File: | out/../deps/brotli/c/dec/huffman.c |
Warning: | line 145, column 12 2nd function call argument is an uninitialized value |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | /* Copyright 2013 Google Inc. All Rights Reserved. | |||
2 | ||||
3 | Distributed under MIT license. | |||
4 | See file LICENSE for detail or copy at https://opensource.org/licenses/MIT | |||
5 | */ | |||
6 | ||||
7 | /* Utilities for building Huffman decoding tables. */ | |||
8 | ||||
9 | #include "./huffman.h" | |||
10 | ||||
11 | #include <string.h> /* memcpy, memset */ | |||
12 | ||||
13 | #include "../common/constants.h" | |||
14 | #include "../common/platform.h" | |||
15 | #include <brotli/types.h> | |||
16 | ||||
17 | #if defined(__cplusplus) || defined(c_plusplus) | |||
18 | extern "C" { | |||
19 | #endif | |||
20 | ||||
21 | #define BROTLI_REVERSE_BITS_MAX8 8 | |||
22 | ||||
23 | #if defined(BROTLI_RBIT) | |||
24 | #define BROTLI_REVERSE_BITS_BASE0 \ | |||
25 | ((sizeof(brotli_reg_tuint64_t) << 3) - BROTLI_REVERSE_BITS_MAX8) | |||
26 | #else | |||
27 | #define BROTLI_REVERSE_BITS_BASE0 0 | |||
28 | static uint8_t kReverseBits[1 << BROTLI_REVERSE_BITS_MAX8] = { | |||
29 | 0x00, 0x80, 0x40, 0xC0, 0x20, 0xA0, 0x60, 0xE0, | |||
30 | 0x10, 0x90, 0x50, 0xD0, 0x30, 0xB0, 0x70, 0xF0, | |||
31 | 0x08, 0x88, 0x48, 0xC8, 0x28, 0xA8, 0x68, 0xE8, | |||
32 | 0x18, 0x98, 0x58, 0xD8, 0x38, 0xB8, 0x78, 0xF8, | |||
33 | 0x04, 0x84, 0x44, 0xC4, 0x24, 0xA4, 0x64, 0xE4, | |||
34 | 0x14, 0x94, 0x54, 0xD4, 0x34, 0xB4, 0x74, 0xF4, | |||
35 | 0x0C, 0x8C, 0x4C, 0xCC, 0x2C, 0xAC, 0x6C, 0xEC, | |||
36 | 0x1C, 0x9C, 0x5C, 0xDC, 0x3C, 0xBC, 0x7C, 0xFC, | |||
37 | 0x02, 0x82, 0x42, 0xC2, 0x22, 0xA2, 0x62, 0xE2, | |||
38 | 0x12, 0x92, 0x52, 0xD2, 0x32, 0xB2, 0x72, 0xF2, | |||
39 | 0x0A, 0x8A, 0x4A, 0xCA, 0x2A, 0xAA, 0x6A, 0xEA, | |||
40 | 0x1A, 0x9A, 0x5A, 0xDA, 0x3A, 0xBA, 0x7A, 0xFA, | |||
41 | 0x06, 0x86, 0x46, 0xC6, 0x26, 0xA6, 0x66, 0xE6, | |||
42 | 0x16, 0x96, 0x56, 0xD6, 0x36, 0xB6, 0x76, 0xF6, | |||
43 | 0x0E, 0x8E, 0x4E, 0xCE, 0x2E, 0xAE, 0x6E, 0xEE, | |||
44 | 0x1E, 0x9E, 0x5E, 0xDE, 0x3E, 0xBE, 0x7E, 0xFE, | |||
45 | 0x01, 0x81, 0x41, 0xC1, 0x21, 0xA1, 0x61, 0xE1, | |||
46 | 0x11, 0x91, 0x51, 0xD1, 0x31, 0xB1, 0x71, 0xF1, | |||
47 | 0x09, 0x89, 0x49, 0xC9, 0x29, 0xA9, 0x69, 0xE9, | |||
48 | 0x19, 0x99, 0x59, 0xD9, 0x39, 0xB9, 0x79, 0xF9, | |||
49 | 0x05, 0x85, 0x45, 0xC5, 0x25, 0xA5, 0x65, 0xE5, | |||
50 | 0x15, 0x95, 0x55, 0xD5, 0x35, 0xB5, 0x75, 0xF5, | |||
51 | 0x0D, 0x8D, 0x4D, 0xCD, 0x2D, 0xAD, 0x6D, 0xED, | |||
52 | 0x1D, 0x9D, 0x5D, 0xDD, 0x3D, 0xBD, 0x7D, 0xFD, | |||
53 | 0x03, 0x83, 0x43, 0xC3, 0x23, 0xA3, 0x63, 0xE3, | |||
54 | 0x13, 0x93, 0x53, 0xD3, 0x33, 0xB3, 0x73, 0xF3, | |||
55 | 0x0B, 0x8B, 0x4B, 0xCB, 0x2B, 0xAB, 0x6B, 0xEB, | |||
