkContents)[((fInputText )->chunkOffset)++] : utext_next32_71(fInputText)); | |||
3009 | // Either at the last character of input, or off the end. | |||
3010 | if (c == 0x0a && UTEXT_GETNATIVEINDEX(fInputText)((fInputText)->chunkOffset <= (fInputText)->nativeIndexingLimit ? (fInputText)->chunkNativeStart+(fInputText)->chunkOffset : (fInputText)->pFuncs->mapOffsetToNative(fInputText)) == fAnchorLimit) { | |||
3011 | fHitEnd = TRUE1; | |||
3012 | fRequireEnd = TRUE1; | |||
3013 | break; | |||
3014 | } | |||
3015 | } | |||
3016 | ||||
3017 | // Not at end of input. Back-track out. | |||
3018 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); | |||
3019 | break; | |||
3020 | ||||
3021 | ||||
3022 | case URX_DOLLAR_M: // $, test for End of line in multi-line mode | |||
3023 | { | |||
3024 | if (fp->fInputIdx >= fAnchorLimit) { | |||
3025 | // We really are at the end of input. Success. | |||
3026 | fHitEnd = TRUE1; | |||
3027 | fRequireEnd = TRUE1; | |||
3028 | break; | |||
3029 | } | |||
3030 | // If we are positioned just before a new-line, succeed. | |||
3031 | // It makes no difference where the new-line is within the input. | |||
3032 | UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx)do { int64_t __offset = (fp->fInputIdx) - (fInputText)-> chunkNativeStart; if (__offset>=0 && __offset<( int64_t)(fInputText)->nativeIndexingLimit && (fInputText )->chunkContents[__offset]<0xdc00) { (fInputText)->chunkOffset =(int32_t)__offset; } else { utext_setNativeIndex_71((fInputText ), (fp->fInputIdx)); } } while (false); | |||
3033 | UChar32 c = UTEXT_CURRENT32(fInputText)((fInputText)->chunkOffset < (fInputText)->chunkLength && ((fInputText)->chunkContents)[(fInputText)-> chunkOffset]<0xd800 ? ((fInputText)->chunkContents)[((fInputText )->chunkOffset)] : utext_current32_71(fInputText)); | |||
3034 | if (isLineTerminator(c)) { | |||
3035 | // At a line end, except for the odd chance of being in the middle of a CR/LF sequence | |||
3036 | // In multi-line mode, hitting a new-line just before the end of input does not | |||
3037 | // set the hitEnd or requireEnd flags | |||
3038 | if ( !(c==0x0a && fp->fInputIdx>fAnchorStart && UTEXT_PREVIOUS32(fInputText)((fInputText)->chunkOffset > 0 && (fInputText)-> chunkContents[(fInputText)->chunkOffset-1] < 0xd800 ? ( fInputText)->chunkContents[--((fInputText)->chunkOffset )] : utext_previous32_71(fInputText))==0x0d)) { | |||
3039 | break; | |||
3040 | } | |||
3041 | } | |||
3042 | // not at a new line. Fail. | |||
3043 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); | |||
3044 | } | |||
3045 | break; | |||
3046 | ||||
3047 | ||||
3048 | case URX_DOLLAR_MD: // $, test for End of line in multi-line and UNIX_LINES mode | |||
3049 | { | |||
3050 | if (fp->fInputIdx >= fAnchorLimit) { | |||
3051 | // We really are at the end of input. Success. | |||
3052 | fHitEnd = TRUE1; | |||
3053 | fRequireEnd = TRUE1; // Java set requireEnd in this case, even though | |||
3054 | break; // adding a new-line would not lose the match. | |||
3055 | } | |||
3056 | // If we are not positioned just before a new-line, the test fails; backtrack out. | |||
3057 | // It makes no difference where the new-line is within the input. | |||
3058 | UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx)do { int64_t __offset = (fp->fInputIdx) - (fInputText)-> chunkNativeStart; if (__offset>=0 && __offset<( int64_t)(fInputText)->nativeIndexingLimit && (fInputText )->chunkContents[__offset]<0xdc00) { (fInputText)->chunkOffset =(int32_t)__offset; } else { utext_setNativeIndex_71((fInputText ), (fp->fInputIdx)); } } while (false); | |||
3059 | if (UTEXT_CURRENT32(fInputText)((fInputText)->chunkOffset < (fInputText)->chunkLength && ((fInputText)->chunkContents)[(fInputText)-> chunkOffset]<0xd800 ? ((fInputText)->chunkContents)[((fInputText )->chunkOffset)] : utext_current32_71(fInputText)) != 0x0a) { | |||
3060 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); | |||
3061 | } | |||
3062 | } | |||
3063 | break; | |||
3064 | ||||
3065 | ||||
3066 | case URX_CARET: // ^, test for start of line | |||
3067 | if (fp->fInputIdx != fAnchorStart) { | |||
3068 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); | |||
3069 | } | |||
3070 | break; | |||
3071 | ||||
3072 | ||||
3073 | case URX_CARET_M: // ^, test for start of line in mulit-line mode | |||
3074 | { | |||
3075 | if (fp->fInputIdx == fAnchorStart) { | |||
3076 | // We are at the start input. Success. | |||
3077 | break; | |||
3078 | } | |||
3079 | // Check whether character just before the current pos is a new-line | |||
3080 | // unless we are at the end of input | |||
3081 | UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx)do { int64_t __offset = (fp->fInputIdx) - (fInputText)-> chunkNativeStart; if (__offset>=0 && __offset<( int64_t)(fInputText)->nativeIndexingLimit && (fInputText )->chunkContents[__offset]<0xdc00) { (fInputText)->chunkOffset =(int32_t)__offset; } else { utext_setNativeIndex_71((fInputText ), (fp->fInputIdx)); } } while (false); | |||
3082 | UChar32 c = UTEXT_PREVIOUS32(fInputText)((fInputText)->chunkOffset > 0 && (fInputText)-> chunkContents[(fInputText)->chunkOffset-1] < 0xd800 ? ( fInputText)->chunkContents[--((fInputText)->chunkOffset )] : utext_previous32_71(fInputText)); | |||
3083 | if ((fp->fInputIdx < fAnchorLimit) && isLineTerminator(c)) { | |||
3084 | // It's a new-line. ^ is true. Success. | |||
3085 | // TODO: what should be done with positions between a CR and LF? | |||
3086 | break; | |||
3087 | } | |||
3088 | // Not at the start of a line. Fail. | |||
3089 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); | |||
3090 | } | |||
3091 | break; | |||
3092 | ||||
3093 | ||||
3094 | case URX_CARET_M_UNIX: // ^, test for start of line in mulit-line + Unix-line mode | |||
3095 | { | |||
3096 | U_ASSERT(fp->fInputIdx >= fAnchorStart)(void)0; | |||
3097 | if (fp->fInputIdx <= fAnchorStart) { | |||
3098 | // We are at the start input. Success. | |||
3099 | break; | |||
3100 | } | |||
3101 | // Check whether character just before the current pos is a new-line | |||
3102 | U_ASSERT(fp->fInputIdx <= fAnchorLimit)(void)0; | |||
3103 | UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx)do { int64_t __offset = (fp->fInputIdx) - (fInputText)-> chunkNativeStart; if (__offset>=0 && __offset<( int64_t)(fInputText)->nativeIndexingLimit && (fInputText )->chunkContents[__offset]<0xdc00) { (fInputText)->chunkOffset =(int32_t)__offset; } else { utext_setNativeIndex_71((fInputText ), (fp->fInputIdx)); } } while (false); | |||
3104 | UChar32 c = UTEXT_PREVIOUS32(fInputText)((fInputText)->chunkOffset > 0 && (fInputText)-> chunkContents[(fInputText)->chunkOffset-1] < 0xd800 ? ( fInputText)->chunkContents[--((fInputText)->chunkOffset )] : utext_previous32_71(fInputText)); | |||
3105 | if (c != 0x0a) { | |||
3106 | // Not at the start of a line. Back-track out. | |||
3107 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); | |||
3108 | } | |||
3109 | } | |||
3110 | break; | |||
3111 | ||||
3112 | case URX_BACKSLASH_B: // Test for word boundaries | |||
3113 | { | |||
3114 | UBool success = isWordBoundary(fp->fInputIdx); | |||
3115 | success ^= (UBool)(opValue != 0); // flip sense for \B | |||
3116 | if (!success) { | |||
3117 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); | |||
3118 | } | |||
3119 | } | |||
3120 | break; | |||
3121 | ||||
3122 | ||||
3123 | case URX_BACKSLASH_BU: // Test for word boundaries, Unicode-style | |||
3124 | { | |||
3125 | UBool success = isUWordBoundary(fp->fInputIdx, status); | |||
3126 | success ^= (UBool)(opValue != 0); // flip sense for \B | |||
3127 | if (!success) { | |||
3128 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); | |||
3129 | } | |||
3130 | } | |||
3131 | break; | |||
3132 | ||||
3133 | ||||
3134 | case URX_BACKSLASH_D: // Test for decimal digit | |||
3135 | { | |||
3136 | if (fp->fInputIdx >= fActiveLimit) { | |||
3137 | fHitEnd = TRUE1; | |||
3138 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); | |||
3139 | break; | |||
3140 | } | |||
3141 | ||||
3142 | UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx)do { int64_t __offset = (fp->fInputIdx) - (fInputText)-> chunkNativeStart; if (__offset>=0 && __offset<( int64_t)(fInputText)->nativeIndexingLimit && (fInputText )->chunkContents[__offset]<0xdc00) { (fInputText)->chunkOffset =(int32_t)__offset; } else { utext_setNativeIndex_71((fInputText ), (fp->fInputIdx)); } } while (false); | |||
3143 | ||||
3144 | UChar32 c = UTEXT_NEXT32(fInputText)((fInputText)->chunkOffset < (fInputText)->chunkLength && ((fInputText)->chunkContents)[(fInputText)-> chunkOffset]<0xd800 ? ((fInputText)->chunkContents)[((fInputText )->chunkOffset)++] : utext_next32_71(fInputText)); | |||
3145 | int8_t ctype = u_charTypeu_charType_71(c); // TODO: make a unicode set for this. Will be faster. | |||
3146 | UBool success = (ctype == U_DECIMAL_DIGIT_NUMBER); | |||
3147 | success ^= (UBool)(opValue != 0); // flip sense for \D | |||
3148 | if (success) { | |||
3149 | fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText)((fInputText)->chunkOffset <= (fInputText)->nativeIndexingLimit ? (fInputText)->chunkNativeStart+(fInputText)->chunkOffset : (fInputText)->pFuncs->mapOffsetToNative(fInputText)); | |||
3150 | } else { | |||
3151 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); | |||
3152 | } | |||
3153 | } | |||
3154 | break; | |||
3155 | ||||
3156 | ||||
3157 | case URX_BACKSLASH_G: // Test for position at end of previous match | |||
3158 | if (!((fMatch && fp->fInputIdx==fMatchEnd) || (fMatch==FALSE0 && fp->fInputIdx==fActiveStart))) { | |||
3159 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); | |||
3160 | } | |||
3161 | break; | |||
3162 | ||||
3163 | ||||
3164 | case URX_BACKSLASH_H: // Test for \h, horizontal white space. | |||
3165 | { | |||
3166 | if (fp->fInputIdx >= fActiveLimit) { | |||
3167 | fHitEnd = TRUE1; | |||
3168 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); | |||
3169 | break; | |||
3170 | } | |||
3171 | UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx)do { int64_t __offset = (fp->fInputIdx) - (fInputText)-> chunkNativeStart; if (__offset>=0 && __offset<( int64_t)(fInputText)->nativeIndexingLimit && (fInputText )->chunkContents[__offset]<0xdc00) { (fInputText)->chunkOffset =(int32_t)__offset; } else { utext_setNativeIndex_71((fInputText ), (fp->fInputIdx)); } } while (false); | |||
3172 | UChar32 c = UTEXT_NEXT32(fInputText)((fInputText)->chunkOffset < (fInputText)->chunkLength && ((fInputText)->chunkContents)[(fInputText)-> chunkOffset]<0xd800 ? ((fInputText)->chunkContents)[((fInputText )->chunkOffset)++] : utext_next32_71(fInputText)); | |||
3173 | int8_t ctype = u_charTypeu_charType_71(c); | |||
3174 | UBool success = (ctype == U_SPACE_SEPARATOR || c == 9); // SPACE_SEPARATOR || TAB | |||
3175 | success ^= (UBool)(opValue != 0); // flip sense for \H | |||
3176 | if (success) { | |||
3177 | fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText)((fInputText)->chunkOffset <= (fInputText)->nativeIndexingLimit ? (fInputText)->chunkNativeStart+(fInputText)->chunkOffset : (fInputText)->pFuncs->mapOffsetToNative(fInputText)); | |||
3178 | } else { | |||
3179 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); | |||
3180 | } | |||
3181 | } | |||
3182 | break; | |||
3183 | ||||
3184 | ||||
3185 | case URX_BACKSLASH_R: // Test for \R, any line break sequence. | |||
3186 | { | |||
3187 | if (fp->fInputIdx >= fActiveLimit) { | |||
3188 | fHitEnd = TRUE1; | |||
3189 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); | |||
3190 | break; | |||
3191 | } | |||
3192 | UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx)do { int64_t __offset = (fp->fInputIdx) - (fInputText)-> chunkNativeStart; if (__offset>=0 && __offset<( int64_t)(fInputText)->nativeIndexingLimit && (fInputText )->chunkContents[__offset]<0xdc00) { (fInputText)->chunkOffset =(int32_t)__offset; } else { utext_setNativeIndex_71((fInputText ), (fp->fInputIdx)); } } while (false); | |||
3193 | UChar32 c = UTEXT_NEXT32(fInputText)((fInputText)->chunkOffset < (fInputText)->chunkLength && ((fInputText)->chunkContents)[(fInputText)-> chunkOffset]<0xd800 ? ((fInputText)->chunkContents)[((fInputText )->chunkOffset)++] : utext_next32_71(fInputText)); | |||
3194 | if (isLineTerminator(c)) { | |||
3195 | if (c == 0x0d && utext_current32utext_current32_71(fInputText) == 0x0a) { | |||
3196 | utext_next32utext_next32_71(fInputText); | |||
3197 | } | |||
3198 | fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText)((fInputText)->chunkOffset <= (fInputText)->nativeIndexingLimit ? (fInputText)->chunkNativeStart+(fInputText)->chunkOffset : (fInputText)->pFuncs->mapOffsetToNative(fInputText)); | |||
3199 | } else { | |||
3200 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); | |||
3201 | } | |||
3202 | } | |||
3203 | break; | |||
3204 | ||||
3205 | ||||
3206 | case URX_BACKSLASH_V: // \v, any single line ending character. | |||
3207 | { | |||
3208 | if (fp->fInputIdx >= fActiveLimit) { | |||
3209 | fHitEnd = TRUE1; | |||
3210 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); | |||
3211 | break; | |||
3212 | } | |||
3213 | UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx)do { int64_t __offset = (fp->fInputIdx) - (fInputText)-> chunkNativeStart; if (__offset>=0 && __offset<( int64_t)(fInputText)->nativeIndexingLimit && (fInputText )->chunkContents[__offset]<0xdc00) { (fInputText)->chunkOffset =(int32_t)__offset; } else { utext_setNativeIndex_71((fInputText ), (fp->fInputIdx)); } } while (false); | |||
3214 | UChar32 c = UTEXT_NEXT32(fInputText)((fInputText)->chunkOffset < (fInputText)->chunkLength && ((fInputText)->chunkContents)[(fInputText)-> chunkOffset]<0xd800 ? ((fInputText)->chunkContents)[((fInputText )->chunkOffset)++] : utext_next32_71(fInputText)); | |||
3215 | UBool success = isLineTerminator(c); | |||
3216 | success ^= (UBool)(opValue != 0); // flip sense for \V | |||
3217 | if (success) { | |||
3218 | fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText)((fInputText)->chunkOffset <= (fInputText)->nativeIndexingLimit ? (fInputText)->chunkNativeStart+(fInputText)->chunkOffset : (fInputText)->pFuncs->mapOffsetToNative(fInputText)); | |||
3219 | } else { | |||
3220 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); | |||
3221 | } | |||
3222 | } | |||
3223 | break; | |||
3224 | ||||
3225 | ||||
3226 | case URX_BACKSLASH_X: | |||
3227 | // Match a Grapheme, as defined by Unicode UAX 29. | |||
3228 | ||||
3229 | // Fail if at end of input | |||
3230 | if (fp->fInputIdx >= fActiveLimit) { | |||
3231 | fHitEnd = TRUE1; | |||
3232 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); | |||
3233 | break; | |||
3234 | } | |||
3235 | ||||
3236 | fp->fInputIdx = followingGCBoundary(fp->fInputIdx, status); | |||
3237 | if (fp->fInputIdx >= fActiveLimit) { | |||
3238 | fHitEnd = TRUE1; | |||
3239 | fp->fInputIdx = fActiveLimit; | |||
3240 | } | |||
3241 | break; | |||
3242 | ||||
3243 | ||||
3244 | case URX_BACKSLASH_Z: // Test for end of Input | |||
3245 | if (fp->fInputIdx < fAnchorLimit) { | |||
3246 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); | |||
3247 | } else { | |||
3248 | fHitEnd = TRUE1; | |||
3249 | fRequireEnd = TRUE1; | |||
3250 | } | |||
3251 | break; | |||
3252 | ||||
3253 | ||||
3254 | ||||
3255 | case URX_STATIC_SETREF: | |||
3256 | { | |||
3257 | // Test input character against one of the predefined sets | |||
3258 | // (Word Characters, for example) | |||
3259 | // The high bit of the op value is a flag for the match polarity. | |||
3260 | // 0: success if input char is in set. | |||
3261 | // 1: success if input char is not in set. | |||
3262 | if (fp->fInputIdx >= fActiveLimit) { | |||
3263 | fHitEnd = TRUE1; | |||
3264 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); | |||
3265 | break; | |||
3266 | } | |||
3267 | ||||
3268 | UBool success = ((opValue & URX_NEG_SET) == URX_NEG_SET); | |||
3269 | opValue &= ~URX_NEG_SET; | |||
3270 | U_ASSERT(opValue > 0 && opValue < URX_LAST_SET)(void)0; | |||
3271 | ||||
3272 | UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx)do { int64_t __offset = (fp->fInputIdx) - (fInputText)-> chunkNativeStart; if (__offset>=0 && __offset<( int64_t)(fInputText)->nativeIndexingLimit && (fInputText )->chunkContents[__offset]<0xdc00) { (fInputText)->chunkOffset =(int32_t)__offset; } else { utext_setNativeIndex_71((fInputText ), (fp->fInputIdx)); } } while (false); | |||
3273 | UChar32 c = UTEXT_NEXT32(fInputText)((fInputText)->chunkOffset < (fInputText)->chunkLength && ((fInputText)->chunkContents)[(fInputText)-> chunkOffset]<0xd800 ? ((fInputText)->chunkContents)[((fInputText )->chunkOffset)++] : utext_next32_71(fInputText)); | |||
3274 | if (c < 256) { | |||
3275 | Regex8BitSet &s8 = RegexStaticSets::gStaticSets->fPropSets8[opValue]; | |||
3276 | if (s8.contains(c)) { | |||
3277 | success = !success; | |||
3278 | } | |||
3279 | } else { | |||
3280 | const UnicodeSet &s = RegexStaticSets::gStaticSets->fPropSets[opValue]; | |||
3281 | if (s.contains(c)) { | |||
3282 | success = !success; | |||
3283 | } | |||
3284 | } | |||
3285 | if (success) { | |||
3286 | fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText)((fInputText)->chunkOffset <= (fInputText)->nativeIndexingLimit ? (fInputText)->chunkNativeStart+(fInputText)->chunkOffset : (fInputText)->pFuncs->mapOffsetToNative(fInputText)); | |||
3287 | } else { | |||
3288 | // the character wasn't in the set. | |||
3289 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); | |||
