File: | out/../deps/icu-small/source/i18n/rematch.cpp |
Warning: | line 4400, column 17 Value stored to 'opType' is never read |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | // © 2016 and later: Unicode, Inc. and others. |
2 | // License & terms of use: http://www.unicode.org/copyright.html |
3 | /* |
4 | ************************************************************************** |
5 | * Copyright (C) 2002-2016 International Business Machines Corporation |
6 | * and others. All rights reserved. |
7 | ************************************************************************** |
8 | */ |
9 | // |
10 | // file: rematch.cpp |
11 | // |
12 | // Contains the implementation of class RegexMatcher, |
13 | // which is one of the main API classes for the ICU regular expression package. |
14 | // |
15 | |
16 | #include "unicode/utypes.h" |
17 | #if !UCONFIG_NO_REGULAR_EXPRESSIONS0 |
18 | |
19 | #include "unicode/regex.h" |
20 | #include "unicode/uniset.h" |
21 | #include "unicode/uchar.h" |
22 | #include "unicode/ustring.h" |
23 | #include "unicode/rbbi.h" |
24 | #include "unicode/utf.h" |
25 | #include "unicode/utf16.h" |
26 | #include "uassert.h" |
27 | #include "cmemory.h" |
28 | #include "cstr.h" |
29 | #include "uvector.h" |
30 | #include "uvectr32.h" |
31 | #include "uvectr64.h" |
32 | #include "regeximp.h" |
33 | #include "regexst.h" |
34 | #include "regextxt.h" |
35 | #include "ucase.h" |
36 | |
37 | // #include <malloc.h> // Needed for heapcheck testing |
38 | |
39 | |
40 | U_NAMESPACE_BEGINnamespace icu_71 { |
41 | |
42 | // Default limit for the size of the back track stack, to avoid system |
43 | // failures causedby heap exhaustion. Units are in 32 bit words, not bytes. |
44 | // This value puts ICU's limits higher than most other regexp implementations, |
45 | // which use recursion rather than the heap, and take more storage per |
46 | // backtrack point. |
47 | // |
48 | static const int32_t DEFAULT_BACKTRACK_STACK_CAPACITY = 8000000; |
49 | |
50 | // Time limit counter constant. |
51 | // Time limits for expression evaluation are in terms of quanta of work by |
52 | // the engine, each of which is 10,000 state saves. |
53 | // This constant determines that state saves per tick number. |
54 | static const int32_t TIMER_INITIAL_VALUE = 10000; |
55 | |
56 | |
57 | // Test for any of the Unicode line terminating characters. |
58 | static inline UBool isLineTerminator(UChar32 c) { |
59 | if (c & ~(0x0a | 0x0b | 0x0c | 0x0d | 0x85 | 0x2028 | 0x2029)) { |
60 | return false; |
61 | } |
62 | return (c<=0x0d && c>=0x0a) || c==0x85 || c==0x2028 || c==0x2029; |
63 | } |
64 | |
65 | //----------------------------------------------------------------------------- |
66 | // |
67 | // Constructor and Destructor |
68 | // |
69 | //----------------------------------------------------------------------------- |
70 | RegexMatcher::RegexMatcher(const RegexPattern *pat) { |
71 | fDeferredStatus = U_ZERO_ERROR; |
72 | init(fDeferredStatus); |
73 | if (U_FAILURE(fDeferredStatus)) { |
74 | return; |
75 | } |
76 | if (pat==NULL__null) { |
77 | fDeferredStatus = U_ILLEGAL_ARGUMENT_ERROR; |
78 | return; |
79 | } |
80 | fPattern = pat; |
81 | init2(RegexStaticSets::gStaticSets->fEmptyText, fDeferredStatus); |
82 | } |
83 | |
84 | |
85 | |
86 | RegexMatcher::RegexMatcher(const UnicodeString ®exp, const UnicodeString &input, |
87 | uint32_t flags, UErrorCode &status) { |
88 | init(status); |
89 | if (U_FAILURE(status)) { |
90 | return; |
91 | } |
92 | UParseError pe; |
93 | fPatternOwned = RegexPattern::compile(regexp, flags, pe, status); |
94 | fPattern = fPatternOwned; |
95 | |
96 | UText inputText = UTEXT_INITIALIZER{ UTEXT_MAGIC, 0, 0, sizeof(UText), 0, 0, 0, 0, 0, 0, __null, __null, __null, __null, __null, __null, __null, __null, 0, 0 , 0, 0, 0, 0 }; |
97 | utext_openConstUnicodeStringutext_openConstUnicodeString_71(&inputText, &input, &status); |
98 | init2(&inputText, status); |
99 | utext_closeutext_close_71(&inputText); |
100 | |
101 | fInputUniStrMaybeMutable = TRUE1; |
102 | } |
103 | |
104 | |