56 | 0x1B, 0x9B, 0x5B, 0xDB, 0x3B, 0xBB, 0x7B, 0xFB, | |||
57 | 0x07, 0x87, 0x47, 0xC7, 0x27, 0xA7, 0x67, 0xE7, | |||
58 | 0x17, 0x97, 0x57, 0xD7, 0x37, 0xB7, 0x77, 0xF7, | |||
59 | 0x0F, 0x8F, 0x4F, 0xCF, 0x2F, 0xAF, 0x6F, 0xEF, | |||
60 | 0x1F, 0x9F, 0x5F, 0xDF, 0x3F, 0xBF, 0x7F, 0xFF | |||
61 | }; | |||
62 | #endif /* BROTLI_RBIT */ | |||
63 | ||||
64 | #define BROTLI_REVERSE_BITS_LOWEST((uint64_t)1 << (8 - 1 + 0)) \ | |||
65 | ((brotli_reg_tuint64_t)1 << (BROTLI_REVERSE_BITS_MAX8 - 1 + BROTLI_REVERSE_BITS_BASE0)) | |||
66 | ||||
67 | /* Returns reverse(num >> BROTLI_REVERSE_BITS_BASE, BROTLI_REVERSE_BITS_MAX), | |||
68 | where reverse(value, len) is the bit-wise reversal of the len least | |||
69 | significant bits of value. */ | |||
70 | static BROTLI_INLINEinline __attribute__((__always_inline__)) brotli_reg_tuint64_t BrotliReverseBits(brotli_reg_tuint64_t num) { | |||
71 | #if defined(BROTLI_RBIT) | |||
72 | return BROTLI_RBIT(num); | |||
73 | #else | |||
74 | return kReverseBits[num]; | |||
75 | #endif | |||
76 | } | |||
77 | ||||
78 | /* Stores code in table[0], table[step], table[2*step], ..., table[end] */ | |||
79 | /* Assumes that end is an integer multiple of step */ | |||
80 | static BROTLI_INLINEinline __attribute__((__always_inline__)) void ReplicateValue(HuffmanCode* table, | |||
81 | int step, int end, | |||
82 | HuffmanCode code) { | |||
83 | do { | |||
84 | end -= step; | |||
85 | table[end] = code; | |||
86 | } while (end > 0); | |||
87 | } | |||
88 | ||||
89 | /* Returns the table width of the next 2nd level table. |count| is the histogram | |||
90 | of bit lengths for the remaining symbols, |len| is the code length of the | |||
91 | next processed symbol. */ | |||
92 | static BROTLI_INLINEinline __attribute__((__always_inline__)) int NextTableBitSize(const uint16_t* const count, | |||
93 | int len, int root_bits) { | |||
94 | int left = 1 << (len - root_bits); | |||
95 | while (len < BROTLI_HUFFMAN_MAX_CODE_LENGTH15) { | |||
96 | left -= count[len]; | |||
97 | if (left <= 0) break; | |||
98 | ++len; | |||
99 | left <<= 1; | |||
100 | } | |||
101 | return len - root_bits; | |||
102 | } | |||
103 | ||||
104 | void BrotliBuildCodeLengthsHuffmanTable(HuffmanCode* table, | |||
105 | const uint8_t* const code_lengths, | |||
106 | uint16_t* count) { | |||
107 | HuffmanCode code; /* current table entry */ | |||
108 | int symbol; /* symbol index in original or sorted table */ | |||
109 | brotli_reg_tuint64_t key; /* prefix code */ | |||
110 | brotli_reg_tuint64_t key_step; /* prefix code addend */ | |||
111 | int step; /* step size to replicate values in current table */ | |||
112 | int table_size; /* size of current table */ | |||
113 | int sorted[BROTLI_CODE_LENGTH_CODES(17 + 1)]; /* symbols sorted by code length */ | |||