3290 | } | |||
3291 | } | |||
3292 | break; | |||
3293 | ||||
3294 | ||||
3295 | case URX_STAT_SETREF_N: | |||
3296 | { | |||
3297 | // Test input character for NOT being a member of one of | |||
3298 | // the predefined sets (Word Characters, for example) | |||
3299 | if (fp->fInputIdx >= fActiveLimit) { | |||
3300 | fHitEnd = TRUE1; | |||
3301 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); | |||
3302 | break; | |||
3303 | } | |||
3304 | ||||
3305 | U_ASSERT(opValue > 0 && opValue < URX_LAST_SET)(void)0; | |||
3306 | ||||
3307 | UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx)do { int64_t __offset = (fp->fInputIdx) - (fInputText)-> chunkNativeStart; if (__offset>=0 && __offset<( int64_t)(fInputText)->nativeIndexingLimit && (fInputText )->chunkContents[__offset]<0xdc00) { (fInputText)->chunkOffset =(int32_t)__offset; } else { utext_setNativeIndex_71((fInputText ), (fp->fInputIdx)); } } while (false); | |||
3308 | ||||
3309 | UChar32 c = UTEXT_NEXT32(fInputText)((fInputText)->chunkOffset < (fInputText)->chunkLength && ((fInputText)->chunkContents)[(fInputText)-> chunkOffset]<0xd800 ? ((fInputText)->chunkContents)[((fInputText )->chunkOffset)++] : utext_next32_71(fInputText)); | |||
3310 | if (c < 256) { | |||
3311 | Regex8BitSet &s8 = RegexStaticSets::gStaticSets->fPropSets8[opValue]; | |||
3312 | if (s8.contains(c) == FALSE0) { | |||
3313 | fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText)((fInputText)->chunkOffset <= (fInputText)->nativeIndexingLimit ? (fInputText)->chunkNativeStart+(fInputText)->chunkOffset : (fInputText)->pFuncs->mapOffsetToNative(fInputText)); | |||
3314 | break; | |||
3315 | } | |||
3316 | } else { | |||
3317 | const UnicodeSet &s = RegexStaticSets::gStaticSets->fPropSets[opValue]; | |||
3318 | if (s.contains(c) == FALSE0) { | |||
3319 | fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText)((fInputText)->chunkOffset <= (fInputText)->nativeIndexingLimit ? (fInputText)->chunkNativeStart+(fInputText)->chunkOffset : (fInputText)->pFuncs->mapOffsetToNative(fInputText)); | |||
3320 | break; | |||
3321 | } | |||
3322 | } | |||
3323 | // the character wasn't in the set. | |||
3324 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); | |||
3325 | } | |||
3326 | break; | |||
3327 | ||||
3328 | ||||
3329 | case URX_SETREF: | |||
3330 | if (fp->fInputIdx >= fActiveLimit) { | |||
3331 | fHitEnd = TRUE1; | |||
3332 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); | |||
3333 | break; | |||
3334 | } else { | |||
3335 | UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx)do { int64_t __offset = (fp->fInputIdx) - (fInputText)-> chunkNativeStart; if (__offset>=0 && __offset<( int64_t)(fInputText)->nativeIndexingLimit && (fInputText )->chunkContents[__offset]<0xdc00) { (fInputText)->chunkOffset =(int32_t)__offset; } else { utext_setNativeIndex_71((fInputText ), (fp->fInputIdx)); } } while (false); | |||
3336 | ||||
3337 | // There is input left. Pick up one char and test it for set membership. | |||
3338 | UChar32 c = UTEXT_NEXT32(fInputText)((fInputText)->chunkOffset < (fInputText)->chunkLength && ((fInputText)->chunkContents)[(fInputText)-> chunkOffset]<0xd800 ? ((fInputText)->chunkContents)[((fInputText )->chunkOffset)++] : utext_next32_71(fInputText)); | |||
3339 | U_ASSERT(opValue > 0 && opValue < fSets->size())(void)0; | |||
3340 | if (c<256) { | |||
3341 | Regex8BitSet *s8 = &fPattern->fSets8[opValue]; | |||
3342 | if (s8->contains(c)) { | |||
3343 | fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText)((fInputText)->chunkOffset <= (fInputText)->nativeIndexingLimit ? (fInputText)->chunkNativeStart+(fInputText)->chunkOffset : (fInputText)->pFuncs->mapOffsetToNative(fInputText)); | |||
3344 | break; | |||
3345 | } | |||
3346 | } else { | |||
3347 | UnicodeSet *s = (UnicodeSet *)fSets->elementAt(opValue); | |||
3348 | if (s->contains(c)) { | |||
3349 | // The character is in the set. A Match. | |||
3350 | fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText)((fInputText)->chunkOffset <= (fInputText)->nativeIndexingLimit ? (fInputText)->chunkNativeStart+(fInputText)->chunkOffset : (fInputText)->pFuncs->mapOffsetToNative(fInputText)); | |||
3351 | break; | |||
3352 | } | |||
3353 | } | |||
3354 | ||||
3355 | // the character wasn't in the set. | |||
3356 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); | |||
3357 | } | |||
3358 | break; | |||
3359 | ||||
3360 | ||||
3361 | case URX_DOTANY: | |||
3362 | { | |||
3363 | // . matches anything, but stops at end-of-line. | |||
3364 | if (fp->fInputIdx >= fActiveLimit) { | |||
3365 | // At end of input. Match failed. Backtrack out. | |||
3366 | fHitEnd = TRUE1; | |||
3367 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); | |||
3368 | break; | |||
3369 | } | |||
3370 | ||||
3371 | UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx)do { int64_t __offset = (fp->fInputIdx) - (fInputText)-> chunkNativeStart; if (__offset>=0 && __offset<( int64_t)(fInputText)->nativeIndexingLimit && (fInputText )->chunkContents[__offset]<0xdc00) { (fInputText)->chunkOffset =(int32_t)__offset; } else { utext_setNativeIndex_71((fInputText ), (fp->fInputIdx)); } } while (false); | |||
3372 | ||||
3373 | // There is input left. Advance over one char, unless we've hit end-of-line | |||
3374 | UChar32 c = UTEXT_NEXT32(fInputText)((fInputText)->chunkOffset < (fInputText)->chunkLength && ((fInputText)->chunkContents)[(fInputText)-> chunkOffset]<0xd800 ? ((fInputText)->chunkContents)[((fInputText )->chunkOffset)++] : utext_next32_71(fInputText)); | |||
3375 | if (isLineTerminator(c)) { | |||
3376 | // End of line in normal mode. . does not match. | |||
3377 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); | |||
3378 | break; | |||
3379 | } | |||
3380 | fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText)((fInputText)->chunkOffset <= (fInputText)->nativeIndexingLimit ? (fInputText)->chunkNativeStart+(fInputText)->chunkOffset : (fInputText)->pFuncs->mapOffsetToNative(fInputText)); | |||
3381 | } | |||
3382 | break; | |||
3383 | ||||
3384 | ||||
3385 | case URX_DOTANY_ALL: | |||
3386 | { | |||
3387 | // ., in dot-matches-all (including new lines) mode | |||
3388 | if (fp->fInputIdx >= fActiveLimit) { | |||
3389 | // At end of input. Match failed. Backtrack out. | |||
3390 | fHitEnd = TRUE1; | |||
3391 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); | |||
3392 | break; | |||
3393 | } | |||
3394 | ||||
3395 | UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx)do { int64_t __offset = (fp->fInputIdx) - (fInputText)-> chunkNativeStart; if (__offset>=0 && __offset<( int64_t)(fInputText)->nativeIndexingLimit && (fInputText )->chunkContents[__offset]<0xdc00) { (fInputText)->chunkOffset =(int32_t)__offset; } else { utext_setNativeIndex_71((fInputText ), (fp->fInputIdx)); } } while (false); | |||
3396 | ||||
3397 | // There is input left. Advance over one char, except if we are | |||
3398 | // at a cr/lf, advance over both of them. | |||
3399 | UChar32 c; | |||
3400 | c = UTEXT_NEXT32(fInputText)((fInputText)->chunkOffset < (fInputText)->chunkLength && ((fInputText)->chunkContents)[(fInputText)-> chunkOffset]<0xd800 ? ((fInputText)->chunkContents)[((fInputText )->chunkOffset)++] : utext_next32_71(fInputText)); | |||
3401 | fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText)((fInputText)->chunkOffset <= (fInputText)->nativeIndexingLimit ? (fInputText)->chunkNativeStart+(fInputText)->chunkOffset : (fInputText)->pFuncs->mapOffsetToNative(fInputText)); | |||
3402 | if (c==0x0d && fp->fInputIdx < fActiveLimit) { | |||
3403 | // In the case of a CR/LF, we need to advance over both. | |||
3404 | UChar32 nextc = UTEXT_CURRENT32(fInputText)((fInputText)->chunkOffset < (fInputText)->chunkLength && ((fInputText)->chunkContents)[(fInputText)-> chunkOffset]<0xd800 ? ((fInputText)->chunkContents)[((fInputText )->chunkOffset)] : utext_current32_71(fInputText)); | |||
3405 | if (nextc == 0x0a) { | |||
3406 | (void)UTEXT_NEXT32(fInputText)((fInputText)->chunkOffset < (fInputText)->chunkLength && ((fInputText)->chunkContents)[(fInputText)-> chunkOffset]<0xd800 ? ((fInputText)->chunkContents)[((fInputText )->chunkOffset)++] : utext_next32_71(fInputText)); | |||
3407 | fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText)((fInputText)->chunkOffset <= (fInputText)->nativeIndexingLimit ? (fInputText)->chunkNativeStart+(fInputText)->chunkOffset : (fInputText)->pFuncs->mapOffsetToNative(fInputText)); | |||
3408 | } | |||
3409 | } | |||
3410 | } | |||
3411 | break; | |||
3412 | ||||
3413 | ||||
3414 | case URX_DOTANY_UNIX: | |||
3415 | { | |||
3416 | // '.' operator, matches all, but stops at end-of-line. | |||
3417 | // UNIX_LINES mode, so 0x0a is the only recognized line ending. | |||
3418 | if (fp->fInputIdx >= fActiveLimit) { | |||
3419 | // At end of input. Match failed. Backtrack out. | |||
3420 | fHitEnd = TRUE1; | |||
3421 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); | |||
3422 | break; | |||
3423 | } | |||
3424 | ||||
3425 | UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx)do { int64_t __offset = (fp->fInputIdx) - (fInputText)-> chunkNativeStart; if (__offset>=0 && __offset<( int64_t)(fInputText)->nativeIndexingLimit && (fInputText )->chunkContents[__offset]<0xdc00) { (fInputText)->chunkOffset =(int32_t)__offset; } else { utext_setNativeIndex_71((fInputText ), (fp->fInputIdx)); } } while (false); | |||
3426 | ||||
3427 | // There is input left. Advance over one char, unless we've hit end-of-line | |||
3428 | UChar32 c = UTEXT_NEXT32(fInputText)((fInputText)->chunkOffset < (fInputText)->chunkLength && ((fInputText)->chunkContents)[(fInputText)-> chunkOffset]<0xd800 ? ((fInputText)->chunkContents)[((fInputText )->chunkOffset)++] : utext_next32_71(fInputText)); | |||
3429 | if (c == 0x0a) { | |||
3430 | // End of line in normal mode. '.' does not match the \n | |||
3431 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); | |||
3432 | } else { | |||
3433 | fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText)((fInputText)->chunkOffset <= (fInputText)->nativeIndexingLimit ? (fInputText)->chunkNativeStart+(fInputText)->chunkOffset : (fInputText)->pFuncs->mapOffsetToNative(fInputText)); | |||
3434 | } | |||
3435 | } | |||
3436 | break; | |||
3437 | ||||
3438 | ||||
3439 | case URX_JMP: | |||
3440 | fp->fPatIdx = opValue; | |||
3441 | break; | |||
3442 | ||||
3443 | case URX_FAIL: | |||
3444 | isMatch = FALSE0; | |||
3445 | goto breakFromLoop; | |||
3446 | ||||
3447 | case URX_JMP_SAV: | |||
3448 | U_ASSERT(opValue < fPattern->fCompiledPat->size())(void)0; | |||
3449 | fp = StateSave(fp, fp->fPatIdx, status); // State save to loc following current | |||
3450 | fp->fPatIdx = opValue; // Then JMP. | |||
3451 | break; | |||
3452 | ||||
3453 | case URX_JMP_SAV_X: | |||
3454 | // This opcode is used with (x)+, when x can match a zero length string. | |||
3455 | // Same as JMP_SAV, except conditional on the match having made forward progress. | |||
3456 | // Destination of the JMP must be a URX_STO_INP_LOC, from which we get the | |||
3457 | // data address of the input position at the start of the loop. | |||
3458 | { | |||
3459 | U_ASSERT(opValue > 0 && opValue < fPattern->fCompiledPat->size())(void)0; | |||
3460 | int32_t stoOp = (int32_t)pat[opValue-1]; | |||
3461 | U_ASSERT(URX_TYPE(stoOp) == URX_STO_INP_LOC)(void)0; | |||
3462 | int32_t frameLoc = URX_VAL(stoOp)((stoOp) & 0xffffff); | |||
3463 | U_ASSERT(frameLoc >= 0 && frameLoc < fFrameSize)(void)0; | |||
3464 | int64_t prevInputIdx = fp->fExtra[frameLoc]; | |||
3465 | U_ASSERT(prevInputIdx <= fp->fInputIdx)(void)0; | |||
3466 | if (prevInputIdx < fp->fInputIdx) { | |||
3467 | // The match did make progress. Repeat the loop. | |||
3468 | fp = StateSave(fp, fp->fPatIdx, status); // State save to loc following current | |||
3469 | fp->fPatIdx = opValue; | |||
3470 | fp->fExtra[frameLoc] = fp->fInputIdx; | |||
3471 | } | |||
3472 | // If the input position did not advance, we do nothing here, | |||
3473 | // execution will fall out of the loop. | |||
3474 | } | |||
3475 | break; | |||
3476 | ||||
3477 | case URX_CTR_INIT: | |||
3478 | { | |||
3479 | U_ASSERT(opValue >= 0 && opValue < fFrameSize-2)(void)0; | |||
3480 | fp->fExtra[opValue] = 0; // Set the loop counter variable to zero | |||
3481 | ||||
3482 | // Pick up the three extra operands that CTR_INIT has, and | |||
3483 | // skip the pattern location counter past | |||
3484 | int32_t instrOperandLoc = (int32_t)fp->fPatIdx; | |||
3485 | fp->fPatIdx += 3; | |||
3486 | int32_t loopLoc = URX_VAL(pat[instrOperandLoc])((pat[instrOperandLoc]) & 0xffffff); | |||
3487 | int32_t minCount = (int32_t)pat[instrOperandLoc+1]; | |||
3488 | int32_t maxCount = (int32_t)pat[instrOperandLoc+2]; | |||
3489 | U_ASSERT(minCount>=0)(void)0; | |||
3490 | U_ASSERT(maxCount>=minCount || maxCount==-1)(void)0; | |||
3491 | U_ASSERT(loopLoc>=fp->fPatIdx)(void)0; | |||
3492 | ||||
3493 | if (minCount == 0) { | |||
3494 | fp = StateSave(fp, loopLoc+1, status); | |||
3495 | } | |||
3496 | if (maxCount == -1) { | |||
3497 | fp->fExtra[opValue+1] = fp->fInputIdx; // For loop breaking. | |||
3498 | } else if (maxCount == 0) { | |||
3499 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); | |||
3500 | } | |||
3501 | } | |||
3502 | break; | |||
3503 | ||||
3504 | case URX_CTR_LOOP: | |||
3505 | { | |||
3506 | U_ASSERT(opValue>0 && opValue < fp->fPatIdx-2)(void)0; | |||
3507 | int32_t initOp = (int32_t)pat[opValue]; | |||
3508 | U_ASSERT(URX_TYPE(initOp) == URX_CTR_INIT)(void)0; | |||
3509 | int64_t *pCounter = &fp->fExtra[URX_VAL(initOp)((initOp) & 0xffffff)]; | |||
3510 | int32_t minCount = (int32_t)pat[opValue+2]; | |||
3511 | int32_t maxCount = (int32_t)pat[opValue+3]; | |||
3512 | (*pCounter)++; | |||
3513 | if ((uint64_t)*pCounter >= (uint32_t)maxCount && maxCount != -1) { | |||
3514 | U_ASSERT(*pCounter == maxCount)(void)0; | |||
3515 | break; | |||
3516 | } | |||
3517 | if (*pCounter >= minCount) { | |||
3518 | if (maxCount == -1) { | |||
3519 | // Loop has no hard upper bound. | |||
3520 | // Check that it is progressing through the input, break if it is not. | |||
3521 | int64_t *pLastInputIdx = &fp->fExtra[URX_VAL(initOp)((initOp) & 0xffffff) + 1]; | |||
3522 | if (fp->fInputIdx == *pLastInputIdx) { | |||
3523 | break; | |||
3524 | } else { | |||
3525 | *pLastInputIdx = fp->fInputIdx; | |||
3526 | } | |||
3527 | } | |||
3528 | fp = StateSave(fp, fp->fPatIdx, status); | |||
3529 | } else { | |||
3530 | // Increment time-out counter. (StateSave() does it if count >= minCount) | |||
3531 | fTickCounter--; | |||
3532 | if (fTickCounter <= 0) { | |||
3533 | IncrementTime(status); // Re-initializes fTickCounter | |||
3534 | } | |||
3535 | } | |||
3536 | ||||
3537 | fp->fPatIdx = opValue + 4; // Loop back. | |||
3538 | } | |||
3539 | break; | |||
3540 | ||||
3541 | case URX_CTR_INIT_NG: | |||
3542 | { | |||
3543 | // Initialize a non-greedy loop | |||
3544 | U_ASSERT(opValue >= 0 && opValue < fFrameSize-2)(void)0; | |||
3545 | fp->fExtra[opValue] = 0; // Set the loop counter variable to zero | |||
3546 | ||||
3547 | // Pick up the three extra operands that CTR_INIT_NG has, and | |||
3548 | // skip the pattern location counter past | |||
3549 | int32_t instrOperandLoc = (int32_t)fp->fPatIdx; | |||
3550 | fp->fPatIdx += 3; | |||
3551 | int32_t loopLoc = URX_VAL(pat[instrOperandLoc])((pat[instrOperandLoc]) & 0xffffff); | |||
3552 | int32_t minCount = (int32_t)pat[instrOperandLoc+1]; | |||
3553 | int32_t maxCount = (int32_t)pat[instrOperandLoc+2]; | |||
3554 | U_ASSERT(minCount>=0)(void)0; | |||
3555 | U_ASSERT(maxCount>=minCount || maxCount==-1)(void)0; | |||
3556 | U_ASSERT(loopLoc>fp->fPatIdx)(void)0; | |||
3557 | if (maxCount == -1) { | |||
3558 | fp->fExtra[opValue+1] = fp->fInputIdx; // Save initial input index for loop breaking. | |||
3559 | } | |||
3560 | ||||
3561 | if (minCount == 0) { | |||
3562 | if (maxCount != 0) { | |||
3563 | fp = StateSave(fp, fp->fPatIdx, status); | |||
3564 | } | |||
3565 | fp->fPatIdx = loopLoc+1; // Continue with stuff after repeated block | |||
3566 | } | |||
3567 | } | |||
3568 | break; | |||
3569 | ||||
3570 | case URX_CTR_LOOP_NG: | |||
3571 | { | |||
3572 | // Non-greedy {min, max} loops | |||
3573 | U_ASSERT(opValue>0 && opValue < fp->fPatIdx-2)(void)0; | |||
3574 | int32_t initOp = (int32_t)pat[opValue]; | |||
3575 | U_ASSERT(URX_TYPE(initOp) == URX_CTR_INIT_NG)(void)0; | |||
3576 | int64_t *pCounter = &fp->fExtra[URX_VAL(initOp)((initOp) & 0xffffff)]; | |||
3577 | int32_t minCount = (int32_t)pat[opValue+2]; | |||
3578 | int32_t maxCount = (int32_t)pat[opValue+3]; | |||
3579 | ||||
3580 | (*pCounter)++; | |||
3581 | if ((uint64_t)*pCounter >= (uint32_t)maxCount && maxCount != -1) { | |||
3582 | // The loop has matched the maximum permitted number of times. | |||
3583 | // Break out of here with no action. Matching will | |||
3584 | // continue with the following pattern. | |||
3585 | U_ASSERT(*pCounter == maxCount)(void)0; | |||
3586 | break; | |||
3587 | } | |||
3588 | ||||
3589 | if (*pCounter < minCount) { | |||
3590 | // We haven't met the minimum number of matches yet. | |||
3591 | // Loop back for another one. | |||
3592 | fp->fPatIdx = opValue + 4; // Loop back. | |||
3593 | // Increment time-out counter. (StateSave() does it if count >= minCount) | |||
3594 | fTickCounter--; | |||
3595 | if (fTickCounter <= 0) { | |||
3596 | IncrementTime(status); // Re-initializes fTickCounter | |||
3597 | } | |||
3598 | } else { | |||
3599 | // We do have the minimum number of matches. | |||