105 | RegexMatcher::RegexMatcher(UText *regexp, UText *input, |
106 | uint32_t flags, UErrorCode &status) { |
107 | init(status); |
108 | if (U_FAILURE(status)) { |
109 | return; |
110 | } |
111 | UParseError pe; |
112 | fPatternOwned = RegexPattern::compile(regexp, flags, pe, status); |
113 | if (U_FAILURE(status)) { |
114 | return; |
115 | } |
116 | |
117 | fPattern = fPatternOwned; |
118 | init2(input, status); |
119 | } |
120 | |
121 | |
122 | RegexMatcher::RegexMatcher(const UnicodeString ®exp, |
123 | uint32_t flags, UErrorCode &status) { |
124 | init(status); |
125 | if (U_FAILURE(status)) { |
126 | return; |
127 | } |
128 | UParseError pe; |
129 | fPatternOwned = RegexPattern::compile(regexp, flags, pe, status); |
130 | if (U_FAILURE(status)) { |
131 | return; |
132 | } |
133 | fPattern = fPatternOwned; |
134 | init2(RegexStaticSets::gStaticSets->fEmptyText, status); |
135 | } |
136 | |
137 | RegexMatcher::RegexMatcher(UText *regexp, |
138 | uint32_t flags, UErrorCode &status) { |
139 | init(status); |
140 | if (U_FAILURE(status)) { |
141 | return; |
142 | } |
143 | UParseError pe; |
144 | fPatternOwned = RegexPattern::compile(regexp, flags, pe, status); |
145 | if (U_FAILURE(status)) { |
146 | return; |
147 | } |
148 | |
149 | fPattern = fPatternOwned; |
150 | init2(RegexStaticSets::gStaticSets->fEmptyText, status); |
151 | } |
152 | |
153 | |
154 | |
155 | |
156 | RegexMatcher::~RegexMatcher() { |
157 | delete fStack; |
158 | if (fData != fSmallData) { |
159 | uprv_freeuprv_free_71(fData); |
160 | fData = NULL__null; |
161 | } |
162 | if (fPatternOwned) { |
163 | delete fPatternOwned; |
164 | fPatternOwned = NULL__null; |
165 | fPattern = NULL__null; |
166 | } |
167 | |
168 | if (fInput) { |
169 | delete fInput; |
170 | } |
171 | if (fInputText) { |
172 | utext_closeutext_close_71(fInputText); |
173 | } |
174 | if (fAltInputText) { |
175 | utext_closeutext_close_71(fAltInputText); |
176 | } |
177 | |
178 | #if UCONFIG_NO_BREAK_ITERATION0==0 |
179 | delete fWordBreakItr; |
180 | delete fGCBreakItr; |
181 | #endif |
182 | } |
183 | |
184 | // |
185 | // init() common initialization for use by all constructors. |
186 | // Initialize all fields, get the object into a consistent state. |
187 | // This must be done even when the initial status shows an error, |
188 | // so that the object is initialized sufficiently well for the destructor |
189 | // to run safely. |
190 | // |
191 | void RegexMatcher::init(UErrorCode &status) { |
192 | fPattern = NULL__null; |
193 | fPatternOwned = NULL__null; |
194 | fFrameSize = 0; |
195 | fRegionStart = 0; |
196 | fRegionLimit = 0; |
197 | fAnchorStart = 0; |
198 | fAnchorLimit = 0; |
199 | fLookStart = 0; |
200 | fLookLimit = 0; |
201 | fActiveStart = 0; |
202 | fActiveLimit = 0; |
203 | fTransparentBounds = FALSE0; |
204 | fAnchoringBounds = TRUE1; |
205 | fMatch = FALSE0; |
206 | fMatchStart = 0; |
207 | fMatchEnd = 0; |
208 | fLastMatchEnd = -1; |
209 | fAppendPosition = 0; |
210 | fHitEnd = FALSE0; |
211 | fRequireEnd = FALSE0; |
212 | fStack = NULL__null; |
213 | fFrame = NULL__null; |
214 | fTimeLimit = 0; |
215 | fTime = 0; |
216 | fTickCounter = 0; |
217 | fStackLimit = DEFAULT_BACKTRACK_STACK_CAPACITY; |
218 | fCallbackFn = NULL__null; |
219 | fCallbackContext = NULL__null; |
220 | fFindProgressCallbackFn = NULL__null; |
221 | fFindProgressCallbackContext = NULL__null; |
222 | fTraceDebug = FALSE0; |
223 | fDeferredStatus = status; |
224 | fData = fSmallData; |
225 | fWordBreakItr = NULL__null; |
226 | fGCBreakItr = NULL__null; |
227 | |
228 | fStack = NULL__null; |
229 | fInputText = NULL__null; |
230 | fAltInputText = NULL__null; |
231 | fInput = NULL__null; |
232 | fInputLength = 0; |
233 | fInputUniStrMaybeMutable = FALSE0; |
234 | } |
235 | |
236 | // |
237 | // init2() Common initialization for use by RegexMatcher constructors, part 2. |
238 | // This handles the common setup to be done after the Pattern is available. |
239 | // |
240 | void RegexMatcher::init2(UText *input, UErrorCode &status) { |
241 | if (U_FAILURE(status)) { |