114 | /* offsets in sorted table for each length */ | |||
115 | int offset[BROTLI_HUFFMAN_MAX_CODE_LENGTH_CODE_LENGTH5 + 1]; | |||
116 | int bits; | |||
117 | int bits_count; | |||
118 | BROTLI_DCHECK(BROTLI_HUFFMAN_MAX_CODE_LENGTH_CODE_LENGTH <= | |||
119 | BROTLI_REVERSE_BITS_MAX); | |||
120 | ||||
121 | /* Generate offsets into sorted symbol table by code length. */ | |||
122 | symbol = -1; | |||
123 | bits = 1; | |||
124 | BROTLI_REPEAT(BROTLI_HUFFMAN_MAX_CODE_LENGTH_CODE_LENGTH, {{ if ((5 & 1) != 0) {{ symbol += count[bits]; offset[bits ] = symbol; bits++; };} if ((5 & 2) != 0) {{ symbol += count [bits]; offset[bits] = symbol; bits++; }; { symbol += count[bits ]; offset[bits] = symbol; bits++; };} if ((5 & 4) != 0) { { symbol += count[bits]; offset[bits] = symbol; bits++; }; { symbol += count[bits]; offset[bits] = symbol; bits++; }; { symbol += count[bits]; offset[bits] = symbol; bits++; }; { symbol += count [bits]; offset[bits] = symbol; bits++; };} } | |||
| ||||
125 | symbol += count[bits];{ if ((5 & 1) != 0) {{ symbol += count[bits]; offset[bits ] = symbol; bits++; };} if ((5 & 2) != 0) {{ symbol += count [bits]; offset[bits] = symbol; bits++; }; { symbol += count[bits ]; offset[bits] = symbol; bits++; };} if ((5 & 4) != 0) { { symbol += count[bits]; offset[bits] = symbol; bits++; }; { symbol += count[bits]; offset[bits] = symbol; bits++; }; { symbol += count[bits]; offset[bits] = symbol; bits++; }; { symbol += count [bits]; offset[bits] = symbol; bits++; };} } | |||
126 | offset[bits] = symbol;{ if ((5 & 1) != 0) {{ symbol += count[bits]; offset[bits ] = symbol; bits++; };} if ((5 & 2) != 0) {{ symbol += count [bits]; offset[bits] = symbol; bits++; }; { symbol += count[bits ]; offset[bits] = symbol; bits++; };} if ((5 & 4) != 0) { { symbol += count[bits]; offset[bits] = symbol; bits++; }; { symbol += count[bits]; offset[bits] = symbol; bits++; }; { symbol += count[bits]; offset[bits] = symbol; bits++; }; { symbol += count [bits]; offset[bits] = symbol; bits++; };} } | |||
127 | bits++;{ if ((5 & 1) != 0) {{ symbol += count[bits]; offset[bits ] = symbol; bits++; };} if ((5 & 2) != 0) {{ symbol += count [bits]; offset[bits] = symbol; bits++; }; { symbol += count[bits ]; offset[bits] = symbol; bits++; };} if ((5 & 4) != 0) { { symbol += count[bits]; offset[bits] = symbol; bits++; }; { symbol += count[bits]; offset[bits] = symbol; bits++; }; { symbol += count[bits]; offset[bits] = symbol; bits++; }; { symbol += count [bits]; offset[bits] = symbol; bits++; };} } | |||