3600 | ||||
3601 | // If there is no upper bound on the loop iterations, check that the input index | |||
3602 | // is progressing, and stop the loop if it is not. | |||
3603 | if (maxCount == -1) { | |||
3604 | int64_t *pLastInputIdx = &fp->fExtra[URX_VAL(initOp)((initOp) & 0xffffff) + 1]; | |||
3605 | if (fp->fInputIdx == *pLastInputIdx) { | |||
3606 | break; | |||
3607 | } | |||
3608 | *pLastInputIdx = fp->fInputIdx; | |||
3609 | } | |||
3610 | ||||
3611 | // Loop Continuation: we will fall into the pattern following the loop | |||
3612 | // (non-greedy, don't execute loop body first), but first do | |||
3613 | // a state save to the top of the loop, so that a match failure | |||
3614 | // in the following pattern will try another iteration of the loop. | |||
3615 | fp = StateSave(fp, opValue + 4, status); | |||
3616 | } | |||
3617 | } | |||
3618 | break; | |||
3619 | ||||
3620 | case URX_STO_SP: | |||
3621 | U_ASSERT(opValue >= 0 && opValue < fPattern->fDataSize)(void)0; | |||
3622 | fData[opValue] = fStack->size(); | |||
3623 | break; | |||
3624 | ||||
3625 | case URX_LD_SP: | |||
3626 | { | |||
3627 | U_ASSERT(opValue >= 0 && opValue < fPattern->fDataSize)(void)0; | |||
3628 | int32_t newStackSize = (int32_t)fData[opValue]; | |||
3629 | U_ASSERT(newStackSize <= fStack->size())(void)0; | |||
3630 | int64_t *newFP = fStack->getBuffer() + newStackSize - fFrameSize; | |||
3631 | if (newFP == (int64_t *)fp) { | |||
3632 | break; | |||
3633 | } | |||
3634 | int32_t j; | |||
3635 | for (j=0; j<fFrameSize; j++) { | |||
3636 | newFP[j] = ((int64_t *)fp)[j]; | |||
3637 | } | |||
3638 | fp = (REStackFrame *)newFP; | |||
3639 | fStack->setSize(newStackSize); | |||
3640 | } | |||
3641 | break; | |||
3642 | ||||
3643 | case URX_BACKREF: | |||
3644 | { | |||
3645 | U_ASSERT(opValue < fFrameSize)(void)0; | |||
3646 | int64_t groupStartIdx = fp->fExtra[opValue]; | |||
3647 | int64_t groupEndIdx = fp->fExtra[opValue+1]; | |||
3648 | U_ASSERT(groupStartIdx <= groupEndIdx)(void)0; | |||
3649 | if (groupStartIdx < 0) { | |||
3650 | // This capture group has not participated in the match thus far, | |||
3651 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); // FAIL, no match. | |||
3652 | break; | |||
3653 | } | |||
3654 | UTEXT_SETNATIVEINDEX(fAltInputText, groupStartIdx)do { int64_t __offset = (groupStartIdx) - (fAltInputText)-> chunkNativeStart; if (__offset>=0 && __offset<( int64_t)(fAltInputText)->nativeIndexingLimit && (fAltInputText )->chunkContents[__offset]<0xdc00) { (fAltInputText)-> chunkOffset=(int32_t)__offset; } else { utext_setNativeIndex_71 ((fAltInputText), (groupStartIdx)); } } while (false); | |||
3655 | UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx)do { int64_t __offset = (fp->fInputIdx) - (fInputText)-> chunkNativeStart; if (__offset>=0 && __offset<( int64_t)(fInputText)->nativeIndexingLimit && (fInputText )->chunkContents[__offset]<0xdc00) { (fInputText)->chunkOffset =(int32_t)__offset; } else { utext_setNativeIndex_71((fInputText ), (fp->fInputIdx)); } } while (false); | |||
3656 | ||||
3657 | // Note: if the capture group match was of an empty string the backref | |||
3658 | // match succeeds. Verified by testing: Perl matches succeed | |||
3659 | // in this case, so we do too. | |||
3660 | ||||
3661 | UBool success = TRUE1; | |||
3662 | for (;;) { | |||
3663 | if (utext_getNativeIndexutext_getNativeIndex_71(fAltInputText) >= groupEndIdx) { | |||
3664 | success = TRUE1; | |||
3665 | break; | |||
3666 | } | |||
3667 | if (utext_getNativeIndexutext_getNativeIndex_71(fInputText) >= fActiveLimit) { | |||
3668 | success = FALSE0; | |||
3669 | fHitEnd = TRUE1; | |||
3670 | break; | |||
3671 | } | |||
3672 | UChar32 captureGroupChar = utext_next32utext_next32_71(fAltInputText); | |||
3673 | UChar32 inputChar = utext_next32utext_next32_71(fInputText); | |||
3674 | if (inputChar != captureGroupChar) { | |||
3675 | success = FALSE0; | |||
3676 | break; | |||
3677 | } | |||
3678 | } | |||
3679 | ||||
3680 | if (success) { | |||
3681 | fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText)((fInputText)->chunkOffset <= (fInputText)->nativeIndexingLimit ? (fInputText)->chunkNativeStart+(fInputText)->chunkOffset : (fInputText)->pFuncs->mapOffsetToNative(fInputText)); | |||
3682 | } else { | |||
3683 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); | |||
3684 | } | |||
3685 | } | |||
3686 | break; | |||
3687 | ||||
3688 | ||||
3689 | ||||
3690 | case URX_BACKREF_I: | |||
3691 | { | |||
3692 | U_ASSERT(opValue < fFrameSize)(void)0; | |||
3693 | int64_t groupStartIdx = fp->fExtra[opValue]; | |||
3694 | int64_t groupEndIdx = fp->fExtra[opValue+1]; | |||
3695 | U_ASSERT(groupStartIdx <= groupEndIdx)(void)0; | |||
3696 | if (groupStartIdx < 0) { | |||
3697 | // This capture group has not participated in the match thus far, | |||
3698 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); // FAIL, no match. | |||
3699 | break; | |||
3700 | } | |||
3701 | utext_setNativeIndexutext_setNativeIndex_71(fAltInputText, groupStartIdx); | |||
3702 | utext_setNativeIndexutext_setNativeIndex_71(fInputText, fp->fInputIdx); | |||
3703 | CaseFoldingUTextIterator captureGroupItr(*fAltInputText); | |||
3704 | CaseFoldingUTextIterator inputItr(*fInputText); | |||
3705 | ||||
3706 | // Note: if the capture group match was of an empty string the backref | |||
3707 | // match succeeds. Verified by testing: Perl matches succeed | |||
3708 | // in this case, so we do too. | |||
3709 | ||||
3710 | UBool success = TRUE1; | |||
3711 | for (;;) { | |||
3712 | if (!captureGroupItr.inExpansion() && utext_getNativeIndexutext_getNativeIndex_71(fAltInputText) >= groupEndIdx) { | |||
3713 | success = TRUE1; | |||
3714 | break; | |||
3715 | } | |||
3716 | if (!inputItr.inExpansion() && utext_getNativeIndexutext_getNativeIndex_71(fInputText) >= fActiveLimit) { | |||
3717 | success = FALSE0; | |||
3718 | fHitEnd = TRUE1; | |||
3719 | break; | |||
3720 | } | |||
3721 | UChar32 captureGroupChar = captureGroupItr.next(); | |||
3722 | UChar32 inputChar = inputItr.next(); | |||
3723 | if (inputChar != captureGroupChar) { | |||
3724 | success = FALSE0; | |||
3725 | break; | |||
3726 | } | |||
3727 | } | |||
3728 | ||||
3729 | if (success && inputItr.inExpansion()) { | |||
3730 | // We obtained a match by consuming part of a string obtained from | |||
3731 | // case-folding a single code point of the input text. | |||
3732 | // This does not count as an overall match. | |||
3733 | success = FALSE0; | |||
3734 | } | |||
3735 | ||||
3736 | if (success) { | |||
3737 | fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText)((fInputText)->chunkOffset <= (fInputText)->nativeIndexingLimit ? (fInputText)->chunkNativeStart+(fInputText)->chunkOffset : (fInputText)->pFuncs->mapOffsetToNative(fInputText)); | |||
3738 | } else { | |||
3739 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); | |||
3740 | } | |||
3741 | ||||
3742 | } | |||
3743 | break; | |||
3744 | ||||
3745 | case URX_STO_INP_LOC: | |||
3746 | { | |||
3747 | U_ASSERT(opValue >= 0 && opValue < fFrameSize)(void)0; | |||
3748 | fp->fExtra[opValue] = fp->fInputIdx; | |||
3749 | } | |||
3750 | break; | |||
3751 | ||||
3752 | case URX_JMPX: | |||
3753 | { | |||
3754 | int32_t instrOperandLoc = (int32_t)fp->fPatIdx; | |||
3755 | fp->fPatIdx += 1; | |||
3756 | int32_t dataLoc = URX_VAL(pat[instrOperandLoc])((pat[instrOperandLoc]) & 0xffffff); | |||
3757 | U_ASSERT(dataLoc >= 0 && dataLoc < fFrameSize)(void)0; | |||
3758 | int64_t savedInputIdx = fp->fExtra[dataLoc]; | |||
3759 | U_ASSERT(savedInputIdx <= fp->fInputIdx)(void)0; | |||
3760 | if (savedInputIdx < fp->fInputIdx) { | |||
3761 | fp->fPatIdx = opValue; // JMP | |||
3762 | } else { | |||
3763 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); // FAIL, no progress in loop. | |||
3764 | } | |||
3765 | } | |||
3766 | break; | |||
3767 | ||||
3768 | case URX_LA_START: | |||
3769 | { | |||
3770 | // Entering a look around block. | |||
3771 | // Save Stack Ptr, Input Pos. | |||
3772 | U_ASSERT(opValue>=0 && opValue+3<fPattern->fDataSize)(void)0; | |||
3773 | fData[opValue] = fStack->size(); | |||
3774 | fData[opValue+1] = fp->fInputIdx; | |||
3775 | fData[opValue+2] = fActiveStart; | |||
3776 | fData[opValue+3] = fActiveLimit; | |||
3777 | fActiveStart = fLookStart; // Set the match region change for | |||
3778 | fActiveLimit = fLookLimit; // transparent bounds. | |||
3779 | } | |||
3780 | break; | |||
3781 | ||||
3782 | case URX_LA_END: | |||
3783 | { | |||
3784 | // Leaving a look-ahead block. | |||
3785 | // restore Stack Ptr, Input Pos to positions they had on entry to block. | |||
3786 | U_ASSERT(opValue>=0 && opValue+3<fPattern->fDataSize)(void)0; | |||
3787 | int32_t stackSize = fStack->size(); | |||
3788 | int32_t newStackSize =(int32_t)fData[opValue]; | |||
3789 | U_ASSERT(stackSize >= newStackSize)(void)0; | |||
3790 | if (stackSize > newStackSize) { | |||
3791 | // Copy the current top frame back to the new (cut back) top frame. | |||
3792 | // This makes the capture groups from within the look-ahead | |||
3793 | // expression available. | |||
3794 | int64_t *newFP = fStack->getBuffer() + newStackSize - fFrameSize; | |||
3795 | int32_t j; | |||
3796 | for (j=0; j<fFrameSize; j++) { | |||
3797 | newFP[j] = ((int64_t *)fp)[j]; | |||
3798 | } | |||
3799 | fp = (REStackFrame *)newFP; | |||
3800 | fStack->setSize(newStackSize); | |||
3801 | } | |||
3802 | fp->fInputIdx = fData[opValue+1]; | |||
3803 | ||||
3804 | // Restore the active region bounds in the input string; they may have | |||
3805 | // been changed because of transparent bounds on a Region. | |||
3806 | fActiveStart = fData[opValue+2]; | |||
3807 | fActiveLimit = fData[opValue+3]; | |||
3808 | U_ASSERT(fActiveStart >= 0)(void)0; | |||
3809 | U_ASSERT(fActiveLimit <= fInputLength)(void)0; | |||
3810 | } | |||
3811 | break; | |||
3812 | ||||
3813 | case URX_ONECHAR_I: | |||
3814 | // Case insensitive one char. The char from the pattern is already case folded. | |||
3815 | // Input text is not, but case folding the input can not reduce two or more code | |||
3816 | // points to one. | |||
3817 | if (fp->fInputIdx < fActiveLimit) { | |||
3818 | UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx)do { int64_t __offset = (fp->fInputIdx) - (fInputText)-> chunkNativeStart; if (__offset>=0 && __offset<( int64_t)(fInputText)->nativeIndexingLimit && (fInputText )->chunkContents[__offset]<0xdc00) { (fInputText)->chunkOffset =(int32_t)__offset; } else { utext_setNativeIndex_71((fInputText ), (fp->fInputIdx)); } } while (false); | |||
3819 | ||||
3820 | UChar32 c = UTEXT_NEXT32(fInputText)((fInputText)->chunkOffset < (fInputText)->chunkLength && ((fInputText)->chunkContents)[(fInputText)-> chunkOffset]<0xd800 ? ((fInputText)->chunkContents)[((fInputText )->chunkOffset)++] : utext_next32_71(fInputText)); | |||
3821 | if (u_foldCaseu_foldCase_71(c, U_FOLD_CASE_DEFAULT0) == opValue) { | |||
3822 | fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText)((fInputText)->chunkOffset <= (fInputText)->nativeIndexingLimit ? (fInputText)->chunkNativeStart+(fInputText)->chunkOffset : (fInputText)->pFuncs->mapOffsetToNative(fInputText)); | |||
3823 | break; | |||
3824 | } | |||
3825 | } else { | |||
3826 | fHitEnd = TRUE1; | |||
3827 | } | |||
3828 | ||||
3829 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); | |||
3830 | break; | |||
3831 | ||||
3832 | case URX_STRING_I: | |||
3833 | { | |||
3834 | // Case-insensitive test input against a literal string. | |||
3835 | // Strings require two slots in the compiled pattern, one for the | |||
3836 | // offset to the string text, and one for the length. | |||
3837 | // The compiled string has already been case folded. | |||
3838 | { | |||
3839 | const UChar *patternString = litText + opValue; | |||
3840 | int32_t patternStringIdx = 0; | |||
3841 | ||||
3842 | op = (int32_t)pat[fp->fPatIdx]; | |||
3843 | fp->fPatIdx++; | |||
3844 | opType = URX_TYPE(op)((uint32_t)(op) >> 24); | |||
3845 | opValue = URX_VAL(op)((op) & 0xffffff); | |||
3846 | U_ASSERT(opType == URX_STRING_LEN)(void)0; | |||
3847 | int32_t patternStringLen = opValue; // Length of the string from the pattern. | |||
3848 | ||||
3849 | ||||
3850 | UChar32 cPattern; | |||
3851 | UChar32 cText; | |||
3852 | UBool success = TRUE1; | |||
3853 | ||||
3854 | UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx)do { int64_t __offset = (fp->fInputIdx) - (fInputText)-> chunkNativeStart; if (__offset>=0 && __offset<( int64_t)(fInputText)->nativeIndexingLimit && (fInputText )->chunkContents[__offset]<0xdc00) { (fInputText)->chunkOffset =(int32_t)__offset; } else { utext_setNativeIndex_71((fInputText ), (fp->fInputIdx)); } } while (false); | |||
3855 | CaseFoldingUTextIterator inputIterator(*fInputText); | |||
3856 | while (patternStringIdx < patternStringLen) { | |||
3857 | if (!inputIterator.inExpansion() && UTEXT_GETNATIVEINDEX(fInputText)((fInputText)->chunkOffset <= (fInputText)->nativeIndexingLimit ? (fInputText)->chunkNativeStart+(fInputText)->chunkOffset : (fInputText)->pFuncs->mapOffsetToNative(fInputText)) >= fActiveLimit) { | |||
3858 | success = FALSE0; | |||
3859 | fHitEnd = TRUE1; | |||
3860 | break; | |||
3861 | } | |||
3862 | U16_NEXT(patternString, patternStringIdx, patternStringLen, cPattern)do { (cPattern)=(patternString)[(patternStringIdx)++]; if(((( cPattern)&0xfffffc00)==0xd800)) { uint16_t __c2; if((patternStringIdx )!=(patternStringLen) && (((__c2=(patternString)[(patternStringIdx )])&0xfffffc00)==0xdc00)) { ++(patternStringIdx); (cPattern )=(((UChar32)((cPattern))<<10UL)+(UChar32)(__c2)-((0xd800 <<10UL)+0xdc00-0x10000)); } } } while (false); | |||
3863 | cText = inputIterator.next(); | |||
3864 | if (cText != cPattern) { | |||
3865 | success = FALSE0; | |||
3866 | break; | |||
3867 | } | |||
3868 | } | |||
3869 | if (inputIterator.inExpansion()) { | |||
3870 | success = FALSE0; | |||
3871 | } | |||
3872 | ||||
3873 | if (success) { | |||
3874 | fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText)((fInputText)->chunkOffset <= (fInputText)->nativeIndexingLimit ? (fInputText)->chunkNativeStart+(fInputText)->chunkOffset : (fInputText)->pFuncs->mapOffsetToNative(fInputText)); | |||
3875 | } else { | |||
3876 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); | |||
3877 | } | |||
3878 | } | |||
3879 | } | |||
3880 | break; | |||
3881 | ||||
3882 | case URX_LB_START: | |||
3883 | { | |||
3884 | // Entering a look-behind block. | |||
3885 | // Save Stack Ptr, Input Pos and active input region. | |||
3886 | // TODO: implement transparent bounds. Ticket #6067 | |||
3887 | U_ASSERT(opValue>=0 && opValue+4<fPattern->fDataSize)(void)0; | |||
3888 | fData[opValue] = fStack->size(); | |||
3889 | fData[opValue+1] = fp->fInputIdx; | |||
3890 | // Save input string length, then reset to pin any matches to end at | |||
3891 | // the current position. | |||
3892 | fData[opValue+2] = fActiveStart; | |||
3893 | fData[opValue+3] = fActiveLimit; | |||
3894 | fActiveStart = fRegionStart; | |||
3895 | fActiveLimit = fp->fInputIdx; | |||
3896 | // Init the variable containing the start index for attempted matches. | |||
3897 | fData[opValue+4] = -1; | |||
3898 | } | |||
3899 | break; | |||
3900 | ||||
3901 | ||||
3902 | case URX_LB_CONT: | |||
3903 | { | |||
3904 | // Positive Look-Behind, at top of loop checking for matches of LB expression | |||
3905 | // at all possible input starting positions. | |||
3906 | ||||
3907 | // Fetch the min and max possible match lengths. They are the operands | |||
3908 | // of this op in the pattern. | |||
3909 | int32_t minML = (int32_t)pat[fp->fPatIdx++]; | |||
3910 | int32_t maxML = (int32_t)pat[fp->fPatIdx++]; | |||
3911 | if (!UTEXT_USES_U16(fInputText)(__null==((fInputText)->pFuncs->mapNativeIndexToUTF16))) { | |||
3912 | // utf-8 fix to maximum match length. The pattern compiler assumes utf-16. | |||
3913 | // The max length need not be exact; it just needs to be >= actual maximum. | |||
3914 | maxML *= 3; | |||
3915 | } | |||
3916 | U_ASSERT(minML <= maxML)(void)0; | |||
3917 | U_ASSERT(minML >= 0)(void)0; | |||
3918 | ||||
3919 | // Fetch (from data) the last input index where a match was attempted. | |||
3920 | U_ASSERT(opValue>=0 && opValue+4<fPattern->fDataSize)(void)0; | |||
3921 | int64_t &lbStartIdx = fData[opValue+4]; | |||
3922 | if (lbStartIdx < 0) { | |||
3923 | // First time through loop. | |||
3924 | lbStartIdx = fp->fInputIdx - minML; | |||
3925 | if (lbStartIdx > 0) { | |||
3926 | // move index to a code point boundary, if it's not on one already. | |||
3927 | UTEXT_SETNATIVEINDEX(fInputText, lbStartIdx)do { int64_t __offset = (lbStartIdx) - (fInputText)->chunkNativeStart ; if (__offset>=0 && __offset<(int64_t)(fInputText )->nativeIndexingLimit && (fInputText)->chunkContents [__offset]<0xdc00) { (fInputText)->chunkOffset=(int32_t )__offset; } else { utext_setNativeIndex_71((fInputText), (lbStartIdx )); } } while (false); | |||
3928 | lbStartIdx = UTEXT_GETNATIVEINDEX(fInputText)((fInputText)->chunkOffset <= (fInputText)->nativeIndexingLimit ? (fInputText)->chunkNativeStart+(fInputText)->chunkOffset : (fInputText)->pFuncs->mapOffsetToNative(fInputText)); | |||
3929 | } | |||
3930 | } else { | |||
3931 | // 2nd through nth time through the loop. | |||
3932 | // Back up start position for match by one. | |||
3933 | if (lbStartIdx == 0) { | |||
3934 | (lbStartIdx)--; | |||
3935 | } else { | |||