242 | fDeferredStatus = status; |
243 | return; |
244 | } |
245 | |
246 | if (fPattern->fDataSize > UPRV_LENGTHOF(fSmallData)(int32_t)(sizeof(fSmallData)/sizeof((fSmallData)[0]))) { |
247 | fData = (int64_t *)uprv_mallocuprv_malloc_71(fPattern->fDataSize * sizeof(int64_t)); |
248 | if (fData == NULL__null) { |
249 | status = fDeferredStatus = U_MEMORY_ALLOCATION_ERROR; |
250 | return; |
251 | } |
252 | } |
253 | |
254 | fStack = new UVector64(status); |
255 | if (fStack == NULL__null) { |
256 | status = fDeferredStatus = U_MEMORY_ALLOCATION_ERROR; |
257 | return; |
258 | } |
259 | |
260 | reset(input); |
261 | setStackLimit(DEFAULT_BACKTRACK_STACK_CAPACITY, status); |
262 | if (U_FAILURE(status)) { |
263 | fDeferredStatus = status; |
264 | return; |
265 | } |
266 | } |
267 | |
268 | |
269 | static const UChar BACKSLASH = 0x5c; |
270 | static const UChar DOLLARSIGN = 0x24; |
271 | static const UChar LEFTBRACKET = 0x7b; |
272 | static const UChar RIGHTBRACKET = 0x7d; |
273 | |
274 | //-------------------------------------------------------------------------------- |
275 | // |
276 | // appendReplacement |
277 | // |
278 | //-------------------------------------------------------------------------------- |
279 | RegexMatcher &RegexMatcher::appendReplacement(UnicodeString &dest, |
280 | const UnicodeString &replacement, |
281 | UErrorCode &status) { |
282 | UText replacementText = UTEXT_INITIALIZER{ UTEXT_MAGIC, 0, 0, sizeof(UText), 0, 0, 0, 0, 0, 0, __null, __null, __null, __null, __null, __null, __null, __null, 0, 0 , 0, 0, 0, 0 }; |
283 | |
284 | utext_openConstUnicodeStringutext_openConstUnicodeString_71(&replacementText, &replacement, &status); |
285 | if (U_SUCCESS(status)) { |
286 | UText resultText = UTEXT_INITIALIZER{ UTEXT_MAGIC, 0, 0, sizeof(UText), 0, 0, 0, 0, 0, 0, __null, __null, __null, __null, __null, __null, __null, __null, 0, 0 , 0, 0, 0, 0 }; |
287 | utext_openUnicodeStringutext_openUnicodeString_71(&resultText, &dest, &status); |
288 | |
289 | if (U_SUCCESS(status)) { |
290 | appendReplacement(&resultText, &replacementText, status); |
291 | utext_closeutext_close_71(&resultText); |
292 | } |
293 | utext_closeutext_close_71(&replacementText); |
294 | } |
295 | |
296 | return *this; |
297 | } |
298 | |
299 | // |
300 | // appendReplacement, UText mode |
301 | // |
302 | RegexMatcher &RegexMatcher::appendReplacement(UText *dest, |
303 | UText *replacement, |
304 | UErrorCode &status) { |
305 | if (U_FAILURE(status)) { |
306 | return *this; |
307 | } |
308 | if (U_FAILURE(fDeferredStatus)) { |
309 | status = fDeferredStatus; |
310 | return *this; |
311 | } |
312 | if (fMatch == FALSE0) { |
313 | status = U_REGEX_INVALID_STATE; |
314 | return *this; |
315 | } |
316 | |
317 | // Copy input string from the end of previous match to start of current match |
318 | int64_t destLen = utext_nativeLengthutext_nativeLength_71(dest); |
319 | if (fMatchStart > fAppendPosition) { |
320 | if (UTEXT_FULL_TEXT_IN_CHUNK(fInputText, fInputLength)((0==((fInputText)->chunkNativeStart))&&((fInputLength )==((fInputText)->chunkNativeLimit))&&((fInputLength )==((fInputText)->nativeIndexingLimit)))) { |
321 | destLen += utext_replaceutext_replace_71(dest, destLen, destLen, fInputText->chunkContents+fAppendPosition, |
322 | (int32_t)(fMatchStart-fAppendPosition), &status); |
323 | } else { |
324 | int32_t len16; |
325 | if (UTEXT_USES_U16(fInputText)(__null==((fInputText)->pFuncs->mapNativeIndexToUTF16))) { |
326 | len16 = (int32_t)(fMatchStart-fAppendPosition); |
327 | } else { |
328 | UErrorCode lengthStatus = U_ZERO_ERROR; |
329 | len16 = utext_extractutext_extract_71(fInputText, fAppendPosition, fMatchStart, NULL__null, 0, &lengthStatus); |
330 | } |
331 | UChar *inputChars = (UChar *)uprv_mallocuprv_malloc_71(sizeof(UChar)*(len16+1)); |
332 | if (inputChars == NULL__null) { |
333 | status = U_MEMORY_ALLOCATION_ERROR; |
334 | return *this; |
335 | } |
336 | utext_extractutext_extract_71(fInputText, fAppendPosition, fMatchStart, inputChars, len16+1, &status); |