128 | }){ if ((5 & 1) != 0) {{ symbol += count[bits]; offset[bits ] = symbol; bits++; };} if ((5 & 2) != 0) {{ symbol += count [bits]; offset[bits] = symbol; bits++; }; { symbol += count[bits ]; offset[bits] = symbol; bits++; };} if ((5 & 4) != 0) { { symbol += count[bits]; offset[bits] = symbol; bits++; }; { symbol += count[bits]; offset[bits] = symbol; bits++; }; { symbol += count[bits]; offset[bits] = symbol; bits++; }; { symbol += count [bits]; offset[bits] = symbol; bits++; };} }; | |||
129 | /* Symbols with code length 0 are placed after all other symbols. */ | |||
130 | offset[0] = BROTLI_CODE_LENGTH_CODES(17 + 1) - 1; | |||
131 | ||||
132 | /* Sort symbols by length, by symbol order within each length. */ | |||
133 | symbol = BROTLI_CODE_LENGTH_CODES(17 + 1); | |||
134 | do { | |||
135 | BROTLI_REPEAT(6, {{ if ((6 & 1) != 0) {{ symbol--; sorted[offset[code_lengths [symbol]]--] = symbol; };} if ((6 & 2) != 0) {{ symbol--; sorted[offset[code_lengths[symbol]]--] = symbol; }; { symbol --; sorted[offset[code_lengths[symbol]]--] = symbol; };} if ( (6 & 4) != 0) {{ symbol--; sorted[offset[code_lengths[symbol ]]--] = symbol; }; { symbol--; sorted[offset[code_lengths[symbol ]]--] = symbol; }; { symbol--; sorted[offset[code_lengths[symbol ]]--] = symbol; }; { symbol--; sorted[offset[code_lengths[symbol ]]--] = symbol; };} } | |||
136 | symbol--;{ if ((6 & 1) != 0) {{ symbol--; sorted[offset[code_lengths [symbol]]--] = symbol; };} if ((6 & 2) != 0) {{ symbol--; sorted[offset[code_lengths[symbol]]--] = symbol; }; { symbol --; sorted[offset[code_lengths[symbol]]--] = symbol; };} if ( (6 & 4) != 0) {{ symbol--; sorted[offset[code_lengths[symbol ]]--] = symbol; }; { symbol--; sorted[offset[code_lengths[symbol ]]--] = symbol; }; { symbol--; sorted[offset[code_lengths[symbol ]]--] = symbol; }; { symbol--; sorted[offset[code_lengths[symbol ]]--] = symbol; };} } | |||
137 | sorted[offset[code_lengths[symbol]]--] = symbol;{ if ((6 & 1) != 0) {{ symbol--; sorted[offset[code_lengths [symbol]]--] = symbol; };} if ((6 & 2) != 0) {{ symbol--; sorted[offset[code_lengths[symbol]]--] = symbol; }; { symbol --; sorted[offset[code_lengths[symbol]]--] = symbol; };} if ( (6 & 4) != 0) {{ symbol--; sorted[offset[code_lengths[symbol ]]--] = symbol; }; { symbol--; sorted[offset[code_lengths[symbol ]]--] = symbol; }; { symbol--; sorted[offset[code_lengths[symbol ]]--] = symbol; }; { symbol--; sorted[offset[code_lengths[symbol ]]--] = symbol; };} } | |||
138 | }){ if ((6 & 1) != 0) {{ symbol--; sorted[offset[code_lengths [symbol]]--] = symbol; };} if ((6 & 2) != 0) {{ symbol--; sorted[offset[code_lengths[symbol]]--] = symbol; }; { symbol --; sorted[offset[code_lengths[symbol]]--] = symbol; };} if ( (6 & 4) != 0) {{ symbol--; sorted[offset[code_lengths[symbol ]]--] = symbol; }; { symbol--; sorted[offset[code_lengths[symbol ]]--] = symbol; }; { symbol--; sorted[offset[code_lengths[symbol ]]--] = symbol; }; { symbol--; sorted[offset[code_lengths[symbol ]]--] = symbol; };} }; | |||