3936 | UTEXT_SETNATIVEINDEX(fInputText, lbStartIdx)do { int64_t __offset = (lbStartIdx) - (fInputText)->chunkNativeStart ; if (__offset>=0 && __offset<(int64_t)(fInputText )->nativeIndexingLimit && (fInputText)->chunkContents [__offset]<0xdc00) { (fInputText)->chunkOffset=(int32_t )__offset; } else { utext_setNativeIndex_71((fInputText), (lbStartIdx )); } } while (false); | |||
3937 | (void)UTEXT_PREVIOUS32(fInputText)((fInputText)->chunkOffset > 0 && (fInputText)-> chunkContents[(fInputText)->chunkOffset-1] < 0xd800 ? ( fInputText)->chunkContents[--((fInputText)->chunkOffset )] : utext_previous32_71(fInputText)); | |||
3938 | lbStartIdx = UTEXT_GETNATIVEINDEX(fInputText)((fInputText)->chunkOffset <= (fInputText)->nativeIndexingLimit ? (fInputText)->chunkNativeStart+(fInputText)->chunkOffset : (fInputText)->pFuncs->mapOffsetToNative(fInputText)); | |||
3939 | } | |||
3940 | } | |||
3941 | ||||
3942 | if (lbStartIdx < 0 || lbStartIdx < fp->fInputIdx - maxML) { | |||
3943 | // We have tried all potential match starting points without | |||
3944 | // getting a match. Backtrack out, and out of the | |||
3945 | // Look Behind altogether. | |||
3946 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); | |||
3947 | fActiveStart = fData[opValue+2]; | |||
3948 | fActiveLimit = fData[opValue+3]; | |||
3949 | U_ASSERT(fActiveStart >= 0)(void)0; | |||
3950 | U_ASSERT(fActiveLimit <= fInputLength)(void)0; | |||
3951 | break; | |||
3952 | } | |||
3953 | ||||
3954 | // Save state to this URX_LB_CONT op, so failure to match will repeat the loop. | |||
3955 | // (successful match will fall off the end of the loop.) | |||
3956 | fp = StateSave(fp, fp->fPatIdx-3, status); | |||
3957 | fp->fInputIdx = lbStartIdx; | |||
3958 | } | |||
3959 | break; | |||
3960 | ||||
3961 | case URX_LB_END: | |||
3962 | // End of a look-behind block, after a successful match. | |||
3963 | { | |||
3964 | U_ASSERT(opValue>=0 && opValue+4<fPattern->fDataSize)(void)0; | |||
3965 | if (fp->fInputIdx != fActiveLimit) { | |||
3966 | // The look-behind expression matched, but the match did not | |||
3967 | // extend all the way to the point that we are looking behind from. | |||
3968 | // FAIL out of here, which will take us back to the LB_CONT, which | |||
3969 | // will retry the match starting at another position or fail | |||
3970 | // the look-behind altogether, whichever is appropriate. | |||
3971 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); | |||
3972 | break; | |||
3973 | } | |||
3974 | ||||
3975 | // Look-behind match is good. Restore the original input string region, | |||
3976 | // which had been truncated to pin the end of the lookbehind match to the | |||
3977 | // position being looked-behind. | |||
3978 | fActiveStart = fData[opValue+2]; | |||
3979 | fActiveLimit = fData[opValue+3]; | |||
3980 | U_ASSERT(fActiveStart >= 0)(void)0; | |||
3981 | U_ASSERT(fActiveLimit <= fInputLength)(void)0; | |||
3982 | } | |||
3983 | break; | |||
3984 | ||||
3985 | ||||
3986 | case URX_LBN_CONT: | |||
3987 | { | |||
3988 | // Negative Look-Behind, at top of loop checking for matches of LB expression | |||
3989 | // at all possible input starting positions. | |||
3990 | ||||
3991 | // Fetch the extra parameters of this op. | |||
3992 | int32_t minML = (int32_t)pat[fp->fPatIdx++]; | |||
3993 | int32_t maxML = (int32_t)pat[fp->fPatIdx++]; | |||
3994 | if (!UTEXT_USES_U16(fInputText)(__null==((fInputText)->pFuncs->mapNativeIndexToUTF16))) { | |||
3995 | // utf-8 fix to maximum match length. The pattern compiler assumes utf-16. | |||
3996 | // The max length need not be exact; it just needs to be >= actual maximum. | |||
3997 | maxML *= 3; | |||
3998 | } | |||
3999 | int32_t continueLoc = (int32_t)pat[fp->fPatIdx++]; | |||
4000 | continueLoc = URX_VAL(continueLoc)((continueLoc) & 0xffffff); | |||
4001 | U_ASSERT(minML <= maxML)(void)0; | |||
4002 | U_ASSERT(minML >= 0)(void)0; | |||
4003 | U_ASSERT(continueLoc > fp->fPatIdx)(void)0; | |||
4004 | ||||
4005 | // Fetch (from data) the last input index where a match was attempted. | |||
4006 | U_ASSERT(opValue>=0 && opValue+4<fPattern->fDataSize)(void)0; | |||
4007 | int64_t &lbStartIdx = fData[opValue+4]; | |||
4008 | if (lbStartIdx < 0) { | |||
4009 | // First time through loop. | |||
4010 | lbStartIdx = fp->fInputIdx - minML; | |||
4011 | if (lbStartIdx > 0) { | |||
4012 | // move index to a code point boundary, if it's not on one already. | |||
4013 | UTEXT_SETNATIVEINDEX(fInputText, lbStartIdx)do { int64_t __offset = (lbStartIdx) - (fInputText)->chunkNativeStart ; if (__offset>=0 && __offset<(int64_t)(fInputText )->nativeIndexingLimit && (fInputText)->chunkContents [__offset]<0xdc00) { (fInputText)->chunkOffset=(int32_t )__offset; } else { utext_setNativeIndex_71((fInputText), (lbStartIdx )); } } while (false); | |||
4014 | lbStartIdx = UTEXT_GETNATIVEINDEX(fInputText)((fInputText)->chunkOffset <= (fInputText)->nativeIndexingLimit ? (fInputText)->chunkNativeStart+(fInputText)->chunkOffset : (fInputText)->pFuncs->mapOffsetToNative(fInputText)); | |||
4015 | } | |||
4016 | } else { | |||
4017 | // 2nd through nth time through the loop. | |||
4018 | // Back up start position for match by one. | |||
4019 | if (lbStartIdx == 0) { | |||
4020 | (lbStartIdx)--; | |||
4021 | } else { | |||
4022 | UTEXT_SETNATIVEINDEX(fInputText, lbStartIdx)do { int64_t __offset = (lbStartIdx) - (fInputText)->chunkNativeStart ; if (__offset>=0 && __offset<(int64_t)(fInputText )->nativeIndexingLimit && (fInputText)->chunkContents [__offset]<0xdc00) { (fInputText)->chunkOffset=(int32_t )__offset; } else { utext_setNativeIndex_71((fInputText), (lbStartIdx )); } } while (false); | |||
4023 | (void)UTEXT_PREVIOUS32(fInputText)((fInputText)->chunkOffset > 0 && (fInputText)-> chunkContents[(fInputText)->chunkOffset-1] < 0xd800 ? ( fInputText)->chunkContents[--((fInputText)->chunkOffset )] : utext_previous32_71(fInputText)); | |||
4024 | lbStartIdx = UTEXT_GETNATIVEINDEX(fInputText)((fInputText)->chunkOffset <= (fInputText)->nativeIndexingLimit ? (fInputText)->chunkNativeStart+(fInputText)->chunkOffset : (fInputText)->pFuncs->mapOffsetToNative(fInputText)); | |||
4025 | } | |||
4026 | } | |||
4027 | ||||
4028 | if (lbStartIdx < 0 || lbStartIdx < fp->fInputIdx - maxML) { | |||
4029 | // We have tried all potential match starting points without | |||
4030 | // getting a match, which means that the negative lookbehind as | |||
4031 | // a whole has succeeded. Jump forward to the continue location | |||
4032 | fActiveStart = fData[opValue+2]; | |||
4033 | fActiveLimit = fData[opValue+3]; | |||
4034 | U_ASSERT(fActiveStart >= 0)(void)0; | |||
4035 | U_ASSERT(fActiveLimit <= fInputLength)(void)0; | |||
4036 | fp->fPatIdx = continueLoc; | |||
4037 | break; | |||
4038 | } | |||
4039 | ||||
4040 | // Save state to this URX_LB_CONT op, so failure to match will repeat the loop. | |||
4041 | // (successful match will cause a FAIL out of the loop altogether.) | |||
4042 | fp = StateSave(fp, fp->fPatIdx-4, status); | |||
4043 | fp->fInputIdx = lbStartIdx; | |||
4044 | } | |||
4045 | break; | |||
4046 | ||||
4047 | case URX_LBN_END: | |||
4048 | // End of a negative look-behind block, after a successful match. | |||
4049 | { | |||
4050 | U_ASSERT(opValue>=0 && opValue+4<fPattern->fDataSize)(void)0; | |||
4051 | if (fp->fInputIdx != fActiveLimit) { | |||
4052 | // The look-behind expression matched, but the match did not | |||
4053 | // extend all the way to the point that we are looking behind from. | |||
4054 | // FAIL out of here, which will take us back to the LB_CONT, which | |||
4055 | // will retry the match starting at another position or succeed | |||
4056 | // the look-behind altogether, whichever is appropriate. | |||
4057 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); | |||
4058 | break; | |||
4059 | } | |||
4060 | ||||
4061 | // Look-behind expression matched, which means look-behind test as | |||
4062 | // a whole Fails | |||
4063 | ||||
4064 | // Restore the original input string length, which had been truncated | |||
4065 | // inorder to pin the end of the lookbehind match | |||
4066 | // to the position being looked-behind. | |||
4067 | fActiveStart = fData[opValue+2]; | |||
4068 | fActiveLimit = fData[opValue+3]; | |||
4069 | U_ASSERT(fActiveStart >= 0)(void)0; | |||
4070 | U_ASSERT(fActiveLimit <= fInputLength)(void)0; | |||
4071 | ||||
4072 | // Restore original stack position, discarding any state saved | |||
4073 | // by the successful pattern match. | |||
4074 | U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize)(void)0; | |||
4075 | int32_t newStackSize = (int32_t)fData[opValue]; | |||
4076 | U_ASSERT(fStack->size() > newStackSize)(void)0; | |||
4077 | fStack->setSize(newStackSize); | |||
4078 | ||||
4079 | // FAIL, which will take control back to someplace | |||
4080 | // prior to entering the look-behind test. | |||
4081 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); | |||
4082 | } | |||
4083 | break; | |||
4084 | ||||
4085 | ||||
4086 | case URX_LOOP_SR_I: | |||
4087 | // Loop Initialization for the optimized implementation of | |||
4088 | // [some character set]* | |||
4089 | // This op scans through all matching input. | |||
4090 | // The following LOOP_C op emulates stack unwinding if the following pattern fails. | |||
4091 | { | |||
4092 | U_ASSERT(opValue > 0 && opValue < fSets->size())(void)0; | |||
4093 | Regex8BitSet *s8 = &fPattern->fSets8[opValue]; | |||
4094 | UnicodeSet *s = (UnicodeSet *)fSets->elementAt(opValue); | |||
4095 | ||||
4096 | // Loop through input, until either the input is exhausted or | |||
4097 | // we reach a character that is not a member of the set. | |||
4098 | int64_t ix = fp->fInputIdx; | |||
4099 | UTEXT_SETNATIVEINDEX(fInputText, ix)do { int64_t __offset = (ix) - (fInputText)->chunkNativeStart ; if (__offset>=0 && __offset<(int64_t)(fInputText )->nativeIndexingLimit && (fInputText)->chunkContents [__offset]<0xdc00) { (fInputText)->chunkOffset=(int32_t )__offset; } else { utext_setNativeIndex_71((fInputText), (ix )); } } while (false); | |||
4100 | for (;;) { | |||
4101 | if (ix >= fActiveLimit) { | |||
4102 | fHitEnd = TRUE1; | |||
4103 | break; | |||
4104 | } | |||
4105 | UChar32 c = UTEXT_NEXT32(fInputText)((fInputText)->chunkOffset < (fInputText)->chunkLength && ((fInputText)->chunkContents)[(fInputText)-> chunkOffset]<0xd800 ? ((fInputText)->chunkContents)[((fInputText )->chunkOffset)++] : utext_next32_71(fInputText)); | |||
4106 | if (c<256) { | |||
4107 | if (s8->contains(c) == FALSE0) { | |||
4108 | break; | |||
4109 | } | |||
4110 | } else { | |||
4111 | if (s->contains(c) == FALSE0) { | |||
4112 | break; | |||
4113 | } | |||
4114 | } | |||
4115 | ix = UTEXT_GETNATIVEINDEX(fInputText)((fInputText)->chunkOffset <= (fInputText)->nativeIndexingLimit ? (fInputText)->chunkNativeStart+(fInputText)->chunkOffset : (fInputText)->pFuncs->mapOffsetToNative(fInputText)); | |||
4116 | } | |||
4117 | ||||
4118 | // If there were no matching characters, skip over the loop altogether. | |||
4119 | // The loop doesn't run at all, a * op always succeeds. | |||
4120 | if (ix == fp->fInputIdx) { | |||
4121 | fp->fPatIdx++; // skip the URX_LOOP_C op. | |||
4122 | break; | |||
4123 | } | |||
4124 | ||||
4125 | // Peek ahead in the compiled pattern, to the URX_LOOP_C that | |||
4126 | // must follow. It's operand is the stack location | |||
4127 | // that holds the starting input index for the match of this [set]* | |||
4128 | int32_t loopcOp = (int32_t)pat[fp->fPatIdx]; | |||
4129 | U_ASSERT(URX_TYPE(loopcOp) == URX_LOOP_C)(void)0; | |||
4130 | int32_t stackLoc = URX_VAL(loopcOp)((loopcOp) & 0xffffff); | |||
4131 | U_ASSERT(stackLoc >= 0 && stackLoc < fFrameSize)(void)0; | |||
4132 | fp->fExtra[stackLoc] = fp->fInputIdx; | |||
4133 | fp->fInputIdx = ix; | |||
4134 | ||||
4135 | // Save State to the URX_LOOP_C op that follows this one, | |||
4136 | // so that match failures in the following code will return to there. | |||
4137 | // Then bump the pattern idx so the LOOP_C is skipped on the way out of here. | |||
4138 | fp = StateSave(fp, fp->fPatIdx, status); | |||
4139 | fp->fPatIdx++; | |||
4140 | } | |||
4141 | break; | |||
4142 | ||||
4143 | ||||
4144 | case URX_LOOP_DOT_I: | |||
4145 | // Loop Initialization for the optimized implementation of .* | |||
4146 | // This op scans through all remaining input. | |||
4147 | // The following LOOP_C op emulates stack unwinding if the following pattern fails. | |||
4148 | { | |||
4149 | // Loop through input until the input is exhausted (we reach an end-of-line) | |||
4150 | // In DOTALL mode, we can just go straight to the end of the input. | |||
4151 | int64_t ix; | |||
4152 | if ((opValue & 1) == 1) { | |||
4153 | // Dot-matches-All mode. Jump straight to the end of the string. | |||
4154 | ix = fActiveLimit; | |||
4155 | fHitEnd = TRUE1; | |||
4156 | } else { | |||
4157 | // NOT DOT ALL mode. Line endings do not match '.' | |||
4158 | // Scan forward until a line ending or end of input. | |||
4159 | ix = fp->fInputIdx; | |||
4160 | UTEXT_SETNATIVEINDEX(fInputText, ix)do { int64_t __offset = (ix) - (fInputText)->chunkNativeStart ; if (__offset>=0 && __offset<(int64_t)(fInputText )->nativeIndexingLimit && (fInputText)->chunkContents [__offset]<0xdc00) { (fInputText)->chunkOffset=(int32_t )__offset; } else { utext_setNativeIndex_71((fInputText), (ix )); } } while (false); | |||
4161 | for (;;) { | |||
4162 | if (ix >= fActiveLimit) { | |||
4163 | fHitEnd = TRUE1; | |||
4164 | break; | |||
4165 | } | |||
4166 | UChar32 c = UTEXT_NEXT32(fInputText)((fInputText)->chunkOffset < (fInputText)->chunkLength && ((fInputText)->chunkContents)[(fInputText)-> chunkOffset]<0xd800 ? ((fInputText)->chunkContents)[((fInputText )->chunkOffset)++] : utext_next32_71(fInputText)); | |||
4167 | if ((c & 0x7f) <= 0x29) { // Fast filter of non-new-line-s | |||
4168 | if ((c == 0x0a) || // 0x0a is newline in both modes. | |||
4169 | (((opValue & 2) == 0) && // IF not UNIX_LINES mode | |||
4170 | isLineTerminator(c))) { | |||
4171 | // char is a line ending. Exit the scanning loop. | |||
4172 | break; | |||
4173 | } | |||
4174 | } | |||
4175 | ix = UTEXT_GETNATIVEINDEX(fInputText)((fInputText)->chunkOffset <= (fInputText)->nativeIndexingLimit ? (fInputText)->chunkNativeStart+(fInputText)->chunkOffset : (fInputText)->pFuncs->mapOffsetToNative(fInputText)); | |||
4176 | } | |||
4177 | } | |||
4178 | ||||
4179 | // If there were no matching characters, skip over the loop altogether. | |||
4180 | // The loop doesn't run at all, a * op always succeeds. | |||
4181 | if (ix == fp->fInputIdx) { | |||
4182 | fp->fPatIdx++; // skip the URX_LOOP_C op. | |||
4183 | break; | |||
4184 | } | |||
4185 | ||||
4186 | // Peek ahead in the compiled pattern, to the URX_LOOP_C that | |||
4187 | // must follow. It's operand is the stack location | |||
4188 | // that holds the starting input index for the match of this .* | |||
4189 | int32_t loopcOp = (int32_t)pat[fp->fPatIdx]; | |||
4190 | U_ASSERT(URX_TYPE(loopcOp) == URX_LOOP_C)(void)0; | |||
4191 | int32_t stackLoc = URX_VAL(loopcOp)((loopcOp) & 0xffffff); | |||
4192 | U_ASSERT(stackLoc >= 0 && stackLoc < fFrameSize)(void)0; | |||
4193 | fp->fExtra[stackLoc] = fp->fInputIdx; | |||
4194 | fp->fInputIdx = ix; | |||
4195 | ||||
4196 | // Save State to the URX_LOOP_C op that follows this one, | |||
4197 | // so that match failures in the following code will return to there. | |||
4198 | // Then bump the pattern idx so the LOOP_C is skipped on the way out of here. | |||
4199 | fp = StateSave(fp, fp->fPatIdx, status); | |||
4200 | fp->fPatIdx++; | |||
4201 | } | |||
4202 | break; | |||
4203 | ||||
4204 | ||||
4205 | case URX_LOOP_C: | |||
4206 | { | |||
4207 | U_ASSERT(opValue>=0 && opValue<fFrameSize)(void)0; | |||
4208 | backSearchIndex = fp->fExtra[opValue]; | |||
4209 | U_ASSERT(backSearchIndex <= fp->fInputIdx)(void)0; | |||
4210 | if (backSearchIndex == fp->fInputIdx) { | |||
4211 | // We've backed up the input idx to the point that the loop started. | |||
4212 | // The loop is done. Leave here without saving state. | |||
4213 | // Subsequent failures won't come back here. | |||
4214 | break; | |||
4215 | } | |||
4216 | // Set up for the next iteration of the loop, with input index | |||
4217 | // backed up by one from the last time through, | |||
4218 | // and a state save to this instruction in case the following code fails again. | |||
4219 | // (We're going backwards because this loop emulates stack unwinding, not | |||
4220 | // the initial scan forward.) | |||
4221 | U_ASSERT(fp->fInputIdx > 0)(void)0; | |||
4222 | UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx)do { int64_t __offset = (fp->fInputIdx) - (fInputText)-> chunkNativeStart; if (__offset>=0 && __offset<( int64_t)(fInputText)->nativeIndexingLimit && (fInputText )->chunkContents[__offset]<0xdc00) { (fInputText)->chunkOffset =(int32_t)__offset; } else { utext_setNativeIndex_71((fInputText ), (fp->fInputIdx)); } } while (false); | |||
4223 | UChar32 prevC = UTEXT_PREVIOUS32(fInputText)((fInputText)->chunkOffset > 0 && (fInputText)-> chunkContents[(fInputText)->chunkOffset-1] < 0xd800 ? ( fInputText)->chunkContents[--((fInputText)->chunkOffset )] : utext_previous32_71(fInputText)); | |||
4224 | fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText)((fInputText)->chunkOffset <= (fInputText)->nativeIndexingLimit ? (fInputText)->chunkNativeStart+(fInputText)->chunkOffset : (fInputText)->pFuncs->mapOffsetToNative(fInputText)); | |||
4225 | ||||