337 | destLen += utext_replaceutext_replace_71(dest, destLen, destLen, inputChars, len16, &status); |
338 | uprv_freeuprv_free_71(inputChars); |
339 | } |
340 | } |
341 | fAppendPosition = fMatchEnd; |
342 | |
343 | |
344 | // scan the replacement text, looking for substitutions ($n) and \escapes. |
345 | // TODO: optimize this loop by efficiently scanning for '$' or '\', |
346 | // move entire ranges not containing substitutions. |
347 | UTEXT_SETNATIVEINDEX(replacement, 0)do { int64_t __offset = (0) - (replacement)->chunkNativeStart ; if (__offset>=0 && __offset<(int64_t)(replacement )->nativeIndexingLimit && (replacement)->chunkContents [__offset]<0xdc00) { (replacement)->chunkOffset=(int32_t )__offset; } else { utext_setNativeIndex_71((replacement), (0 )); } } while (false); |
348 | for (UChar32 c = UTEXT_NEXT32(replacement)((replacement)->chunkOffset < (replacement)->chunkLength && ((replacement)->chunkContents)[(replacement)-> chunkOffset]<0xd800 ? ((replacement)->chunkContents)[(( replacement)->chunkOffset)++] : utext_next32_71(replacement )); U_SUCCESS(status) && c != U_SENTINEL(-1); c = UTEXT_NEXT32(replacement)((replacement)->chunkOffset < (replacement)->chunkLength && ((replacement)->chunkContents)[(replacement)-> chunkOffset]<0xd800 ? ((replacement)->chunkContents)[(( replacement)->chunkOffset)++] : utext_next32_71(replacement ))) { |
349 | if (c == BACKSLASH) { |
350 | // Backslash Escape. Copy the following char out without further checks. |
351 | // Note: Surrogate pairs don't need any special handling |
352 | // The second half wont be a '$' or a '\', and |
353 | // will move to the dest normally on the next |
354 | // loop iteration. |
355 | c = UTEXT_CURRENT32(replacement)((replacement)->chunkOffset < (replacement)->chunkLength && ((replacement)->chunkContents)[(replacement)-> chunkOffset]<0xd800 ? ((replacement)->chunkContents)[(( replacement)->chunkOffset)] : utext_current32_71(replacement )); |
356 | if (c == U_SENTINEL(-1)) { |
357 | break; |
358 | } |
359 | |
360 | if (c==0x55/*U*/ || c==0x75/*u*/) { |
361 | // We have a \udddd or \Udddddddd escape sequence. |
362 | int32_t offset = 0; |
363 | struct URegexUTextUnescapeCharContext context = U_REGEX_UTEXT_UNESCAPE_CONTEXT(replacement){ (replacement), -1 }; |
364 | UChar32 escapedChar = u_unescapeAtu_unescapeAt_71(uregex_utext_unescape_charAturegex_utext_unescape_charAt_71, &offset, INT32_MAX(2147483647), &context); |
365 | if (escapedChar != (UChar32)0xFFFFFFFF) { |
366 | if (U_IS_BMP(escapedChar)((uint32_t)(escapedChar)<=0xffff)) { |
367 | UChar c16 = (UChar)escapedChar; |
368 | destLen += utext_replaceutext_replace_71(dest, destLen, destLen, &c16, 1, &status); |
369 | } else { |
370 | UChar surrogate[2]; |
371 | surrogate[0] = U16_LEAD(escapedChar)(UChar)(((escapedChar)>>10)+0xd7c0); |
372 | surrogate[1] = U16_TRAIL(escapedChar)(UChar)(((escapedChar)&0x3ff)|0xdc00); |
373 | if (U_SUCCESS(status)) { |
374 | destLen += utext_replaceutext_replace_71(dest, destLen, destLen, surrogate, 2, &status); |
375 | } |
376 | } |
377 | // TODO: Report errors for mal-formed \u escapes? |
378 | // As this is, the original sequence is output, which may be OK. |
379 | if (context.lastOffset == offset) { |
380 | (void)UTEXT_PREVIOUS32(replacement)((replacement)->chunkOffset > 0 && (replacement )->chunkContents[(replacement)->chunkOffset-1] < 0xd800 ? (replacement)->chunkContents[--((replacement)->chunkOffset )] : utext_previous32_71(replacement)); |
381 | } else if (context.lastOffset != offset-1) { |
382 | utext_moveIndex32utext_moveIndex32_71(replacement, offset - context.lastOffset - 1); |
383 | } |
384 | } |
385 | } else { |
386 | (void)UTEXT_NEXT32(replacement)((replacement)->chunkOffset < (replacement)->chunkLength && ((replacement)->chunkContents)[(replacement)-> chunkOffset]<0xd800 ? ((replacement)->chunkContents)[(( replacement)->chunkOffset)++] : utext_next32_71(replacement )); |
387 | // Plain backslash escape. Just put out the escaped character. |
388 | if (U_IS_BMP(c)((uint32_t)(c)<=0xffff)) { |
389 | UChar c16 = (UChar)c; |