139 | } while (symbol != 0); | |||
140 | ||||
141 | table_size = 1 << BROTLI_HUFFMAN_MAX_CODE_LENGTH_CODE_LENGTH5; | |||
142 | ||||
143 | /* Special case: all symbols but one have 0 code length. */ | |||
144 | if (offset[0] == 0) { | |||
145 | code = ConstructHuffmanCode(0, (uint16_t)sorted[0]); | |||
| ||||
146 | for (key = 0; key < (brotli_reg_tuint64_t)table_size; ++key) { | |||
147 | table[key] = code; | |||
148 | } | |||
149 | return; | |||
150 | } | |||
151 | ||||
152 | /* Fill in table. */ | |||
153 | key = 0; | |||
154 | key_step = BROTLI_REVERSE_BITS_LOWEST((uint64_t)1 << (8 - 1 + 0)); | |||
155 | symbol = 0; | |||
156 | bits = 1; | |||
157 | step = 2; | |||
158 | do { | |||
159 | for (bits_count = count[bits]; bits_count != 0; --bits_count) { | |||
160 | code = ConstructHuffmanCode((uint8_t)bits, (uint16_t)sorted[symbol++]); | |||
161 | ReplicateValue(&table[BrotliReverseBits(key)], step, table_size, code); | |||
162 | key += key_step; | |||
163 | } | |||
164 | step <<= 1; | |||
165 | key_step >>= 1; | |||
166 | } while (++bits <= BROTLI_HUFFMAN_MAX_CODE_LENGTH_CODE_LENGTH5); | |||
167 | } | |||
168 | ||||
169 | uint32_t BrotliBuildHuffmanTable(HuffmanCode* root_table, | |||
170 | int root_bits, | |||
171 | const uint16_t* const symbol_lists, | |||
172 | uint16_t* count) { | |||
173 | HuffmanCode code; /* current table entry */ | |||
174 | HuffmanCode* table; /* next available space in table */ | |||
175 | int len; /* current code length */ | |||
176 | int symbol; /* symbol index in original or sorted table */ | |||
177 | brotli_reg_tuint64_t key; /* prefix code */ | |||
178 | brotli_reg_tuint64_t key_step; /* prefix code addend */ | |||
179 | brotli_reg_tuint64_t sub_key; /* 2nd level table prefix code */ | |||
180 | brotli_reg_tuint64_t sub_key_step; /* 2nd level table prefix code addend */ | |||
181 | int step; /* step size to replicate values in current table */ | |||
182 | int table_bits; /* key length of current table */ | |||
183 | int table_size; /* size of current table */ | |||
184 | int total_size; /* sum of root table size and 2nd level table sizes */ | |||
185 | int max_length = -1; | |||
186 | int bits; | |||
187 | int bits_count; | |||
188 | ||||
189 | BROTLI_DCHECK(root_bits <= BROTLI_REVERSE_BITS_MAX); | |||
190 | BROTLI_DCHECK(BROTLI_HUFFMAN_MAX_CODE_LENGTH - root_bits <= | |||
191 | BROTLI_REVERSE_BITS_MAX); | |||
192 | ||||
193 | while (symbol_lists[max_length] == 0xFFFF) max_length--; | |||
194 | max_length += BROTLI_HUFFMAN_MAX_CODE_LENGTH15 + 1; | |||
195 | ||||
196 | table = root_table; | |||
197 | table_bits = root_bits; | |||
198 | table_size = 1 << table_bits; | |||
199 | total_size = table_size; | |||
200 | ||||