4226 | UChar32 twoPrevC = UTEXT_PREVIOUS32(fInputText)((fInputText)->chunkOffset > 0 && (fInputText)-> chunkContents[(fInputText)->chunkOffset-1] < 0xd800 ? ( fInputText)->chunkContents[--((fInputText)->chunkOffset )] : utext_previous32_71(fInputText)); | |||
4227 | if (prevC == 0x0a && | |||
4228 | fp->fInputIdx > backSearchIndex && | |||
4229 | twoPrevC == 0x0d) { | |||
4230 | int32_t prevOp = (int32_t)pat[fp->fPatIdx-2]; | |||
4231 | if (URX_TYPE(prevOp)((uint32_t)(prevOp) >> 24) == URX_LOOP_DOT_I) { | |||
4232 | // .*, stepping back over CRLF pair. | |||
4233 | fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText)((fInputText)->chunkOffset <= (fInputText)->nativeIndexingLimit ? (fInputText)->chunkNativeStart+(fInputText)->chunkOffset : (fInputText)->pFuncs->mapOffsetToNative(fInputText)); | |||
4234 | } | |||
4235 | } | |||
4236 | ||||
4237 | ||||
4238 | fp = StateSave(fp, fp->fPatIdx-1, status); | |||
4239 | } | |||
4240 | break; | |||
4241 | ||||
4242 | ||||
4243 | ||||
4244 | default: | |||
4245 | // Trouble. The compiled pattern contains an entry with an | |||
4246 | // unrecognized type tag. | |||
4247 | UPRV_UNREACHABLE_ASSERT(void)0; | |||
4248 | // Unknown opcode type in opType = URX_TYPE(pat[fp->fPatIdx]). But we have | |||
4249 | // reports of this in production code, don't use UPRV_UNREACHABLE_EXIT. | |||
4250 | // See ICU-21669. | |||
4251 | status = U_INTERNAL_PROGRAM_ERROR; | |||
4252 | } | |||
4253 | ||||
4254 | if (U_FAILURE(status)) { | |||
4255 | isMatch = FALSE0; | |||
4256 | break; | |||
4257 | } | |||
4258 | } | |||
4259 | ||||
4260 | breakFromLoop: | |||
4261 | fMatch = isMatch; | |||
4262 | if (isMatch) { | |||
4263 | fLastMatchEnd = fMatchEnd; | |||
4264 | fMatchStart = startIdx; | |||
4265 | fMatchEnd = fp->fInputIdx; | |||
4266 | } | |||
4267 | ||||
4268 | #ifdef REGEX_RUN_DEBUG | |||
4269 | if (fTraceDebug) { | |||
4270 | if (isMatch) { | |||
4271 | printf("Match. start=%ld end=%ld\n\n", fMatchStart, fMatchEnd); | |||
4272 | } else { | |||
4273 | printf("No match\n\n"); | |||
4274 | } | |||
4275 | } | |||
4276 | #endif | |||
4277 | ||||
4278 | fFrame = fp; // The active stack frame when the engine stopped. | |||
4279 | // Contains the capture group results that we need to | |||
4280 | // access later. | |||
4281 | return; | |||
4282 | } | |||
4283 | ||||
4284 | ||||
4285 | //-------------------------------------------------------------------------------- | |||
4286 | // | |||
4287 | // MatchChunkAt This is the actual matching engine. Like MatchAt, but with the | |||
4288 | // assumption that the entire string is available in the UText's | |||
4289 | // chunk buffer. For now, that means we can use int32_t indexes, | |||
4290 | // except for anything that needs to be saved (like group starts | |||
4291 | // and ends). | |||
4292 | // | |||
4293 | // startIdx: begin matching a this index. | |||
4294 | // toEnd: if true, match must extend to end of the input region | |||
4295 | // | |||
4296 | //-------------------------------------------------------------------------------- | |||
4297 | void RegexMatcher::MatchChunkAt(int32_t startIdx, UBool toEnd, UErrorCode &status) { | |||
4298 | UBool isMatch = FALSE0; // True if the we have a match. | |||
4299 | ||||
4300 | int32_t backSearchIndex = INT32_MAX(2147483647); // used after greedy single-character matches for searching backwards | |||
4301 | ||||
4302 | int32_t op; // Operation from the compiled pattern, split into | |||
4303 | int32_t opType; // the opcode | |||
4304 | int32_t opValue; // and the operand value. | |||
4305 | ||||
4306 | #ifdef REGEX_RUN_DEBUG | |||
4307 | if (fTraceDebug) { | |||
4308 | printf("MatchAt(startIdx=%d)\n", startIdx); | |||
4309 | printf("Original Pattern: \"%s\"\n", CStr(StringFromUText(fPattern->fPattern))()); | |||
4310 | printf("Input String: \"%s\"\n\n", CStr(StringFromUText(fInputText))()); | |||
4311 | } | |||
4312 | #endif | |||
4313 | ||||
4314 | if (U_FAILURE(status)) { | |||
4315 | return; | |||
4316 | } | |||
4317 | ||||
4318 | // Cache frequently referenced items from the compiled pattern | |||
4319 | // | |||
4320 | int64_t *pat = fPattern->fCompiledPat->getBuffer(); | |||
4321 | ||||
4322 | const UChar *litText = fPattern->fLiteralText.getBuffer(); | |||
4323 | UVector *fSets = fPattern->fSets; | |||
4324 | ||||
4325 | const UChar *inputBuf = fInputText->chunkContents; | |||
4326 | ||||
4327 | fFrameSize = fPattern->fFrameSize; | |||
4328 | REStackFrame *fp = resetStack(); | |||
4329 | if (U_FAILURE(fDeferredStatus)) { | |||
4330 | status = fDeferredStatus; | |||
4331 | return; | |||
4332 | } | |||
4333 | ||||
4334 | fp->fPatIdx = 0; | |||
4335 | fp->fInputIdx = startIdx; | |||
4336 | ||||
4337 | // Zero out the pattern's static data | |||
4338 | int32_t i; | |||
4339 | for (i = 0; i<fPattern->fDataSize; i++) { | |||
4340 | fData[i] = 0; | |||
4341 | } | |||
4342 | ||||
4343 | // | |||
4344 | // Main loop for interpreting the compiled pattern. | |||
4345 | // One iteration of the loop per pattern operation performed. | |||
4346 | // | |||
4347 | for (;;) { | |||
4348 | op = (int32_t)pat[fp->fPatIdx]; | |||
4349 | opType = URX_TYPE(op)((uint32_t)(op) >> 24); | |||
4350 | opValue = URX_VAL(op)((op) & 0xffffff); | |||
4351 | #ifdef REGEX_RUN_DEBUG | |||
4352 | if (fTraceDebug) { | |||
4353 | UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx)do { int64_t __offset = (fp->fInputIdx) - (fInputText)-> chunkNativeStart; if (__offset>=0 && __offset<( int64_t)(fInputText)->nativeIndexingLimit && (fInputText )->chunkContents[__offset]<0xdc00) { (fInputText)->chunkOffset =(int32_t)__offset; } else { utext_setNativeIndex_71((fInputText ), (fp->fInputIdx)); } } while (false); | |||
4354 | printf("inputIdx=%ld inputChar=%x sp=%3ld activeLimit=%ld ", fp->fInputIdx, | |||
4355 | UTEXT_CURRENT32(fInputText)((fInputText)->chunkOffset < (fInputText)->chunkLength && ((fInputText)->chunkContents)[(fInputText)-> chunkOffset]<0xd800 ? ((fInputText)->chunkContents)[((fInputText )->chunkOffset)] : utext_current32_71(fInputText)), (int64_t *)fp-fStack->getBuffer(), fActiveLimit); | |||
4356 | fPattern->dumpOp(fp->fPatIdx); | |||
4357 | } | |||
4358 | #endif | |||
4359 | fp->fPatIdx++; | |||
4360 | ||||
4361 | switch (opType) { | |||
4362 | ||||
4363 | ||||
4364 | case URX_NOP: | |||
4365 | break; | |||
4366 | ||||
4367 | ||||
4368 | case URX_BACKTRACK: | |||
4369 | // Force a backtrack. In some circumstances, the pattern compiler | |||
4370 | // will notice that the pattern can't possibly match anything, and will | |||
4371 | // emit one of these at that point. | |||
4372 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); | |||
4373 | break; | |||
4374 | ||||
4375 | ||||
4376 | case URX_ONECHAR: | |||
4377 | if (fp->fInputIdx < fActiveLimit) { | |||
4378 | UChar32 c; | |||
4379 | U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c)do { (c)=(inputBuf)[(fp->fInputIdx)++]; if((((c)&0xfffffc00 )==0xd800)) { uint16_t __c2; if((fp->fInputIdx)!=(fActiveLimit ) && (((__c2=(inputBuf)[(fp->fInputIdx)])&0xfffffc00 )==0xdc00)) { ++(fp->fInputIdx); (c)=(((UChar32)((c))<< 10UL)+(UChar32)(__c2)-((0xd800<<10UL)+0xdc00-0x10000)); } } } while (false); | |||
4380 | if (c == opValue) { | |||
4381 | break; | |||
4382 | } | |||
4383 | } else { | |||
4384 | fHitEnd = TRUE1; | |||
4385 | } | |||
4386 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); | |||
4387 | break; | |||
4388 | ||||
4389 | ||||
4390 | case URX_STRING: | |||
4391 | { | |||
4392 | // Test input against a literal string. | |||
4393 | // Strings require two slots in the compiled pattern, one for the | |||
4394 | // offset to the string text, and one for the length. | |||
4395 | int32_t stringStartIdx = opValue; | |||
4396 | int32_t stringLen; | |||
4397 | ||||
4398 | op = (int32_t)pat[fp->fPatIdx]; // Fetch the second operand | |||
4399 | fp->fPatIdx++; | |||
4400 | opType = URX_TYPE(op)((uint32_t)(op) >> 24); | |||
4401 | stringLen = URX_VAL(op)((op) & 0xffffff); | |||
4402 | U_ASSERT(opType == URX_STRING_LEN)(void)0; | |||
4403 | U_ASSERT(stringLen >= 2)(void)0; | |||
4404 | ||||
4405 | const UChar * pInp = inputBuf + fp->fInputIdx; | |||
4406 | const UChar * pInpLimit = inputBuf + fActiveLimit; | |||
4407 | const UChar * pPat = litText+stringStartIdx; | |||
4408 | const UChar * pEnd = pInp + stringLen; | |||
4409 | UBool success = TRUE1; | |||
4410 | while (pInp < pEnd) { | |||
4411 | if (pInp >= pInpLimit) { | |||
4412 | fHitEnd = TRUE1; | |||
4413 | success = FALSE0; | |||
4414 | break; | |||
4415 | } | |||
4416 | if (*pInp++ != *pPat++) { | |||
4417 | success = FALSE0; | |||
4418 | break; | |||
4419 | } | |||
4420 | } | |||
4421 | ||||
4422 | if (success) { | |||
4423 | fp->fInputIdx += stringLen; | |||
4424 | } else { | |||
4425 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); | |||
4426 | } | |||
4427 | } | |||
4428 | break; | |||
4429 | ||||
4430 | ||||
4431 | case URX_STATE_SAVE: | |||
4432 | fp = StateSave(fp, opValue, status); | |||
4433 | break; | |||
4434 | ||||
4435 | ||||
4436 | case URX_END: | |||
4437 | // The match loop will exit via this path on a successful match, | |||
4438 | // when we reach the end of the pattern. | |||
4439 | if (toEnd && fp->fInputIdx != fActiveLimit) { | |||
4440 | // The pattern matched, but not to the end of input. Try some more. | |||
4441 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); | |||
4442 | break; | |||
4443 | } | |||
4444 | isMatch = TRUE1; | |||
4445 | goto breakFromLoop; | |||
4446 | ||||
4447 | // Start and End Capture stack frame variables are laid out out like this: | |||
4448 | // fp->fExtra[opValue] - The start of a completed capture group | |||
4449 | // opValue+1 - The end of a completed capture group | |||
4450 | // opValue+2 - the start of a capture group whose end | |||
4451 | // has not yet been reached (and might not ever be). | |||
4452 | case URX_START_CAPTURE: | |||
4453 | U_ASSERT(opValue >= 0 && opValue < fFrameSize-3)(void)0; | |||
4454 | fp->fExtra[opValue+2] = fp->fInputIdx; | |||
4455 | break; | |||
4456 | ||||
4457 | ||||
4458 | case URX_END_CAPTURE: | |||
4459 | U_ASSERT(opValue >= 0 && opValue < fFrameSize-3)(void)0; | |||
4460 | U_ASSERT(fp->fExtra[opValue+2] >= 0)(void)0; // Start pos for this group must be set. | |||
4461 | fp->fExtra[opValue] = fp->fExtra[opValue+2]; // Tentative start becomes real. | |||
4462 | fp->fExtra[opValue+1] = fp->fInputIdx; // End position | |||
4463 | U_ASSERT(fp->fExtra[opValue] <= fp->fExtra[opValue+1])(void)0; | |||
4464 | break; | |||
4465 | ||||
4466 | ||||
4467 | case URX_DOLLAR: // $, test for End of line | |||
4468 | // or for position before new line at end of input | |||
4469 | if (fp->fInputIdx < fAnchorLimit-2) { | |||
4470 | // We are no where near the end of input. Fail. | |||
4471 | // This is the common case. Keep it first. | |||
4472 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); | |||
4473 | break; | |||
4474 | } | |||
4475 | if (fp->fInputIdx >= fAnchorLimit) { | |||
4476 | // We really are at the end of input. Success. | |||
4477 | fHitEnd = TRUE1; | |||
4478 | fRequireEnd = TRUE1; | |||
4479 | break; | |||
4480 | } | |||
4481 | ||||
4482 | // If we are positioned just before a new-line that is located at the | |||
4483 | // end of input, succeed. | |||
4484 | if (fp->fInputIdx == fAnchorLimit-1) { | |||
4485 | UChar32 c; | |||
4486 | U16_GET(inputBuf, fAnchorStart, fp->fInputIdx, fAnchorLimit, c)do { (c)=(inputBuf)[fp->fInputIdx]; if((((c)&0xfffff800 )==0xd800)) { uint16_t __c2; if((((c)&0x400)==0)) { if((fp ->fInputIdx)+1!=(fAnchorLimit) && (((__c2=(inputBuf )[(fp->fInputIdx)+1])&0xfffffc00)==0xdc00)) { (c)=(((UChar32 )((c))<<10UL)+(UChar32)(__c2)-((0xd800<<10UL)+0xdc00 -0x10000)); } } else { if((fp->fInputIdx)>(fAnchorStart ) && (((__c2=(inputBuf)[(fp->fInputIdx)-1])&0xfffffc00 )==0xd800)) { (c)=(((UChar32)(__c2)<<10UL)+(UChar32)((c ))-((0xd800<<10UL)+0xdc00-0x10000)); } } } } while (false ); | |||
4487 | ||||
4488 | if (isLineTerminator(c)) { | |||
4489 | if ( !(c==0x0a && fp->fInputIdx>fAnchorStart && inputBuf[fp->fInputIdx-1]==0x0d)) { | |||
4490 | // At new-line at end of input. Success | |||
4491 | fHitEnd = TRUE1; | |||
4492 | fRequireEnd = TRUE1; | |||
4493 | break; | |||
4494 | } | |||
4495 | } | |||
4496 | } else if (fp->fInputIdx == fAnchorLimit-2 && | |||
4497 | inputBuf[fp->fInputIdx]==0x0d && inputBuf[fp->fInputIdx+1]==0x0a) { | |||
4498 | fHitEnd = TRUE1; | |||
4499 | fRequireEnd = TRUE1; | |||
4500 | break; // At CR/LF at end of input. Success | |||
4501 | } | |||
4502 | ||||
4503 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); | |||
4504 | ||||
4505 | break; | |||
4506 | ||||
4507 | ||||
4508 | case URX_DOLLAR_D: // $, test for End of Line, in UNIX_LINES mode. | |||
4509 | if (fp->fInputIdx >= fAnchorLimit-1) { | |||
4510 | // Either at the last character of input, or off the end. | |||
4511 | if (fp->fInputIdx == fAnchorLimit-1) { | |||
4512 | // At last char of input. Success if it's a new line. | |||
4513 | if (inputBuf[fp->fInputIdx] == 0x0a) { | |||
4514 | fHitEnd = TRUE1; | |||
4515 | fRequireEnd = TRUE1; | |||
4516 | break; | |||
4517 | } | |||
4518 | } else { | |||
4519 | // Off the end of input. Success. | |||
4520 | fHitEnd = TRUE1; | |||
4521 | fRequireEnd = TRUE1; | |||
4522 | break; | |||
4523 | } | |||
4524 | } | |||
4525 | ||||
4526 | // Not at end of input. Back-track out. | |||
4527 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); | |||
4528 | break; | |||
4529 | ||||
4530 | ||||
4531 | case URX_DOLLAR_M: // $, test for End of line in multi-line mode | |||
4532 | { | |||
4533 | if (fp->fInputIdx >= fAnchorLimit) { | |||
4534 | // We really are at the end of input. Success. | |||
4535 | fHitEnd = TRUE1; | |||
4536 | fRequireEnd = TRUE1; | |||
4537 | break; | |||
4538 | } | |||
4539 | // If we are positioned just before a new-line, succeed. | |||
4540 | // It makes no difference where the new-line is within the input. | |||
4541 | UChar32 c = inputBuf[fp->fInputIdx]; | |||
4542 | if (isLineTerminator(c)) { | |||
4543 | // At a line end, except for the odd chance of being in the middle of a CR/LF sequence | |||
4544 | // In multi-line mode, hitting a new-line just before the end of input does not | |||
4545 | // set the hitEnd or requireEnd flags | |||
4546 | if ( !(c==0x0a && fp->fInputIdx>fAnchorStart && inputBuf[fp->fInputIdx-1]==0x0d)) { | |||
4547 | break; | |||
4548 | } | |||
4549 | } | |||
4550 | // not at a new line. Fail. | |||
4551 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); | |||
4552 | } | |||
4553 | break; | |||
4554 | ||||
4555 | ||||
4556 | case URX_DOLLAR_MD: // $, test for End of line in multi-line and UNIX_LINES mode | |||
4557 | { | |||
4558 | if (fp->fInputIdx >= fAnchorLimit) { | |||
4559 | // We really are at the end of input. Success. | |||
4560 | fHitEnd = TRUE1; | |||
4561 | fRequireEnd = TRUE1; // Java set requireEnd in this case, even though | |||
4562 | break; // adding a new-line would not lose the match. | |||
4563 | } | |||
4564 | // If we are not positioned just before a new-line, the test fails; backtrack out. | |||
4565 | // It makes no difference where the new-line is within the input. | |||
4566 | if (inputBuf[fp->fInputIdx] != 0x0a) { | |||
4567 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); | |||
4568 | } | |||
4569 | } | |||
4570 | break; | |||
4571 | ||||
4572 | ||||
4573 | case URX_CARET: // ^, test for start of line | |||
4574 | if (fp->fInputIdx != fAnchorStart) { | |||
4575 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); | |||
4576 | } | |||
4577 | break; | |||
4578 | ||||
4579 | ||||
4580 | case URX_CARET_M: // ^, test for start of line in mulit-line mode | |||
4581 | { | |||
4582 | if (fp->fInputIdx == fAnchorStart) { | |||
4583 | // We are at the start input. Success. | |||
4584 | break; | |||
4585 | } | |||
4586 | // Check whether character just before the current pos is a new-line | |||
4587 | // unless we are at the end of input | |||
4588 | UChar c = inputBuf[fp->fInputIdx - 1]; | |||
4589 | if ((fp->fInputIdx < fAnchorLimit) && | |||
4590 | isLineTerminator(c)) { | |||
4591 | // It's a new-line. ^ is true. Success. | |||
4592 | // TODO: what should be done with positions between a CR and LF? | |||
4593 | break; | |||
4594 | } | |||
4595 | // Not at the start of a line. Fail. | |||
4596 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); | |||
4597 | } | |||
4598 | break; | |||
4599 | ||||
4600 | ||||
4601 | case URX_CARET_M_UNIX: // ^, test for start of line in mulit-line + Unix-line mode | |||
4602 | { | |||
4603 | U_ASSERT(fp->fInputIdx >= fAnchorStart)(void)0; | |||
4604 | if (fp->fInputIdx <= fAnchorStart) { | |||
4605 | // We are at the start input. Success. | |||
4606 | break; | |||
4607 | } | |||
4608 | // Check whether character just before the current pos is a new-line | |||
4609 | U_ASSERT(fp->fInputIdx <= fAnchorLimit)(void)0; | |||
4610 | UChar c = inputBuf[fp->fInputIdx - 1]; | |||
4611 | if (c != 0x0a) { | |||
4612 | // Not at the start of a line. Back-track out. | |||
4613 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); | |||
4614 | } | |||
4615 | } | |||
4616 | break; | |||
4617 | ||||
4618 | case URX_BACKSLASH_B: // Test for word boundaries | |||
4619 | { | |||
4620 | UBool success = isChunkWordBoundary((int32_t)fp->fInputIdx); | |||
4621 | success ^= (UBool)(opValue != 0); // flip sense for \B | |||
4622 | if (!success) { | |||
4623 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); | |||
4624 | } | |||
4625 | } | |||
4626 | break; | |||
4627 | ||||
4628 | ||||
4629 | case URX_BACKSLASH_BU: // Test for word boundaries, Unicode-style | |||
4630 | { | |||