390 | destLen += utext_replaceutext_replace_71(dest, destLen, destLen, &c16, 1, &status); |
391 | } else { |
392 | UChar surrogate[2]; |
393 | surrogate[0] = U16_LEAD(c)(UChar)(((c)>>10)+0xd7c0); |
394 | surrogate[1] = U16_TRAIL(c)(UChar)(((c)&0x3ff)|0xdc00); |
395 | if (U_SUCCESS(status)) { |
396 | destLen += utext_replaceutext_replace_71(dest, destLen, destLen, surrogate, 2, &status); |
397 | } |
398 | } |
399 | } |
400 | } else if (c != DOLLARSIGN) { |
401 | // Normal char, not a $. Copy it out without further checks. |
402 | if (U_IS_BMP(c)((uint32_t)(c)<=0xffff)) { |
403 | UChar c16 = (UChar)c; |
404 | destLen += utext_replaceutext_replace_71(dest, destLen, destLen, &c16, 1, &status); |
405 | } else { |
406 | UChar surrogate[2]; |
407 | surrogate[0] = U16_LEAD(c)(UChar)(((c)>>10)+0xd7c0); |
408 | surrogate[1] = U16_TRAIL(c)(UChar)(((c)&0x3ff)|0xdc00); |
409 | if (U_SUCCESS(status)) { |
410 | destLen += utext_replaceutext_replace_71(dest, destLen, destLen, surrogate, 2, &status); |
411 | } |
412 | } |
413 | } else { |
414 | // We've got a $. Pick up a capture group name or number if one follows. |
415 | // Consume digits so long as the resulting group number <= the number of |
416 | // number of capture groups in the pattern. |
417 | |
418 | int32_t groupNum = 0; |
419 | int32_t numDigits = 0; |
420 | UChar32 nextChar = utext_current32utext_current32_71(replacement); |
421 | if (nextChar == LEFTBRACKET) { |
422 | // Scan for a Named Capture Group, ${name}. |
423 | UnicodeString groupName; |
424 | utext_next32utext_next32_71(replacement); |
425 | while(U_SUCCESS(status) && nextChar != RIGHTBRACKET) { |
426 | nextChar = utext_next32utext_next32_71(replacement); |
427 | if (nextChar == U_SENTINEL(-1)) { |
428 | status = U_REGEX_INVALID_CAPTURE_GROUP_NAME; |
429 | } else if ((nextChar >= 0x41 && nextChar <= 0x5a) || // A..Z |
430 | (nextChar >= 0x61 && nextChar <= 0x7a) || // a..z |
431 | (nextChar >= 0x31 && nextChar <= 0x39)) { // 0..9 |
432 | groupName.append(nextChar); |
433 | } else if (nextChar == RIGHTBRACKET) { |
434 | groupNum = fPattern->fNamedCaptureMap ? uhash_getiuhash_geti_71(fPattern->fNamedCaptureMap, &groupName) : 0; |
435 | if (groupNum == 0) { |
436 | status = U_REGEX_INVALID_CAPTURE_GROUP_NAME; |
437 | } |
438 | } else { |
439 | // Character was something other than a name char or a closing '}' |
440 | status = U_REGEX_INVALID_CAPTURE_GROUP_NAME; |
441 | } |
442 | } |
443 | |
444 | } else if (u_isdigitu_isdigit_71(nextChar)) { |
445 | // $n Scan for a capture group number |
446 | int32_t numCaptureGroups = fPattern->fGroupMap->size(); |
447 | for (;;) { |
448 | nextChar = UTEXT_CURRENT32(replacement)((replacement)->chunkOffset < (replacement)->chunkLength && ((replacement)->chunkContents)[(replacement)-> chunkOffset]<0xd800 ? ((replacement)->chunkContents)[(( replacement)->chunkOffset)] : utext_current32_71(replacement )); |
449 | if (nextChar == U_SENTINEL(-1)) { |
450 | break; |
451 | } |
452 | if (u_isdigitu_isdigit_71(nextChar) == FALSE0) { |
453 | break; |
454 | } |
455 | int32_t nextDigitVal = u_charDigitValueu_charDigitValue_71(nextChar); |
456 | if (groupNum*10 + nextDigitVal > numCaptureGroups) { |
457 | // Don't consume the next digit if it makes the capture group number too big. |
458 | if (numDigits == 0) { |
459 | status = U_INDEX_OUTOFBOUNDS_ERROR; |
460 | } |
461 | break; |
462 | } |
463 | (void)UTEXT_NEXT32(replacement)((replacement)->chunkOffset < (replacement)->chunkLength && ((replacement)->chunkContents)[(replacement)-> chunkOffset]<0xd800 ? ((replacement)->chunkContents)[(( replacement)->chunkOffset)++] : utext_next32_71(replacement )); |
464 | groupNum=groupNum*10 + nextDigitVal; |
465 | ++numDigits; |
466 | } |
467 | } else { |
468 | // $ not followed by capture group name or number. |
469 | status = U_REGEX_INVALID_CAPTURE_GROUP_NAME; |
470 | } |
471 | |
472 | if (U_SUCCESS(status)) { |
473 | destLen += appendGroup(groupNum, dest, status); |
474 | } |
475 | } // End of $ capture group handling |
476 | } // End of per-character loop through the replacement string. |