201 | /* Fill in the root table. Reduce the table size to if possible, | |||
202 | and create the repetitions by memcpy. */ | |||
203 | if (table_bits > max_length) { | |||
204 | table_bits = max_length; | |||
205 | table_size = 1 << table_bits; | |||
206 | } | |||
207 | key = 0; | |||
208 | key_step = BROTLI_REVERSE_BITS_LOWEST((uint64_t)1 << (8 - 1 + 0)); | |||
209 | bits = 1; | |||
210 | step = 2; | |||
211 | do { | |||
212 | symbol = bits - (BROTLI_HUFFMAN_MAX_CODE_LENGTH15 + 1); | |||
213 | for (bits_count = count[bits]; bits_count != 0; --bits_count) { | |||
214 | symbol = symbol_lists[symbol]; | |||
215 | code = ConstructHuffmanCode((uint8_t)bits, (uint16_t)symbol); | |||
216 | ReplicateValue(&table[BrotliReverseBits(key)], step, table_size, code); | |||
217 | key += key_step; | |||
218 | } | |||
219 | step <<= 1; | |||
220 | key_step >>= 1; | |||
221 | } while (++bits <= table_bits); | |||
222 | ||||
223 | /* If root_bits != table_bits then replicate to fill the remaining slots. */ | |||
224 | while (total_size != table_size) { | |||
225 | memcpy(&table[table_size], &table[0], | |||
226 | (size_t)table_size * sizeof(table[0])); | |||
227 | table_size <<= 1; | |||
228 | } | |||
229 | ||||
230 | /* Fill in 2nd level tables and add pointers to root table. */ | |||
231 | key_step = BROTLI_REVERSE_BITS_LOWEST((uint64_t)1 << (8 - 1 + 0)) >> (root_bits - 1); | |||
232 | sub_key = (BROTLI_REVERSE_BITS_LOWEST((uint64_t)1 << (8 - 1 + 0)) << 1); | |||
233 | sub_key_step = BROTLI_REVERSE_BITS_LOWEST((uint64_t)1 << (8 - 1 + 0)); | |||
234 | for (len = root_bits + 1, step = 2; len <= max_length; ++len) { | |||
235 | symbol = len - (BROTLI_HUFFMAN_MAX_CODE_LENGTH15 + 1); | |||
236 | for (; count[len] != 0; --count[len]) { | |||
237 | if (sub_key == (BROTLI_REVERSE_BITS_LOWEST((uint64_t)1 << (8 - 1 + 0)) << 1U)) { | |||
238 | table += table_size; | |||
239 | table_bits = NextTableBitSize(count, len, root_bits); | |||
240 | table_size = 1 << table_bits; | |||
241 | total_size += table_size; | |||
242 | sub_key = BrotliReverseBits(key); | |||
243 | key += key_step; | |||
244 | root_table[sub_key] = ConstructHuffmanCode( | |||
245 | (uint8_t)(table_bits + root_bits), | |||
246 | (uint16_t)(((size_t)(table - root_table)) - sub_key)); | |||
247 | sub_key = 0; | |||
248 | } | |||
249 | symbol = symbol_lists[symbol]; | |||
250 | code = ConstructHuffmanCode((uint8_t)(len - root_bits), (uint16_t)symbol); | |||
251 | ReplicateValue( | |||
252 | &table[BrotliReverseBits(sub_key)], step, table_size, code); | |||
253 | sub_key += sub_key_step; | |||
254 | } | |||
255 | step <<= 1; | |||
256 | sub_key_step >>= 1; | |||
257 | } | |||
258 | return (uint32_t)total_size; | |||
259 | } | |||
260 | ||||
261 | uint32_t BrotliBuildSimpleHuffmanTable(HuffmanCode* table, | |||