4631 | UBool success = isUWordBoundary(fp->fInputIdx, status); | |||
4632 | success ^= (UBool)(opValue != 0); // flip sense for \B | |||
4633 | if (!success) { | |||
4634 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); | |||
4635 | } | |||
4636 | } | |||
4637 | break; | |||
4638 | ||||
4639 | ||||
4640 | case URX_BACKSLASH_D: // Test for decimal digit | |||
4641 | { | |||
4642 | if (fp->fInputIdx >= fActiveLimit) { | |||
4643 | fHitEnd = TRUE1; | |||
4644 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); | |||
4645 | break; | |||
4646 | } | |||
4647 | ||||
4648 | UChar32 c; | |||
4649 | U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c)do { (c)=(inputBuf)[(fp->fInputIdx)++]; if((((c)&0xfffffc00 )==0xd800)) { uint16_t __c2; if((fp->fInputIdx)!=(fActiveLimit ) && (((__c2=(inputBuf)[(fp->fInputIdx)])&0xfffffc00 )==0xdc00)) { ++(fp->fInputIdx); (c)=(((UChar32)((c))<< 10UL)+(UChar32)(__c2)-((0xd800<<10UL)+0xdc00-0x10000)); } } } while (false); | |||
4650 | int8_t ctype = u_charTypeu_charType_71(c); // TODO: make a unicode set for this. Will be faster. | |||
4651 | UBool success = (ctype == U_DECIMAL_DIGIT_NUMBER); | |||
4652 | success ^= (UBool)(opValue != 0); // flip sense for \D | |||
4653 | if (!success) { | |||
4654 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); | |||
4655 | } | |||
4656 | } | |||
4657 | break; | |||
4658 | ||||
4659 | ||||
4660 | case URX_BACKSLASH_G: // Test for position at end of previous match | |||
4661 | if (!((fMatch && fp->fInputIdx==fMatchEnd) || (fMatch==FALSE0 && fp->fInputIdx==fActiveStart))) { | |||
4662 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); | |||
4663 | } | |||
4664 | break; | |||
4665 | ||||
4666 | ||||
4667 | case URX_BACKSLASH_H: // Test for \h, horizontal white space. | |||
4668 | { | |||
4669 | if (fp->fInputIdx >= fActiveLimit) { | |||
4670 | fHitEnd = TRUE1; | |||
4671 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); | |||
4672 | break; | |||
4673 | } | |||
4674 | UChar32 c; | |||
4675 | U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c)do { (c)=(inputBuf)[(fp->fInputIdx)++]; if((((c)&0xfffffc00 )==0xd800)) { uint16_t __c2; if((fp->fInputIdx)!=(fActiveLimit ) && (((__c2=(inputBuf)[(fp->fInputIdx)])&0xfffffc00 )==0xdc00)) { ++(fp->fInputIdx); (c)=(((UChar32)((c))<< 10UL)+(UChar32)(__c2)-((0xd800<<10UL)+0xdc00-0x10000)); } } } while (false); | |||
4676 | int8_t ctype = u_charTypeu_charType_71(c); | |||
4677 | UBool success = (ctype == U_SPACE_SEPARATOR || c == 9); // SPACE_SEPARATOR || TAB | |||
4678 | success ^= (UBool)(opValue != 0); // flip sense for \H | |||
4679 | if (!success) { | |||
4680 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); | |||
4681 | } | |||
4682 | } | |||
4683 | break; | |||
4684 | ||||
4685 | ||||
4686 | case URX_BACKSLASH_R: // Test for \R, any line break sequence. | |||
4687 | { | |||
4688 | if (fp->fInputIdx >= fActiveLimit) { | |||
4689 | fHitEnd = TRUE1; | |||
4690 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); | |||
4691 | break; | |||
4692 | } | |||
4693 | UChar32 c; | |||
4694 | U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c)do { (c)=(inputBuf)[(fp->fInputIdx)++]; if((((c)&0xfffffc00 )==0xd800)) { uint16_t __c2; if((fp->fInputIdx)!=(fActiveLimit ) && (((__c2=(inputBuf)[(fp->fInputIdx)])&0xfffffc00 )==0xdc00)) { ++(fp->fInputIdx); (c)=(((UChar32)((c))<< 10UL)+(UChar32)(__c2)-((0xd800<<10UL)+0xdc00-0x10000)); } } } while (false); | |||
4695 | if (isLineTerminator(c)) { | |||
4696 | if (c == 0x0d && fp->fInputIdx < fActiveLimit) { | |||
4697 | // Check for CR/LF sequence. Consume both together when found. | |||
4698 | UChar c2; | |||
4699 | U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c2)do { (c2)=(inputBuf)[(fp->fInputIdx)++]; if((((c2)&0xfffffc00 )==0xd800)) { uint16_t __c2; if((fp->fInputIdx)!=(fActiveLimit ) && (((__c2=(inputBuf)[(fp->fInputIdx)])&0xfffffc00 )==0xdc00)) { ++(fp->fInputIdx); (c2)=(((UChar32)((c2))<< 10UL)+(UChar32)(__c2)-((0xd800<<10UL)+0xdc00-0x10000)); } } } while (false); | |||
4700 | if (c2 != 0x0a) { | |||
4701 | U16_PREV(inputBuf, 0, fp->fInputIdx, c2)do { (c2)=(inputBuf)[--(fp->fInputIdx)]; if((((c2)&0xfffffc00 )==0xdc00)) { uint16_t __c2; if((fp->fInputIdx)>(0) && (((__c2=(inputBuf)[(fp->fInputIdx)-1])&0xfffffc00)==0xd800 )) { --(fp->fInputIdx); (c2)=(((UChar32)(__c2)<<10UL )+(UChar32)((c2))-((0xd800<<10UL)+0xdc00-0x10000)); } } } while (false); | |||
4702 | } | |||
4703 | } | |||
4704 | } else { | |||
4705 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); | |||
4706 | } | |||
4707 | } | |||
4708 | break; | |||
4709 | ||||
4710 | ||||
4711 | case URX_BACKSLASH_V: // Any single code point line ending. | |||
4712 | { | |||
4713 | if (fp->fInputIdx >= fActiveLimit) { | |||
4714 | fHitEnd = TRUE1; | |||
4715 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); | |||
4716 | break; | |||
4717 | } | |||
4718 | UChar32 c; | |||
4719 | U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c)do { (c)=(inputBuf)[(fp->fInputIdx)++]; if((((c)&0xfffffc00 )==0xd800)) { uint16_t __c2; if((fp->fInputIdx)!=(fActiveLimit ) && (((__c2=(inputBuf)[(fp->fInputIdx)])&0xfffffc00 )==0xdc00)) { ++(fp->fInputIdx); (c)=(((UChar32)((c))<< 10UL)+(UChar32)(__c2)-((0xd800<<10UL)+0xdc00-0x10000)); } } } while (false); | |||
4720 | UBool success = isLineTerminator(c); | |||
4721 | success ^= (UBool)(opValue != 0); // flip sense for \V | |||
4722 | if (!success) { | |||
4723 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); | |||
4724 | } | |||
4725 | } | |||
4726 | break; | |||
4727 | ||||
4728 | ||||
4729 | case URX_BACKSLASH_X: | |||
4730 | // Match a Grapheme, as defined by Unicode UAX 29. | |||
4731 | ||||
4732 | // Fail if at end of input | |||
4733 | if (fp->fInputIdx >= fActiveLimit) { | |||
4734 | fHitEnd = TRUE1; | |||
4735 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); | |||
4736 | break; | |||
4737 | } | |||
4738 | ||||
4739 | fp->fInputIdx = followingGCBoundary(fp->fInputIdx, status); | |||
4740 | if (fp->fInputIdx >= fActiveLimit) { | |||
4741 | fHitEnd = TRUE1; | |||
4742 | fp->fInputIdx = fActiveLimit; | |||
4743 | } | |||
4744 | break; | |||
4745 | ||||
4746 | ||||
4747 | case URX_BACKSLASH_Z: // Test for end of Input | |||
4748 | if (fp->fInputIdx < fAnchorLimit) { | |||
4749 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); | |||
4750 | } else { | |||
4751 | fHitEnd = TRUE1; | |||
4752 | fRequireEnd = TRUE1; | |||
4753 | } | |||
4754 | break; | |||
4755 | ||||
4756 | ||||
4757 | ||||
4758 | case URX_STATIC_SETREF: | |||
4759 | { | |||
4760 | // Test input character against one of the predefined sets | |||
4761 | // (Word Characters, for example) | |||
4762 | // The high bit of the op value is a flag for the match polarity. | |||
4763 | // 0: success if input char is in set. | |||
4764 | // 1: success if input char is not in set. | |||
4765 | if (fp->fInputIdx >= fActiveLimit) { | |||
4766 | fHitEnd = TRUE1; | |||
4767 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); | |||
4768 | break; | |||
4769 | } | |||
4770 | ||||
4771 | UBool success = ((opValue & URX_NEG_SET) == URX_NEG_SET); | |||
4772 | opValue &= ~URX_NEG_SET; | |||
4773 | U_ASSERT(opValue > 0 && opValue < URX_LAST_SET)(void)0; | |||
4774 | ||||
4775 | UChar32 c; | |||
4776 | U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c)do { (c)=(inputBuf)[(fp->fInputIdx)++]; if((((c)&0xfffffc00 )==0xd800)) { uint16_t __c2; if((fp->fInputIdx)!=(fActiveLimit ) && (((__c2=(inputBuf)[(fp->fInputIdx)])&0xfffffc00 )==0xdc00)) { ++(fp->fInputIdx); (c)=(((UChar32)((c))<< 10UL)+(UChar32)(__c2)-((0xd800<<10UL)+0xdc00-0x10000)); } } } while (false); | |||
4777 | if (c < 256) { | |||
4778 | Regex8BitSet &s8 = RegexStaticSets::gStaticSets->fPropSets8[opValue]; | |||
4779 | if (s8.contains(c)) { | |||
4780 | success = !success; | |||
4781 | } | |||
4782 | } else { | |||
4783 | const UnicodeSet &s = RegexStaticSets::gStaticSets->fPropSets[opValue]; | |||
4784 | if (s.contains(c)) { | |||
4785 | success = !success; | |||
4786 | } | |||
4787 | } | |||
4788 | if (!success) { | |||
4789 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); | |||
4790 | } | |||
4791 | } | |||
4792 | break; | |||
4793 | ||||
4794 | ||||
4795 | case URX_STAT_SETREF_N: | |||
4796 | { | |||
4797 | // Test input character for NOT being a member of one of | |||
4798 | // the predefined sets (Word Characters, for example) | |||
4799 | if (fp->fInputIdx >= fActiveLimit) { | |||
4800 | fHitEnd = TRUE1; | |||
4801 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); | |||
4802 | break; | |||
4803 | } | |||
4804 | ||||
4805 | U_ASSERT(opValue > 0 && opValue < URX_LAST_SET)(void)0; | |||
4806 | ||||
4807 | UChar32 c; | |||
4808 | U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c)do { (c)=(inputBuf)[(fp->fInputIdx)++]; if((((c)&0xfffffc00 )==0xd800)) { uint16_t __c2; if((fp->fInputIdx)!=(fActiveLimit ) && (((__c2=(inputBuf)[(fp->fInputIdx)])&0xfffffc00 )==0xdc00)) { ++(fp->fInputIdx); (c)=(((UChar32)((c))<< 10UL)+(UChar32)(__c2)-((0xd800<<10UL)+0xdc00-0x10000)); } } } while (false); | |||
4809 | if (c < 256) { | |||
4810 | Regex8BitSet &s8 = RegexStaticSets::gStaticSets->fPropSets8[opValue]; | |||
4811 | if (s8.contains(c) == FALSE0) { | |||
4812 | break; | |||
4813 | } | |||
4814 | } else { | |||
4815 | const UnicodeSet &s = RegexStaticSets::gStaticSets->fPropSets[opValue]; | |||
4816 | if (s.contains(c) == FALSE0) { | |||
4817 | break; | |||
4818 | } | |||
4819 | } | |||
4820 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); | |||
4821 | } | |||
4822 | break; | |||
4823 | ||||
4824 | ||||
4825 | case URX_SETREF: | |||
4826 | { | |||
4827 | if (fp->fInputIdx >= fActiveLimit) { | |||
4828 | fHitEnd = TRUE1; | |||
4829 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); | |||
4830 | break; | |||
4831 | } | |||
4832 | ||||
4833 | U_ASSERT(opValue > 0 && opValue < fSets->size())(void)0; | |||
4834 | ||||
4835 | // There is input left. Pick up one char and test it for set membership. | |||
4836 | UChar32 c; | |||
4837 | U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c)do { (c)=(inputBuf)[(fp->fInputIdx)++]; if((((c)&0xfffffc00 )==0xd800)) { uint16_t __c2; if((fp->fInputIdx)!=(fActiveLimit ) && (((__c2=(inputBuf)[(fp->fInputIdx)])&0xfffffc00 )==0xdc00)) { ++(fp->fInputIdx); (c)=(((UChar32)((c))<< 10UL)+(UChar32)(__c2)-((0xd800<<10UL)+0xdc00-0x10000)); } } } while (false); | |||
4838 | if (c<256) { | |||
4839 | Regex8BitSet *s8 = &fPattern->fSets8[opValue]; | |||
4840 | if (s8->contains(c)) { | |||
4841 | // The character is in the set. A Match. | |||
4842 | break; | |||
4843 | } | |||
4844 | } else { | |||
4845 | UnicodeSet *s = (UnicodeSet *)fSets->elementAt(opValue); | |||
4846 | if (s->contains(c)) { | |||
4847 | // The character is in the set. A Match. | |||
4848 | break; | |||
4849 | } | |||
4850 | } | |||
4851 | ||||
4852 | // the character wasn't in the set. | |||
4853 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); | |||
4854 | } | |||
4855 | break; | |||
4856 | ||||
4857 | ||||
4858 | case URX_DOTANY: | |||
4859 | { | |||
4860 | // . matches anything, but stops at end-of-line. | |||
4861 | if (fp->fInputIdx >= fActiveLimit) { | |||
4862 | // At end of input. Match failed. Backtrack out. | |||
4863 | fHitEnd = TRUE1; | |||
4864 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); | |||
4865 | break; | |||
4866 | } | |||
4867 | ||||
4868 | // There is input left. Advance over one char, unless we've hit end-of-line | |||
4869 | UChar32 c; | |||
4870 | U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c)do { (c)=(inputBuf)[(fp->fInputIdx)++]; if((((c)&0xfffffc00 )==0xd800)) { uint16_t __c2; if((fp->fInputIdx)!=(fActiveLimit ) && (((__c2=(inputBuf)[(fp->fInputIdx)])&0xfffffc00 )==0xdc00)) { ++(fp->fInputIdx); (c)=(((UChar32)((c))<< 10UL)+(UChar32)(__c2)-((0xd800<<10UL)+0xdc00-0x10000)); } } } while (false); | |||
4871 | if (isLineTerminator(c)) { | |||
4872 | // End of line in normal mode. . does not match. | |||
4873 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); | |||
4874 | break; | |||
4875 | } | |||
4876 | } | |||
4877 | break; | |||
4878 | ||||
4879 | ||||
4880 | case URX_DOTANY_ALL: | |||
4881 | { | |||
4882 | // . in dot-matches-all (including new lines) mode | |||
4883 | if (fp->fInputIdx >= fActiveLimit) { | |||
4884 | // At end of input. Match failed. Backtrack out. | |||
4885 | fHitEnd = TRUE1; | |||
4886 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); | |||
4887 | break; | |||
4888 | } | |||
4889 | ||||
4890 | // There is input left. Advance over one char, except if we are | |||
4891 | // at a cr/lf, advance over both of them. | |||
4892 | UChar32 c; | |||
4893 | U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c)do { (c)=(inputBuf)[(fp->fInputIdx)++]; if((((c)&0xfffffc00 )==0xd800)) { uint16_t __c2; if((fp->fInputIdx)!=(fActiveLimit ) && (((__c2=(inputBuf)[(fp->fInputIdx)])&0xfffffc00 )==0xdc00)) { ++(fp->fInputIdx); (c)=(((UChar32)((c))<< 10UL)+(UChar32)(__c2)-((0xd800<<10UL)+0xdc00-0x10000)); } } } while (false); | |||
4894 | if (c==0x0d && fp->fInputIdx < fActiveLimit) { | |||
4895 | // In the case of a CR/LF, we need to advance over both. | |||
4896 | if (inputBuf[fp->fInputIdx] == 0x0a) { | |||
4897 | U16_FWD_1(inputBuf, fp->fInputIdx, fActiveLimit)do { if(((((inputBuf)[(fp->fInputIdx)++])&0xfffffc00)== 0xd800) && (fp->fInputIdx)!=(fActiveLimit) && ((((inputBuf)[fp->fInputIdx])&0xfffffc00)==0xdc00)) { ++(fp->fInputIdx); } } while (false); | |||
4898 | } | |||
4899 | } | |||
4900 | } | |||
4901 | break; | |||
4902 | ||||
4903 | ||||
4904 | case URX_DOTANY_UNIX: | |||
4905 | { | |||
4906 | // '.' operator, matches all, but stops at end-of-line. | |||
4907 | // UNIX_LINES mode, so 0x0a is the only recognized line ending. | |||
4908 | if (fp->fInputIdx >= fActiveLimit) { | |||
4909 | // At end of input. Match failed. Backtrack out. | |||
4910 | fHitEnd = TRUE1; | |||
4911 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); | |||
4912 | break; | |||
4913 | } | |||
4914 | ||||
4915 | // There is input left. Advance over one char, unless we've hit end-of-line | |||
4916 | UChar32 c; | |||
4917 | U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c)do { (c)=(inputBuf)[(fp->fInputIdx)++]; if((((c)&0xfffffc00 )==0xd800)) { uint16_t __c2; if((fp->fInputIdx)!=(fActiveLimit ) && (((__c2=(inputBuf)[(fp->fInputIdx)])&0xfffffc00 )==0xdc00)) { ++(fp->fInputIdx); (c)=(((UChar32)((c))<< 10UL)+(UChar32)(__c2)-((0xd800<<10UL)+0xdc00-0x10000)); } } } while (false); | |||
4918 | if (c == 0x0a) { | |||
4919 | // End of line in normal mode. '.' does not match the \n | |||
4920 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); | |||
4921 | } | |||
4922 | } | |||
4923 | break; | |||
4924 | ||||
4925 | ||||
4926 | case URX_JMP: | |||
4927 | fp->fPatIdx = opValue; | |||
4928 | break; | |||
4929 | ||||
4930 | case URX_FAIL: | |||
4931 | isMatch = FALSE0; | |||
4932 | goto breakFromLoop; | |||
4933 | ||||
4934 | case URX_JMP_SAV: | |||
4935 | U_ASSERT(opValue < fPattern->fCompiledPat->size())(void)0; | |||
4936 | fp = StateSave(fp, fp->fPatIdx, status); // State save to loc following current | |||
4937 | fp->fPatIdx = opValue; // Then JMP. | |||
4938 | break; | |||
4939 | ||||
4940 | case URX_JMP_SAV_X: | |||
4941 | // This opcode is used with (x)+, when x can match a zero length string. | |||
4942 | // Same as JMP_SAV, except conditional on the match having made forward progress. | |||
4943 | // Destination of the JMP must be a URX_STO_INP_LOC, from which we get the | |||
4944 | // data address of the input position at the start of the loop. | |||
4945 | { | |||
4946 | U_ASSERT(opValue > 0 && opValue < fPattern->fCompiledPat->size())(void)0; | |||
4947 | int32_t stoOp = (int32_t)pat[opValue-1]; | |||
4948 | U_ASSERT(URX_TYPE(stoOp) == URX_STO_INP_LOC)(void)0; | |||
4949 | int32_t frameLoc = URX_VAL(stoOp)((stoOp) & 0xffffff); | |||
4950 | U_ASSERT(frameLoc >= 0 && frameLoc < fFrameSize)(void)0; | |||
4951 | int32_t prevInputIdx = (int32_t)fp->fExtra[frameLoc]; | |||
4952 | U_ASSERT(prevInputIdx <= fp->fInputIdx)(void)0; | |||
4953 | if (prevInputIdx < fp->fInputIdx) { | |||
4954 | // The match did make progress. Repeat the loop. | |||
4955 | fp = StateSave(fp, fp->fPatIdx, status); // State save to loc following current | |||
4956 | fp->fPatIdx = opValue; | |||
4957 | fp->fExtra[frameLoc] = fp->fInputIdx; | |||
4958 | } | |||
4959 | // If the input position did not advance, we do nothing here, | |||
4960 | // execution will fall out of the loop. | |||
4961 | } | |||
4962 | break; | |||
4963 | ||||
4964 | case URX_CTR_INIT: | |||
4965 | { | |||
4966 | U_ASSERT(opValue >= 0 && opValue < fFrameSize-2)(void)0; | |||
4967 | fp->fExtra[opValue] = 0; // Set the loop counter variable to zero | |||
4968 | ||||
4969 | // Pick up the three extra operands that CTR_INIT has, and | |||
4970 | // skip the pattern location counter past | |||
4971 | int32_t instrOperandLoc = (int32_t)fp->fPatIdx; | |||
4972 | fp->fPatIdx += 3; | |||
4973 | int32_t loopLoc = URX_VAL(pat[instrOperandLoc])((pat[instrOperandLoc]) & 0xffffff); | |||
4974 | int32_t minCount = (int32_t)pat[instrOperandLoc+1]; | |||
4975 | int32_t maxCount = (int32_t)pat[instrOperandLoc+2]; | |||
4976 | U_ASSERT(minCount>=0)(void)0; | |||
4977 | U_ASSERT(maxCount>=minCount || maxCount==-1)(void)0; | |||
4978 | U_ASSERT(loopLoc>=fp->fPatIdx)(void)0; | |||
4979 | ||||
4980 | if (minCount == 0) { | |||
4981 | fp = StateSave(fp, loopLoc+1, status); | |||
4982 | } | |||
4983 | if (maxCount == -1) { | |||