477 | |
478 | return *this; |
479 | } |
480 | |
481 | |
482 | |
483 | //-------------------------------------------------------------------------------- |
484 | // |
485 | // appendTail Intended to be used in conjunction with appendReplacement() |
486 | // To the destination string, append everything following |
487 | // the last match position from the input string. |
488 | // |
489 | // Note: Match ranges do not affect appendTail or appendReplacement |
490 | // |
491 | //-------------------------------------------------------------------------------- |
492 | UnicodeString &RegexMatcher::appendTail(UnicodeString &dest) { |
493 | UErrorCode status = U_ZERO_ERROR; |
494 | UText resultText = UTEXT_INITIALIZER{ UTEXT_MAGIC, 0, 0, sizeof(UText), 0, 0, 0, 0, 0, 0, __null, __null, __null, __null, __null, __null, __null, __null, 0, 0 , 0, 0, 0, 0 }; |
495 | utext_openUnicodeStringutext_openUnicodeString_71(&resultText, &dest, &status); |
496 | |
497 | if (U_SUCCESS(status)) { |
498 | appendTail(&resultText, status); |
499 | utext_closeutext_close_71(&resultText); |
500 | } |
501 | |
502 | return dest; |
503 | } |
504 | |
505 | // |
506 | // appendTail, UText mode |
507 | // |
508 | UText *RegexMatcher::appendTail(UText *dest, UErrorCode &status) { |
509 | if (U_FAILURE(status)) { |
510 | return dest; |
511 | } |
512 | if (U_FAILURE(fDeferredStatus)) { |
513 | status = fDeferredStatus; |
514 | return dest; |
515 | } |
516 | |
517 | if (fInputLength > fAppendPosition) { |
518 | if (UTEXT_FULL_TEXT_IN_CHUNK(fInputText, fInputLength)((0==((fInputText)->chunkNativeStart))&&((fInputLength )==((fInputText)->chunkNativeLimit))&&((fInputLength )==((fInputText)->nativeIndexingLimit)))) { |
519 | int64_t destLen = utext_nativeLengthutext_nativeLength_71(dest); |
520 | utext_replaceutext_replace_71(dest, destLen, destLen, fInputText->chunkContents+fAppendPosition, |
521 | (int32_t)(fInputLength-fAppendPosition), &status); |
522 | } else { |
523 | int32_t len16; |
524 | if (UTEXT_USES_U16(fInputText)(__null==((fInputText)->pFuncs->mapNativeIndexToUTF16))) { |
525 | len16 = (int32_t)(fInputLength-fAppendPosition); |
526 | } else { |
527 | len16 = utext_extractutext_extract_71(fInputText, fAppendPosition, fInputLength, NULL__null, 0, &status); |
528 | status = U_ZERO_ERROR; // buffer overflow |
529 | } |
530 | |
531 | UChar *inputChars = (UChar *)uprv_mallocuprv_malloc_71(sizeof(UChar)*(len16)); |
532 | if (inputChars == NULL__null) { |
533 | fDeferredStatus = U_MEMORY_ALLOCATION_ERROR; |
534 | } else { |
535 | utext_extractutext_extract_71(fInputText, fAppendPosition, fInputLength, inputChars, len16, &status); // unterminated |
536 | int64_t destLen = utext_nativeLengthutext_nativeLength_71(dest); |
537 | utext_replaceutext_replace_71(dest, destLen, destLen, inputChars, len16, &status); |
538 | uprv_freeuprv_free_71(inputChars); |
539 | } |
540 | } |
541 | } |
542 | return dest; |
543 | } |
544 | |
545 | |
546 | |
547 | //-------------------------------------------------------------------------------- |
548 | // |
549 | // end |
550 | // |
551 | //-------------------------------------------------------------------------------- |
552 | int32_t RegexMatcher::end(UErrorCode &err) const { |
553 | return end(0, err); |
554 | } |
555 | |
556 | int64_t RegexMatcher::end64(UErrorCode &err) const { |
557 | return end64(0, err); |
558 | } |
559 | |
560 | int64_t RegexMatcher::end64(int32_t group, UErrorCode &err) const { |
561 | if (U_FAILURE(err)) { |
562 | return -1; |
563 | } |
564 | if (fMatch == FALSE0) { |
565 | err = U_REGEX_INVALID_STATE; |
566 | return -1; |
567 | } |
568 | if (group < 0 || group > fPattern->fGroupMap->size()) { |
569 | err = U_INDEX_OUTOFBOUNDS_ERROR; |
570 | return -1; |
571 | } |
572 | int64_t e = -1; |
573 | if (group == 0) { |
574 | e = fMatchEnd; |
575 | } else { |
576 | // Get the position within the stack frame of the variables for |
577 | // this capture group. |
578 | int32_t groupOffset = fPattern->fGroupMap->elementAti(group-1); |
579 | U_ASSERT(groupOffset < fPattern->fFrameSize)(void)0; |