262 | int root_bits, | |||
263 | uint16_t* val, | |||
264 | uint32_t num_symbols) { | |||
265 | uint32_t table_size = 1; | |||
266 | const uint32_t goal_size = 1U << root_bits; | |||
267 | switch (num_symbols) { | |||
268 | case 0: | |||
269 | table[0] = ConstructHuffmanCode(0, val[0]); | |||
270 | break; | |||
271 | case 1: | |||
272 | if (val[1] > val[0]) { | |||
273 | table[0] = ConstructHuffmanCode(1, val[0]); | |||
274 | table[1] = ConstructHuffmanCode(1, val[1]); | |||
275 | } else { | |||
276 | table[0] = ConstructHuffmanCode(1, val[1]); | |||
277 | table[1] = ConstructHuffmanCode(1, val[0]); | |||
278 | } | |||
279 | table_size = 2; | |||
280 | break; | |||
281 | case 2: | |||
282 | table[0] = ConstructHuffmanCode(1, val[0]); | |||
283 | table[2] = ConstructHuffmanCode(1, val[0]); | |||
284 | if (val[2] > val[1]) { | |||
285 | table[1] = ConstructHuffmanCode(2, val[1]); | |||
286 | table[3] = ConstructHuffmanCode(2, val[2]); | |||
287 | } else { | |||
288 | table[1] = ConstructHuffmanCode(2, val[2]); | |||
289 | table[3] = ConstructHuffmanCode(2, val[1]); | |||
290 | } | |||
291 | table_size = 4; | |||
292 | break; | |||
293 | case 3: { | |||
294 | int i, k; | |||
295 | for (i = 0; i < 3; ++i) { | |||
296 | for (k = i + 1; k < 4; ++k) { | |||
297 | if (val[k] < val[i]) { | |||
298 | uint16_t t = val[k]; | |||
299 | val[k] = val[i]; | |||
300 | val[i] = t; | |||
301 | } | |||
302 | } | |||
303 | } | |||
304 | table[0] = ConstructHuffmanCode(2, val[0]); | |||
305 | table[2] = ConstructHuffmanCode(2, val[1]); | |||
306 | table[1] = ConstructHuffmanCode(2, val[2]); | |||
307 | table[3] = ConstructHuffmanCode(2, val[3]); | |||
308 | table_size = 4; | |||
309 | break; | |||
310 | } | |||
311 | case 4: { | |||
312 | if (val[3] < val[2]) { | |||
313 | uint16_t t = val[3]; | |||
314 | val[3] = val[2]; | |||
315 | val[2] = t; | |||
316 | } | |||
317 | table[0] = ConstructHuffmanCode(1, val[0]); | |||
318 | table[1] = ConstructHuffmanCode(2, val[1]); | |||
319 | table[2] = ConstructHuffmanCode(1, val[0]); | |||
320 | table[3] = ConstructHuffmanCode(3, val[2]); | |||
321 | table[4] = ConstructHuffmanCode(1, val[0]); | |||
322 | table[5] = ConstructHuffmanCode(2, val[1]); | |||
323 | table[6] = ConstructHuffmanCode(1, val[0]); | |||
324 | table[7] = ConstructHuffmanCode(3, val[3]); | |||
325 | table_size = 8; | |||
326 | break; | |||
327 | } | |||
328 | } | |||
329 | while (table_size != goal_size) { | |||
330 | memcpy(&table[table_size], &table[0], | |||
331 | (size_t)table_size * sizeof(table[0])); | |||
332 | table_size <<= 1; | |||
333 | } | |||
334 | return goal_size; | |||
335 | } | |||
336 | ||||
337 | #if defined(__cplusplus) || defined(c_plusplus) | |||
338 | } /* extern "C" */ | |||
339 | #endif |