4984 | fp->fExtra[opValue+1] = fp->fInputIdx; // For loop breaking. | |||
4985 | } else if (maxCount == 0) { | |||
4986 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); | |||
4987 | } | |||
4988 | } | |||
4989 | break; | |||
4990 | ||||
4991 | case URX_CTR_LOOP: | |||
4992 | { | |||
4993 | U_ASSERT(opValue>0 && opValue < fp->fPatIdx-2)(void)0; | |||
4994 | int32_t initOp = (int32_t)pat[opValue]; | |||
4995 | U_ASSERT(URX_TYPE(initOp) == URX_CTR_INIT)(void)0; | |||
4996 | int64_t *pCounter = &fp->fExtra[URX_VAL(initOp)((initOp) & 0xffffff)]; | |||
4997 | int32_t minCount = (int32_t)pat[opValue+2]; | |||
4998 | int32_t maxCount = (int32_t)pat[opValue+3]; | |||
4999 | (*pCounter)++; | |||
5000 | if ((uint64_t)*pCounter >= (uint32_t)maxCount && maxCount != -1) { | |||
5001 | U_ASSERT(*pCounter == maxCount)(void)0; | |||
5002 | break; | |||
5003 | } | |||
5004 | if (*pCounter >= minCount) { | |||
5005 | if (maxCount == -1) { | |||
5006 | // Loop has no hard upper bound. | |||
5007 | // Check that it is progressing through the input, break if it is not. | |||
5008 | int64_t *pLastInputIdx = &fp->fExtra[URX_VAL(initOp)((initOp) & 0xffffff) + 1]; | |||
5009 | if (fp->fInputIdx == *pLastInputIdx) { | |||
5010 | break; | |||
5011 | } else { | |||
5012 | *pLastInputIdx = fp->fInputIdx; | |||
5013 | } | |||
5014 | } | |||
5015 | fp = StateSave(fp, fp->fPatIdx, status); | |||
5016 | } else { | |||
5017 | // Increment time-out counter. (StateSave() does it if count >= minCount) | |||
5018 | fTickCounter--; | |||
5019 | if (fTickCounter <= 0) { | |||
5020 | IncrementTime(status); // Re-initializes fTickCounter | |||
5021 | } | |||
5022 | } | |||
5023 | fp->fPatIdx = opValue + 4; // Loop back. | |||
5024 | } | |||
5025 | break; | |||
5026 | ||||
5027 | case URX_CTR_INIT_NG: | |||
5028 | { | |||
5029 | // Initialize a non-greedy loop | |||
5030 | U_ASSERT(opValue >= 0 && opValue < fFrameSize-2)(void)0; | |||
5031 | fp->fExtra[opValue] = 0; // Set the loop counter variable to zero | |||
5032 | ||||
5033 | // Pick up the three extra operands that CTR_INIT_NG has, and | |||
5034 | // skip the pattern location counter past | |||
5035 | int32_t instrOperandLoc = (int32_t)fp->fPatIdx; | |||
5036 | fp->fPatIdx += 3; | |||
5037 | int32_t loopLoc = URX_VAL(pat[instrOperandLoc])((pat[instrOperandLoc]) & 0xffffff); | |||
5038 | int32_t minCount = (int32_t)pat[instrOperandLoc+1]; | |||
5039 | int32_t maxCount = (int32_t)pat[instrOperandLoc+2]; | |||
5040 | U_ASSERT(minCount>=0)(void)0; | |||
5041 | U_ASSERT(maxCount>=minCount || maxCount==-1)(void)0; | |||
5042 | U_ASSERT(loopLoc>fp->fPatIdx)(void)0; | |||
5043 | if (maxCount == -1) { | |||
5044 | fp->fExtra[opValue+1] = fp->fInputIdx; // Save initial input index for loop breaking. | |||
5045 | } | |||
5046 | ||||
5047 | if (minCount == 0) { | |||
5048 | if (maxCount != 0) { | |||
5049 | fp = StateSave(fp, fp->fPatIdx, status); | |||
5050 | } | |||
5051 | fp->fPatIdx = loopLoc+1; // Continue with stuff after repeated block | |||
5052 | } | |||
5053 | } | |||
5054 | break; | |||
5055 | ||||
5056 | case URX_CTR_LOOP_NG: | |||
5057 | { | |||
5058 | // Non-greedy {min, max} loops | |||
5059 | U_ASSERT(opValue>0 && opValue < fp->fPatIdx-2)(void)0; | |||
5060 | int32_t initOp = (int32_t)pat[opValue]; | |||
5061 | U_ASSERT(URX_TYPE(initOp) == URX_CTR_INIT_NG)(void)0; | |||
5062 | int64_t *pCounter = &fp->fExtra[URX_VAL(initOp)((initOp) & 0xffffff)]; | |||
5063 | int32_t minCount = (int32_t)pat[opValue+2]; | |||
5064 | int32_t maxCount = (int32_t)pat[opValue+3]; | |||
5065 | ||||
5066 | (*pCounter)++; | |||
5067 | if ((uint64_t)*pCounter >= (uint32_t)maxCount && maxCount != -1) { | |||
5068 | // The loop has matched the maximum permitted number of times. | |||
5069 | // Break out of here with no action. Matching will | |||
5070 | // continue with the following pattern. | |||
5071 | U_ASSERT(*pCounter == maxCount)(void)0; | |||
5072 | break; | |||
5073 | } | |||
5074 | ||||
5075 | if (*pCounter < minCount) { | |||
5076 | // We haven't met the minimum number of matches yet. | |||
5077 | // Loop back for another one. | |||
5078 | fp->fPatIdx = opValue + 4; // Loop back. | |||
5079 | fTickCounter--; | |||
5080 | if (fTickCounter <= 0) { | |||
5081 | IncrementTime(status); // Re-initializes fTickCounter | |||
5082 | } | |||
5083 | } else { | |||
5084 | // We do have the minimum number of matches. | |||
5085 | ||||
5086 | // If there is no upper bound on the loop iterations, check that the input index | |||
5087 | // is progressing, and stop the loop if it is not. | |||
5088 | if (maxCount == -1) { | |||
5089 | int64_t *pLastInputIdx = &fp->fExtra[URX_VAL(initOp)((initOp) & 0xffffff) + 1]; | |||
5090 | if (fp->fInputIdx == *pLastInputIdx) { | |||
5091 | break; | |||
5092 | } | |||
5093 | *pLastInputIdx = fp->fInputIdx; | |||
5094 | } | |||
5095 | ||||
5096 | // Loop Continuation: we will fall into the pattern following the loop | |||
5097 | // (non-greedy, don't execute loop body first), but first do | |||
5098 | // a state save to the top of the loop, so that a match failure | |||
5099 | // in the following pattern will try another iteration of the loop. | |||
5100 | fp = StateSave(fp, opValue + 4, status); | |||
5101 | } | |||
5102 | } | |||
5103 | break; | |||
5104 | ||||
5105 | case URX_STO_SP: | |||
5106 | U_ASSERT(opValue >= 0 && opValue < fPattern->fDataSize)(void)0; | |||
5107 | fData[opValue] = fStack->size(); | |||
5108 | break; | |||
5109 | ||||
5110 | case URX_LD_SP: | |||
5111 | { | |||
5112 | U_ASSERT(opValue >= 0 && opValue < fPattern->fDataSize)(void)0; | |||
5113 | int32_t newStackSize = (int32_t)fData[opValue]; | |||
5114 | U_ASSERT(newStackSize <= fStack->size())(void)0; | |||
5115 | int64_t *newFP = fStack->getBuffer() + newStackSize - fFrameSize; | |||
5116 | if (newFP == (int64_t *)fp) { | |||
5117 | break; | |||
5118 | } | |||
5119 | int32_t j; | |||
5120 | for (j=0; j<fFrameSize; j++) { | |||
5121 | newFP[j] = ((int64_t *)fp)[j]; | |||
5122 | } | |||
5123 | fp = (REStackFrame *)newFP; | |||
5124 | fStack->setSize(newStackSize); | |||
5125 | } | |||
5126 | break; | |||
5127 | ||||
5128 | case URX_BACKREF: | |||
5129 | { | |||
5130 | U_ASSERT(opValue < fFrameSize)(void)0; | |||
5131 | int64_t groupStartIdx = fp->fExtra[opValue]; | |||
5132 | int64_t groupEndIdx = fp->fExtra[opValue+1]; | |||
5133 | U_ASSERT(groupStartIdx <= groupEndIdx)(void)0; | |||
5134 | int64_t inputIndex = fp->fInputIdx; | |||
5135 | if (groupStartIdx < 0) { | |||
5136 | // This capture group has not participated in the match thus far, | |||
5137 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); // FAIL, no match. | |||
5138 | break; | |||
5139 | } | |||
5140 | UBool success = TRUE1; | |||
5141 | for (int64_t groupIndex = groupStartIdx; groupIndex < groupEndIdx; ++groupIndex,++inputIndex) { | |||
5142 | if (inputIndex >= fActiveLimit) { | |||
5143 | success = FALSE0; | |||
5144 | fHitEnd = TRUE1; | |||
5145 | break; | |||
5146 | } | |||
5147 | if (inputBuf[groupIndex] != inputBuf[inputIndex]) { | |||
5148 | success = FALSE0; | |||
5149 | break; | |||
5150 | } | |||
5151 | } | |||
5152 | if (success && groupStartIdx < groupEndIdx && U16_IS_LEAD(inputBuf[groupEndIdx-1])(((inputBuf[groupEndIdx-1])&0xfffffc00)==0xd800) && | |||
5153 | inputIndex < fActiveLimit && U16_IS_TRAIL(inputBuf[inputIndex])(((inputBuf[inputIndex])&0xfffffc00)==0xdc00)) { | |||
5154 | // Capture group ended with an unpaired lead surrogate. | |||
5155 | // Back reference is not permitted to match lead only of a surrogatge pair. | |||
5156 | success = FALSE0; | |||
5157 | } | |||
5158 | if (success) { | |||
5159 | fp->fInputIdx = inputIndex; | |||
5160 | } else { | |||
5161 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); | |||
5162 | } | |||
5163 | } | |||
5164 | break; | |||
5165 | ||||
5166 | case URX_BACKREF_I: | |||
5167 | { | |||
5168 | U_ASSERT(opValue < fFrameSize)(void)0; | |||
5169 | int64_t groupStartIdx = fp->fExtra[opValue]; | |||
5170 | int64_t groupEndIdx = fp->fExtra[opValue+1]; | |||
5171 | U_ASSERT(groupStartIdx <= groupEndIdx)(void)0; | |||
5172 | if (groupStartIdx < 0) { | |||
5173 | // This capture group has not participated in the match thus far, | |||
5174 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); // FAIL, no match. | |||
5175 | break; | |||
5176 | } | |||
5177 | CaseFoldingUCharIterator captureGroupItr(inputBuf, groupStartIdx, groupEndIdx); | |||
5178 | CaseFoldingUCharIterator inputItr(inputBuf, fp->fInputIdx, fActiveLimit); | |||
5179 | ||||
5180 | // Note: if the capture group match was of an empty string the backref | |||
5181 | // match succeeds. Verified by testing: Perl matches succeed | |||
5182 | // in this case, so we do too. | |||
5183 | ||||
5184 | UBool success = TRUE1; | |||
5185 | for (;;) { | |||
5186 | UChar32 captureGroupChar = captureGroupItr.next(); | |||
5187 | if (captureGroupChar == U_SENTINEL(-1)) { | |||
5188 | success = TRUE1; | |||
5189 | break; | |||
5190 | } | |||
5191 | UChar32 inputChar = inputItr.next(); | |||
5192 | if (inputChar == U_SENTINEL(-1)) { | |||
5193 | success = FALSE0; | |||
5194 | fHitEnd = TRUE1; | |||
5195 | break; | |||
5196 | } | |||
5197 | if (inputChar != captureGroupChar) { | |||
5198 | success = FALSE0; | |||
5199 | break; | |||
5200 | } | |||
5201 | } | |||
5202 | ||||
5203 | if (success && inputItr.inExpansion()) { | |||
5204 | // We obtained a match by consuming part of a string obtained from | |||
5205 | // case-folding a single code point of the input text. | |||
5206 | // This does not count as an overall match. | |||
5207 | success = FALSE0; | |||
5208 | } | |||
5209 | ||||
5210 | if (success) { | |||
5211 | fp->fInputIdx = inputItr.getIndex(); | |||
5212 | } else { | |||
5213 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); | |||
5214 | } | |||
5215 | } | |||
5216 | break; | |||
5217 | ||||
5218 | case URX_STO_INP_LOC: | |||
5219 | { | |||
5220 | U_ASSERT(opValue >= 0 && opValue < fFrameSize)(void)0; | |||
5221 | fp->fExtra[opValue] = fp->fInputIdx; | |||
5222 | } | |||
5223 | break; | |||
5224 | ||||
5225 | case URX_JMPX: | |||
5226 | { | |||
5227 | int32_t instrOperandLoc = (int32_t)fp->fPatIdx; | |||
5228 | fp->fPatIdx += 1; | |||
5229 | int32_t dataLoc = URX_VAL(pat[instrOperandLoc])((pat[instrOperandLoc]) & 0xffffff); | |||
5230 | U_ASSERT(dataLoc >= 0 && dataLoc < fFrameSize)(void)0; | |||
5231 | int32_t savedInputIdx = (int32_t)fp->fExtra[dataLoc]; | |||
5232 | U_ASSERT(savedInputIdx <= fp->fInputIdx)(void)0; | |||
5233 | if (savedInputIdx < fp->fInputIdx) { | |||
5234 | fp->fPatIdx = opValue; // JMP | |||
5235 | } else { | |||
5236 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); // FAIL, no progress in loop. | |||
5237 | } | |||
5238 | } | |||
5239 | break; | |||
5240 | ||||
5241 | case URX_LA_START: | |||
5242 | { | |||
5243 | // Entering a look around block. | |||
5244 | // Save Stack Ptr, Input Pos. | |||
5245 | U_ASSERT(opValue>=0 && opValue+3<fPattern->fDataSize)(void)0; | |||
5246 | fData[opValue] = fStack->size(); | |||
5247 | fData[opValue+1] = fp->fInputIdx; | |||
5248 | fData[opValue+2] = fActiveStart; | |||
5249 | fData[opValue+3] = fActiveLimit; | |||
5250 | fActiveStart = fLookStart; // Set the match region change for | |||
5251 | fActiveLimit = fLookLimit; // transparent bounds. | |||
5252 | } | |||
5253 | break; | |||
5254 | ||||
5255 | case URX_LA_END: | |||
5256 | { | |||
5257 | // Leaving a look around block. | |||
5258 | // restore Stack Ptr, Input Pos to positions they had on entry to block. | |||
5259 | U_ASSERT(opValue>=0 && opValue+3<fPattern->fDataSize)(void)0; | |||
5260 | int32_t stackSize = fStack->size(); | |||
5261 | int32_t newStackSize = (int32_t)fData[opValue]; | |||
5262 | U_ASSERT(stackSize >= newStackSize)(void)0; | |||
5263 | if (stackSize > newStackSize) { | |||
5264 | // Copy the current top frame back to the new (cut back) top frame. | |||
5265 | // This makes the capture groups from within the look-ahead | |||
5266 | // expression available. | |||
5267 | int64_t *newFP = fStack->getBuffer() + newStackSize - fFrameSize; | |||
5268 | int32_t j; | |||
5269 | for (j=0; j<fFrameSize; j++) { | |||
5270 | newFP[j] = ((int64_t *)fp)[j]; | |||
5271 | } | |||
5272 | fp = (REStackFrame *)newFP; | |||
5273 | fStack->setSize(newStackSize); | |||
5274 | } | |||
5275 | fp->fInputIdx = fData[opValue+1]; | |||
5276 | ||||
5277 | // Restore the active region bounds in the input string; they may have | |||
5278 | // been changed because of transparent bounds on a Region. | |||
5279 | fActiveStart = fData[opValue+2]; | |||
5280 | fActiveLimit = fData[opValue+3]; | |||
5281 | U_ASSERT(fActiveStart >= 0)(void)0; | |||
5282 | U_ASSERT(fActiveLimit <= fInputLength)(void)0; | |||
5283 | } | |||
5284 | break; | |||
5285 | ||||
5286 | case URX_ONECHAR_I: | |||
5287 | if (fp->fInputIdx < fActiveLimit) { | |||
5288 | UChar32 c; | |||
5289 | U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c)do { (c)=(inputBuf)[(fp->fInputIdx)++]; if((((c)&0xfffffc00 )==0xd800)) { uint16_t __c2; if((fp->fInputIdx)!=(fActiveLimit ) && (((__c2=(inputBuf)[(fp->fInputIdx)])&0xfffffc00 )==0xdc00)) { ++(fp->fInputIdx); (c)=(((UChar32)((c))<< 10UL)+(UChar32)(__c2)-((0xd800<<10UL)+0xdc00-0x10000)); } } } while (false); | |||
5290 | if (u_foldCaseu_foldCase_71(c, U_FOLD_CASE_DEFAULT0) == opValue) { | |||
5291 | break; | |||
5292 | } | |||
5293 | } else { | |||
5294 | fHitEnd = TRUE1; | |||
5295 | } | |||
5296 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); | |||
5297 | break; | |||
5298 | ||||
5299 | case URX_STRING_I: | |||
5300 | // Case-insensitive test input against a literal string. | |||
5301 | // Strings require two slots in the compiled pattern, one for the | |||
5302 | // offset to the string text, and one for the length. | |||
5303 | // The compiled string has already been case folded. | |||
5304 | { | |||
5305 | const UChar *patternString = litText + opValue; | |||
5306 | ||||
5307 | op = (int32_t)pat[fp->fPatIdx]; | |||
5308 | fp->fPatIdx++; | |||
5309 | opType = URX_TYPE(op)((uint32_t)(op) >> 24); | |||
5310 | opValue = URX_VAL(op)((op) & 0xffffff); | |||
5311 | U_ASSERT(opType == URX_STRING_LEN)(void)0; | |||
5312 | int32_t patternStringLen = opValue; // Length of the string from the pattern. | |||
5313 | ||||
5314 | UChar32 cText; | |||
5315 | UChar32 cPattern; | |||
5316 | UBool success = TRUE1; | |||
5317 | int32_t patternStringIdx = 0; | |||
5318 | CaseFoldingUCharIterator inputIterator(inputBuf, fp->fInputIdx, fActiveLimit); | |||
5319 | while (patternStringIdx < patternStringLen) { | |||
5320 | U16_NEXT(patternString, patternStringIdx, patternStringLen, cPattern)do { (cPattern)=(patternString)[(patternStringIdx)++]; if(((( cPattern)&0xfffffc00)==0xd800)) { uint16_t __c2; if((patternStringIdx )!=(patternStringLen) && (((__c2=(patternString)[(patternStringIdx )])&0xfffffc00)==0xdc00)) { ++(patternStringIdx); (cPattern )=(((UChar32)((cPattern))<<10UL)+(UChar32)(__c2)-((0xd800 <<10UL)+0xdc00-0x10000)); } } } while (false); | |||
5321 | cText = inputIterator.next(); | |||
5322 | if (cText != cPattern) { | |||
5323 | success = FALSE0; | |||
5324 | if (cText == U_SENTINEL(-1)) { | |||
5325 | fHitEnd = TRUE1; | |||
5326 | } | |||
5327 | break; | |||
5328 | } | |||
5329 | } | |||
5330 | if (inputIterator.inExpansion()) { | |||
5331 | success = FALSE0; | |||
5332 | } | |||
5333 | ||||
5334 | if (success) { | |||
5335 | fp->fInputIdx = inputIterator.getIndex(); | |||
5336 | } else { | |||
5337 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); | |||
5338 | } | |||
5339 | } | |||
5340 | break; | |||
5341 | ||||
5342 | case URX_LB_START: | |||
5343 | { | |||
5344 | // Entering a look-behind block. | |||
5345 | // Save Stack Ptr, Input Pos and active input region. | |||
5346 | // TODO: implement transparent bounds. Ticket #6067 | |||
5347 | U_ASSERT(opValue>=0 && opValue+4<fPattern->fDataSize)(void)0; | |||
5348 | fData[opValue] = fStack->size(); | |||
5349 | fData[opValue+1] = fp->fInputIdx; | |||
5350 | // Save input string length, then reset to pin any matches to end at | |||
5351 | // the current position. | |||
5352 | fData[opValue+2] = fActiveStart; | |||
5353 | fData[opValue+3] = fActiveLimit; | |||
5354 | fActiveStart = fRegionStart; | |||
5355 | fActiveLimit = fp->fInputIdx; | |||
5356 | // Init the variable containing the start index for attempted matches. | |||
5357 | fData[opValue+4] = -1; | |||
5358 | } | |||
5359 | break; | |||
5360 | ||||
5361 | ||||
5362 | case URX_LB_CONT: | |||
5363 | { | |||
5364 | // Positive Look-Behind, at top of loop checking for matches of LB expression | |||
5365 | // at all possible input starting positions. | |||
5366 | ||||
5367 | // Fetch the min and max possible match lengths. They are the operands | |||
5368 | // of this op in the pattern. | |||
5369 | int32_t minML = (int32_t)pat[fp->fPatIdx++]; | |||
5370 | int32_t maxML = (int32_t)pat[fp->fPatIdx++]; | |||
5371 | U_ASSERT(minML <= maxML)(void)0; | |||
5372 | U_ASSERT(minML >= 0)(void)0; | |||
5373 | ||||
5374 | // Fetch (from data) the last input index where a match was attempted. | |||
5375 | U_ASSERT(opValue>=0 && opValue+4<fPattern->fDataSize)(void)0; | |||
5376 | int64_t &lbStartIdx = fData[opValue+4]; | |||
5377 | if (lbStartIdx < 0) { | |||
5378 | // First time through loop. | |||
5379 | lbStartIdx = fp->fInputIdx - minML; | |||
5380 | if (lbStartIdx > 0 && lbStartIdx < fInputLength) { | |||