580 | U_ASSERT(groupOffset >= 0)(void)0; |
581 | e = fFrame->fExtra[groupOffset + 1]; |
582 | } |
583 | |
584 | return e; |
585 | } |
586 | |
587 | int32_t RegexMatcher::end(int32_t group, UErrorCode &err) const { |
588 | return (int32_t)end64(group, err); |
589 | } |
590 | |
591 | //-------------------------------------------------------------------------------- |
592 | // |
593 | // findProgressInterrupt This function is called once for each advance in the target |
594 | // string from the find() function, and calls the user progress callback |
595 | // function if there is one installed. |
596 | // |
597 | // Return: TRUE if the find operation is to be terminated. |
598 | // FALSE if the find operation is to continue running. |
599 | // |
600 | //-------------------------------------------------------------------------------- |
601 | UBool RegexMatcher::findProgressInterrupt(int64_t pos, UErrorCode &status) { |
602 | if (fFindProgressCallbackFn && !(*fFindProgressCallbackFn)(fFindProgressCallbackContext, pos)) { |
603 | status = U_REGEX_STOPPED_BY_CALLER; |
604 | return TRUE1; |
605 | } |
606 | return FALSE0; |
607 | } |
608 | |
609 | //-------------------------------------------------------------------------------- |
610 | // |
611 | // find() |
612 | // |
613 | //-------------------------------------------------------------------------------- |
614 | UBool RegexMatcher::find() { |
615 | if (U_FAILURE(fDeferredStatus)) { |
616 | return FALSE0; |
617 | } |
618 | UErrorCode status = U_ZERO_ERROR; |
619 | UBool result = find(status); |
620 | return result; |
621 | } |
622 | |
623 | //-------------------------------------------------------------------------------- |
624 | // |
625 | // find() |
626 | // |
627 | //-------------------------------------------------------------------------------- |
628 | UBool RegexMatcher::find(UErrorCode &status) { |
629 | // Start at the position of the last match end. (Will be zero if the |
630 | // matcher has been reset.) |
631 | // |
632 | if (U_FAILURE(status)) { |
633 | return FALSE0; |
634 | } |
635 | if (U_FAILURE(fDeferredStatus)) { |
636 | status = fDeferredStatus; |
637 | return FALSE0; |
638 | } |
639 | |
640 | if (UTEXT_FULL_TEXT_IN_CHUNK(fInputText, fInputLength)((0==((fInputText)->chunkNativeStart))&&((fInputLength )==((fInputText)->chunkNativeLimit))&&((fInputLength )==((fInputText)->nativeIndexingLimit)))) { |
641 | return findUsingChunk(status); |
642 | } |
643 | |
644 | int64_t startPos = fMatchEnd; |
645 | if (startPos==0) { |
646 | startPos = fActiveStart; |
647 | } |
648 | |
649 | if (fMatch) { |
650 | // Save the position of any previous successful match. |
651 | fLastMatchEnd = fMatchEnd; |
652 | |
653 | if (fMatchStart == fMatchEnd) { |
654 | // Previous match had zero length. Move start position up one position |
655 | // to avoid sending find() into a loop on zero-length matches. |
656 | if (startPos >= fActiveLimit) { |
657 | fMatch = FALSE0; |
658 | fHitEnd = TRUE1; |
659 | return FALSE0; |
660 | } |
661 | UTEXT_SETNATIVEINDEX(fInputText, startPos)do { int64_t __offset = (startPos) - (fInputText)->chunkNativeStart ; if (__offset>=0 && __offset<(int64_t)(fInputText )->nativeIndexingLimit && (fInputText)->chunkContents [__offset]<0xdc00) { (fInputText)->chunkOffset=(int32_t )__offset; } else { utext_setNativeIndex_71((fInputText), (startPos )); } } while (false); |
662 | (void)UTEXT_NEXT32(fInputText)((fInputText)->chunkOffset < (fInputText)->chunkLength && ((fInputText)->chunkContents)[(fInputText)-> chunkOffset]<0xd800 ? ((fInputText)->chunkContents)[((fInputText )->chunkOffset)++] : utext_next32_71(fInputText)); |
663 | startPos = UTEXT_GETNATIVEINDEX(fInputText)((fInputText)->chunkOffset <= (fInputText)->nativeIndexingLimit ? (fInputText)->chunkNativeStart+(fInputText)->chunkOffset : (fInputText)->pFuncs->mapOffsetToNative(fInputText)); |
664 | } |
665 | } else { |
666 | if (fLastMatchEnd >= 0) { |
667 | // A previous find() failed to match. Don't try again. |
668 | // (without this test, a pattern with a zero-length match |