5381 | U16_SET_CP_START(inputBuf, 0, lbStartIdx)do { if(((((inputBuf)[lbStartIdx])&0xfffffc00)==0xdc00) && (lbStartIdx)>(0) && ((((inputBuf)[(lbStartIdx)-1] )&0xfffffc00)==0xd800)) { --(lbStartIdx); } } while (false ); | |||
5382 | } | |||
5383 | } else { | |||
5384 | // 2nd through nth time through the loop. | |||
5385 | // Back up start position for match by one. | |||
5386 | if (lbStartIdx == 0) { | |||
5387 | lbStartIdx--; | |||
5388 | } else { | |||
5389 | U16_BACK_1(inputBuf, 0, lbStartIdx)do { if(((((inputBuf)[--(lbStartIdx)])&0xfffffc00)==0xdc00 ) && (lbStartIdx)>(0) && ((((inputBuf)[(lbStartIdx )-1])&0xfffffc00)==0xd800)) { --(lbStartIdx); } } while ( false); | |||
5390 | } | |||
5391 | } | |||
5392 | ||||
5393 | if (lbStartIdx < 0 || lbStartIdx < fp->fInputIdx - maxML) { | |||
5394 | // We have tried all potential match starting points without | |||
5395 | // getting a match. Backtrack out, and out of the | |||
5396 | // Look Behind altogether. | |||
5397 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); | |||
5398 | fActiveStart = fData[opValue+2]; | |||
5399 | fActiveLimit = fData[opValue+3]; | |||
5400 | U_ASSERT(fActiveStart >= 0)(void)0; | |||
5401 | U_ASSERT(fActiveLimit <= fInputLength)(void)0; | |||
5402 | break; | |||
5403 | } | |||
5404 | ||||
5405 | // Save state to this URX_LB_CONT op, so failure to match will repeat the loop. | |||
5406 | // (successful match will fall off the end of the loop.) | |||
5407 | fp = StateSave(fp, fp->fPatIdx-3, status); | |||
5408 | fp->fInputIdx = lbStartIdx; | |||
5409 | } | |||
5410 | break; | |||
5411 | ||||
5412 | case URX_LB_END: | |||
5413 | // End of a look-behind block, after a successful match. | |||
5414 | { | |||
5415 | U_ASSERT(opValue>=0 && opValue+4<fPattern->fDataSize)(void)0; | |||
5416 | if (fp->fInputIdx != fActiveLimit) { | |||
5417 | // The look-behind expression matched, but the match did not | |||
5418 | // extend all the way to the point that we are looking behind from. | |||
5419 | // FAIL out of here, which will take us back to the LB_CONT, which | |||
5420 | // will retry the match starting at another position or fail | |||
5421 | // the look-behind altogether, whichever is appropriate. | |||
5422 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); | |||
5423 | break; | |||
5424 | } | |||
5425 | ||||
5426 | // Look-behind match is good. Restore the original input string region, | |||
5427 | // which had been truncated to pin the end of the lookbehind match to the | |||
5428 | // position being looked-behind. | |||
5429 | fActiveStart = fData[opValue+2]; | |||
5430 | fActiveLimit = fData[opValue+3]; | |||
5431 | U_ASSERT(fActiveStart >= 0)(void)0; | |||
5432 | U_ASSERT(fActiveLimit <= fInputLength)(void)0; | |||
5433 | } | |||
5434 | break; | |||
5435 | ||||
5436 | ||||
5437 | case URX_LBN_CONT: | |||
5438 | { | |||
5439 | // Negative Look-Behind, at top of loop checking for matches of LB expression | |||
5440 | // at all possible input starting positions. | |||
5441 | ||||
5442 | // Fetch the extra parameters of this op. | |||
5443 | int32_t minML = (int32_t)pat[fp->fPatIdx++]; | |||
5444 | int32_t maxML = (int32_t)pat[fp->fPatIdx++]; | |||
5445 | int32_t continueLoc = (int32_t)pat[fp->fPatIdx++]; | |||
5446 | continueLoc = URX_VAL(continueLoc)((continueLoc) & 0xffffff); | |||
5447 | U_ASSERT(minML <= maxML)(void)0; | |||
5448 | U_ASSERT(minML >= 0)(void)0; | |||
5449 | U_ASSERT(continueLoc > fp->fPatIdx)(void)0; | |||
5450 | ||||
5451 | // Fetch (from data) the last input index where a match was attempted. | |||
5452 | U_ASSERT(opValue>=0 && opValue+4<fPattern->fDataSize)(void)0; | |||
5453 | int64_t &lbStartIdx = fData[opValue+4]; | |||
5454 | if (lbStartIdx < 0) { | |||
5455 | // First time through loop. | |||
5456 | lbStartIdx = fp->fInputIdx - minML; | |||
5457 | if (lbStartIdx > 0 && lbStartIdx < fInputLength) { | |||
5458 | U16_SET_CP_START(inputBuf, 0, lbStartIdx)do { if(((((inputBuf)[lbStartIdx])&0xfffffc00)==0xdc00) && (lbStartIdx)>(0) && ((((inputBuf)[(lbStartIdx)-1] )&0xfffffc00)==0xd800)) { --(lbStartIdx); } } while (false ); | |||
5459 | } | |||
5460 | } else { | |||
5461 | // 2nd through nth time through the loop. | |||
5462 | // Back up start position for match by one. | |||
5463 | if (lbStartIdx == 0) { | |||
5464 | lbStartIdx--; // Because U16_BACK is unsafe starting at 0. | |||
5465 | } else { | |||
5466 | U16_BACK_1(inputBuf, 0, lbStartIdx)do { if(((((inputBuf)[--(lbStartIdx)])&0xfffffc00)==0xdc00 ) && (lbStartIdx)>(0) && ((((inputBuf)[(lbStartIdx )-1])&0xfffffc00)==0xd800)) { --(lbStartIdx); } } while ( false); | |||
5467 | } | |||
5468 | } | |||
5469 | ||||
5470 | if (lbStartIdx < 0 || lbStartIdx < fp->fInputIdx - maxML) { | |||
5471 | // We have tried all potential match starting points without | |||
5472 | // getting a match, which means that the negative lookbehind as | |||
5473 | // a whole has succeeded. Jump forward to the continue location | |||
5474 | fActiveStart = fData[opValue+2]; | |||
5475 | fActiveLimit = fData[opValue+3]; | |||
5476 | U_ASSERT(fActiveStart >= 0)(void)0; | |||
5477 | U_ASSERT(fActiveLimit <= fInputLength)(void)0; | |||
5478 | fp->fPatIdx = continueLoc; | |||
5479 | break; | |||
5480 | } | |||
5481 | ||||
5482 | // Save state to this URX_LB_CONT op, so failure to match will repeat the loop. | |||
5483 | // (successful match will cause a FAIL out of the loop altogether.) | |||
5484 | fp = StateSave(fp, fp->fPatIdx-4, status); | |||
5485 | fp->fInputIdx = lbStartIdx; | |||
5486 | } | |||
5487 | break; | |||
5488 | ||||
5489 | case URX_LBN_END: | |||
5490 | // End of a negative look-behind block, after a successful match. | |||
5491 | { | |||
5492 | U_ASSERT(opValue>=0 && opValue+4<fPattern->fDataSize)(void)0; | |||
5493 | if (fp->fInputIdx != fActiveLimit) { | |||
5494 | // The look-behind expression matched, but the match did not | |||
5495 | // extend all the way to the point that we are looking behind from. | |||
5496 | // FAIL out of here, which will take us back to the LB_CONT, which | |||
5497 | // will retry the match starting at another position or succeed | |||
5498 | // the look-behind altogether, whichever is appropriate. | |||
5499 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); | |||
5500 | break; | |||
5501 | } | |||
5502 | ||||
5503 | // Look-behind expression matched, which means look-behind test as | |||
5504 | // a whole Fails | |||
5505 | ||||
5506 | // Restore the original input string length, which had been truncated | |||
5507 | // inorder to pin the end of the lookbehind match | |||
5508 | // to the position being looked-behind. | |||
5509 | fActiveStart = fData[opValue+2]; | |||
5510 | fActiveLimit = fData[opValue+3]; | |||
5511 | U_ASSERT(fActiveStart >= 0)(void)0; | |||
5512 | U_ASSERT(fActiveLimit <= fInputLength)(void)0; | |||
5513 | ||||
5514 | // Restore original stack position, discarding any state saved | |||
5515 | // by the successful pattern match. | |||
5516 | U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize)(void)0; | |||
5517 | int32_t newStackSize = (int32_t)fData[opValue]; | |||
5518 | U_ASSERT(fStack->size() > newStackSize)(void)0; | |||
5519 | fStack->setSize(newStackSize); | |||
5520 | ||||
5521 | // FAIL, which will take control back to someplace | |||
5522 | // prior to entering the look-behind test. | |||
5523 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); | |||
5524 | } | |||
5525 | break; | |||
5526 | ||||
5527 | ||||
5528 | case URX_LOOP_SR_I: | |||
5529 | // Loop Initialization for the optimized implementation of | |||
5530 | // [some character set]* | |||
5531 | // This op scans through all matching input. | |||
5532 | // The following LOOP_C op emulates stack unwinding if the following pattern fails. | |||
5533 | { | |||
5534 | U_ASSERT(opValue > 0 && opValue < fSets->size())(void)0; | |||
5535 | Regex8BitSet *s8 = &fPattern->fSets8[opValue]; | |||
5536 | UnicodeSet *s = (UnicodeSet *)fSets->elementAt(opValue); | |||
5537 | ||||
5538 | // Loop through input, until either the input is exhausted or | |||
5539 | // we reach a character that is not a member of the set. | |||
5540 | int32_t ix = (int32_t)fp->fInputIdx; | |||
5541 | for (;;) { | |||
5542 | if (ix >= fActiveLimit) { | |||
5543 | fHitEnd = TRUE1; | |||
5544 | break; | |||
5545 | } | |||
5546 | UChar32 c; | |||
5547 | U16_NEXT(inputBuf, ix, fActiveLimit, c)do { (c)=(inputBuf)[(ix)++]; if((((c)&0xfffffc00)==0xd800 )) { uint16_t __c2; if((ix)!=(fActiveLimit) && (((__c2 =(inputBuf)[(ix)])&0xfffffc00)==0xdc00)) { ++(ix); (c)=(( (UChar32)((c))<<10UL)+(UChar32)(__c2)-((0xd800<<10UL )+0xdc00-0x10000)); } } } while (false); | |||
5548 | if (c<256) { | |||
5549 | if (s8->contains(c) == FALSE0) { | |||
5550 | U16_BACK_1(inputBuf, 0, ix)do { if(((((inputBuf)[--(ix)])&0xfffffc00)==0xdc00) && (ix)>(0) && ((((inputBuf)[(ix)-1])&0xfffffc00 )==0xd800)) { --(ix); } } while (false); | |||
5551 | break; | |||
5552 | } | |||
5553 | } else { | |||
5554 | if (s->contains(c) == FALSE0) { | |||
5555 | U16_BACK_1(inputBuf, 0, ix)do { if(((((inputBuf)[--(ix)])&0xfffffc00)==0xdc00) && (ix)>(0) && ((((inputBuf)[(ix)-1])&0xfffffc00 )==0xd800)) { --(ix); } } while (false); | |||
5556 | break; | |||
5557 | } | |||
5558 | } | |||
5559 | } | |||
5560 | ||||
5561 | // If there were no matching characters, skip over the loop altogether. | |||
5562 | // The loop doesn't run at all, a * op always succeeds. | |||
5563 | if (ix == fp->fInputIdx) { | |||
5564 | fp->fPatIdx++; // skip the URX_LOOP_C op. | |||
5565 | break; | |||
5566 | } | |||
5567 | ||||
5568 | // Peek ahead in the compiled pattern, to the URX_LOOP_C that | |||
5569 | // must follow. It's operand is the stack location | |||
5570 | // that holds the starting input index for the match of this [set]* | |||
5571 | int32_t loopcOp = (int32_t)pat[fp->fPatIdx]; | |||
5572 | U_ASSERT(URX_TYPE(loopcOp) == URX_LOOP_C)(void)0; | |||
5573 | int32_t stackLoc = URX_VAL(loopcOp)((loopcOp) & 0xffffff); | |||
5574 | U_ASSERT(stackLoc >= 0 && stackLoc < fFrameSize)(void)0; | |||
5575 | fp->fExtra[stackLoc] = fp->fInputIdx; | |||
5576 | fp->fInputIdx = ix; | |||
5577 | ||||
5578 | // Save State to the URX_LOOP_C op that follows this one, | |||
5579 | // so that match failures in the following code will return to there. | |||
5580 | // Then bump the pattern idx so the LOOP_C is skipped on the way out of here. | |||
5581 | fp = StateSave(fp, fp->fPatIdx, status); | |||
5582 | fp->fPatIdx++; | |||
5583 | } | |||
5584 | break; | |||
5585 | ||||
5586 | ||||
5587 | case URX_LOOP_DOT_I: | |||
5588 | // Loop Initialization for the optimized implementation of .* | |||
5589 | // This op scans through all remaining input. | |||
5590 | // The following LOOP_C op emulates stack unwinding if the following pattern fails. | |||
5591 | { | |||
5592 | // Loop through input until the input is exhausted (we reach an end-of-line) | |||
5593 | // In DOTALL mode, we can just go straight to the end of the input. | |||
5594 | int32_t ix; | |||
5595 | if ((opValue & 1) == 1) { | |||
5596 | // Dot-matches-All mode. Jump straight to the end of the string. | |||
5597 | ix = (int32_t)fActiveLimit; | |||
5598 | fHitEnd = TRUE1; | |||
5599 | } else { | |||
5600 | // NOT DOT ALL mode. Line endings do not match '.' | |||
5601 | // Scan forward until a line ending or end of input. | |||
5602 | ix = (int32_t)fp->fInputIdx; | |||
5603 | for (;;) { | |||
5604 | if (ix >= fActiveLimit) { | |||
5605 | fHitEnd = TRUE1; | |||
5606 | break; | |||
5607 | } | |||
5608 | UChar32 c; | |||
5609 | U16_NEXT(inputBuf, ix, fActiveLimit, c)do { (c)=(inputBuf)[(ix)++]; if((((c)&0xfffffc00)==0xd800 )) { uint16_t __c2; if((ix)!=(fActiveLimit) && (((__c2 =(inputBuf)[(ix)])&0xfffffc00)==0xdc00)) { ++(ix); (c)=(( (UChar32)((c))<<10UL)+(UChar32)(__c2)-((0xd800<<10UL )+0xdc00-0x10000)); } } } while (false); // c = inputBuf[ix++] | |||
5610 | if ((c & 0x7f) <= 0x29) { // Fast filter of non-new-line-s | |||
5611 | if ((c == 0x0a) || // 0x0a is newline in both modes. | |||
5612 | (((opValue & 2) == 0) && // IF not UNIX_LINES mode | |||
5613 | isLineTerminator(c))) { | |||
5614 | // char is a line ending. Put the input pos back to the | |||
5615 | // line ending char, and exit the scanning loop. | |||
5616 | U16_BACK_1(inputBuf, 0, ix)do { if(((((inputBuf)[--(ix)])&0xfffffc00)==0xdc00) && (ix)>(0) && ((((inputBuf)[(ix)-1])&0xfffffc00 )==0xd800)) { --(ix); } } while (false); | |||
5617 | break; | |||
5618 | } | |||
5619 | } | |||
5620 | } | |||
5621 | } | |||
5622 | ||||
5623 | // If there were no matching characters, skip over the loop altogether. | |||
5624 | // The loop doesn't run at all, a * op always succeeds. | |||
5625 | if (ix == fp->fInputIdx) { | |||
5626 | fp->fPatIdx++; // skip the URX_LOOP_C op. | |||
5627 | break; | |||
5628 | } | |||
5629 | ||||
5630 | // Peek ahead in the compiled pattern, to the URX_LOOP_C that | |||
5631 | // must follow. It's operand is the stack location | |||
5632 | // that holds the starting input index for the match of this .* | |||
5633 | int32_t loopcOp = (int32_t)pat[fp->fPatIdx]; | |||
5634 | U_ASSERT(URX_TYPE(loopcOp) == URX_LOOP_C)(void)0; | |||
5635 | int32_t stackLoc = URX_VAL(loopcOp)((loopcOp) & 0xffffff); | |||
5636 | U_ASSERT(stackLoc >= 0 && stackLoc < fFrameSize)(void)0; | |||
5637 | fp->fExtra[stackLoc] = fp->fInputIdx; | |||
5638 | fp->fInputIdx = ix; | |||
5639 | ||||
5640 | // Save State to the URX_LOOP_C op that follows this one, | |||
5641 | // so that match failures in the following code will return to there. | |||
5642 | // Then bump the pattern idx so the LOOP_C is skipped on the way out of here. | |||
5643 | fp = StateSave(fp, fp->fPatIdx, status); | |||
5644 | fp->fPatIdx++; | |||
5645 | } | |||
5646 | break; | |||
5647 | ||||
5648 | ||||
5649 | case URX_LOOP_C: | |||
5650 | { | |||
5651 | U_ASSERT(opValue>=0 && opValue<fFrameSize)(void)0; | |||
5652 | backSearchIndex = (int32_t)fp->fExtra[opValue]; | |||
5653 | U_ASSERT(backSearchIndex <= fp->fInputIdx)(void)0; | |||
5654 | if (backSearchIndex == fp->fInputIdx) { | |||
5655 | // We've backed up the input idx to the point that the loop started. | |||
5656 | // The loop is done. Leave here without saving state. | |||
5657 | // Subsequent failures won't come back here. | |||
5658 | break; | |||
5659 | } | |||
5660 | // Set up for the next iteration of the loop, with input index | |||
5661 | // backed up by one from the last time through, | |||
5662 | // and a state save to this instruction in case the following code fails again. | |||
5663 | // (We're going backwards because this loop emulates stack unwinding, not | |||
5664 | // the initial scan forward.) | |||
5665 | U_ASSERT(fp->fInputIdx > 0)(void)0; | |||
5666 | UChar32 prevC; | |||
5667 | U16_PREV(inputBuf, 0, fp->fInputIdx, prevC)do { (prevC)=(inputBuf)[--(fp->fInputIdx)]; if((((prevC)& 0xfffffc00)==0xdc00)) { uint16_t __c2; if((fp->fInputIdx)> (0) && (((__c2=(inputBuf)[(fp->fInputIdx)-1])& 0xfffffc00)==0xd800)) { --(fp->fInputIdx); (prevC)=(((UChar32 )(__c2)<<10UL)+(UChar32)((prevC))-((0xd800<<10UL) +0xdc00-0x10000)); } } } while (false); // !!!: should this 0 be one of f*Limit? | |||
5668 | ||||
5669 | if (prevC == 0x0a && | |||
5670 | fp->fInputIdx > backSearchIndex && | |||
5671 | inputBuf[fp->fInputIdx-1] == 0x0d) { | |||
5672 | int32_t prevOp = (int32_t)pat[fp->fPatIdx-2]; | |||
5673 | if (URX_TYPE(prevOp)((uint32_t)(prevOp) >> 24) == URX_LOOP_DOT_I) { | |||
5674 | // .*, stepping back over CRLF pair. | |||
5675 | U16_BACK_1(inputBuf, 0, fp->fInputIdx)do { if(((((inputBuf)[--(fp->fInputIdx)])&0xfffffc00)== 0xdc00) && (fp->fInputIdx)>(0) && ((((inputBuf )[(fp->fInputIdx)-1])&0xfffffc00)==0xd800)) { --(fp-> fInputIdx); } } while (false); | |||
5676 | } | |||
5677 | } | |||
5678 | ||||
5679 | ||||
5680 | fp = StateSave(fp, fp->fPatIdx-1, status); | |||
5681 | } | |||
5682 | break; | |||
5683 | ||||
5684 | ||||
5685 | ||||
5686 | default: | |||
5687 | // Trouble. The compiled pattern contains an entry with an | |||
5688 | // unrecognized type tag. | |||
5689 | UPRV_UNREACHABLE_ASSERT(void)0; | |||
5690 | // Unknown opcode type in opType = URX_TYPE(pat[fp->fPatIdx]). But we have | |||
5691 | // reports of this in production code, don't use UPRV_UNREACHABLE_EXIT. | |||
5692 | // See ICU-21669. | |||
5693 | status = U_INTERNAL_PROGRAM_ERROR; | |||
5694 | } | |||
5695 | ||||
5696 | if (U_FAILURE(status)) { | |||
5697 | isMatch = FALSE0; | |||
5698 | break; | |||
5699 | } | |||
5700 | } | |||
5701 | ||||
5702 | breakFromLoop: | |||
5703 | fMatch = isMatch; | |||
5704 | if (isMatch) { | |||
5705 | fLastMatchEnd = fMatchEnd; | |||
5706 | fMatchStart = startIdx; | |||
5707 | fMatchEnd = fp->fInputIdx; | |||
5708 | } | |||
5709 | ||||
5710 | #ifdef REGEX_RUN_DEBUG | |||
5711 | if (fTraceDebug) { | |||
5712 | if (isMatch) { | |||
5713 | printf("Match. start=%ld end=%ld\n\n", fMatchStart, fMatchEnd); | |||
5714 | } else { | |||
5715 | printf("No match\n\n"); | |||
5716 | } | |||
5717 | } | |||
5718 | #endif | |||
5719 | ||||
5720 | fFrame = fp; // The active stack frame when the engine stopped. | |||
5721 | // Contains the capture group results that we need to | |||
5722 | // access later. | |||
5723 | ||||
5724 | return; | |||
5725 | } | |||
5726 | ||||
5727 | ||||
5728 | UOBJECT_DEFINE_RTTI_IMPLEMENTATION(RegexMatcher)UClassID RegexMatcher::getStaticClassID() { static char classID = 0; return (UClassID)&classID; } UClassID RegexMatcher:: getDynamicClassID() const { return RegexMatcher::getStaticClassID (); } | |||
5729 | ||||
5730 | U_NAMESPACE_END} | |||
5731 | ||||
5732 | #endif // !UCONFIG_NO_REGULAR_EXPRESSIONS | |||
5733 |