669 | // could match again at the end of an input string.) |
670 | fHitEnd = TRUE1; |
671 | return FALSE0; |
672 | } |
673 | } |
674 | |
675 | |
676 | // Compute the position in the input string beyond which a match can not begin, because |
677 | // the minimum length match would extend past the end of the input. |
678 | // Note: some patterns that cannot match anything will have fMinMatchLength==Max Int. |
679 | // Be aware of possible overflows if making changes here. |
680 | int64_t testStartLimit; |
681 | if (UTEXT_USES_U16(fInputText)(__null==((fInputText)->pFuncs->mapNativeIndexToUTF16))) { |
682 | testStartLimit = fActiveLimit - fPattern->fMinMatchLen; |
683 | if (startPos > testStartLimit) { |
684 | fMatch = FALSE0; |
685 | fHitEnd = TRUE1; |
686 | return FALSE0; |
687 | } |
688 | } else { |
689 | // We don't know exactly how long the minimum match length is in native characters. |
690 | // Treat anything > 0 as 1. |
691 | testStartLimit = fActiveLimit - (fPattern->fMinMatchLen > 0 ? 1 : 0); |
692 | } |
693 | |
694 | UChar32 c; |
695 | U_ASSERT(startPos >= 0)(void)0; |
696 | |
697 | switch (fPattern->fStartType) { |
698 | case START_NO_INFO: |
699 | // No optimization was found. |
700 | // Try a match at each input position. |
701 | for (;;) { |
702 | MatchAt(startPos, FALSE0, status); |
703 | if (U_FAILURE(status)) { |
704 | return FALSE0; |
705 | } |
706 | if (fMatch) { |
707 | return TRUE1; |
708 | } |
709 | if (startPos >= testStartLimit) { |
710 | fHitEnd = TRUE1; |
711 | return FALSE0; |
712 | } |
713 | UTEXT_SETNATIVEINDEX(fInputText, startPos)do { int64_t __offset = (startPos) - (fInputText)->chunkNativeStart ; if (__offset>=0 && __offset<(int64_t)(fInputText )->nativeIndexingLimit && (fInputText)->chunkContents [__offset]<0xdc00) { (fInputText)->chunkOffset=(int32_t )__offset; } else { utext_setNativeIndex_71((fInputText), (startPos )); } } while (false); |
714 | (void)UTEXT_NEXT32(fInputText)((fInputText)->chunkOffset < (fInputText)->chunkLength && ((fInputText)->chunkContents)[(fInputText)-> chunkOffset]<0xd800 ? ((fInputText)->chunkContents)[((fInputText )->chunkOffset)++] : utext_next32_71(fInputText)); |
715 | startPos = UTEXT_GETNATIVEINDEX(fInputText)((fInputText)->chunkOffset <= (fInputText)->nativeIndexingLimit ? (fInputText)->chunkNativeStart+(fInputText)->chunkOffset : (fInputText)->pFuncs->mapOffsetToNative(fInputText)); |
716 | // Note that it's perfectly OK for a pattern to have a zero-length |
717 | // match at the end of a string, so we must make sure that the loop |
718 | // runs with startPos == testStartLimit the last time through. |
719 | if (findProgressInterrupt(startPos, status)) |
720 | return FALSE0; |
721 | } |
722 | UPRV_UNREACHABLE_EXITabort(); |
723 | |
724 | case START_START: |
725 | // Matches are only possible at the start of the input string |
726 | // (pattern begins with ^ or \A) |
727 | if (startPos > fActiveStart) { |
728 | fMatch = FALSE0; |
729 | return FALSE0; |
730 | } |
731 | MatchAt(startPos, FALSE0, status); |
732 | if (U_FAILURE(status)) { |
733 | return FALSE0; |
734 | } |
735 | return fMatch; |
736 | |
737 | |
738 | case START_SET: |
739 | { |
740 | // Match may start on any char from a pre-computed set. |
741 | U_ASSERT(fPattern->fMinMatchLen > 0)(void)0; |
742 | UTEXT_SETNATIVEINDEX(fInputText, startPos)do { int64_t __offset = (startPos) - (fInputText)->chunkNativeStart ; if (__offset>=0 && __offset<(int64_t)(fInputText )->nativeIndexingLimit && (fInputText)->chunkContents [__offset]<0xdc00) { (fInputText)->chunkOffset=(int32_t )__offset; } else { utext_setNativeIndex_71((fInputText), (startPos )); } } while (false); |
743 | for (;;) { |
744 | int64_t pos = startPos; |
745 | c = UTEXT_NEXT32(fInputText)((fInputText)->chunkOffset < (fInputText)->chunkLength && ((fInputText)->chunkContents)[(fInputText)-> chunkOffset]<0xd800 ? ((fInputText)->chunkContents)[((fInputText )->chunkOffset)++] : utext_next32_71(fInputText)); |
746 | startPos = UTEXT_GETNATIVEINDEX(fInputText)((fInputText)->chunkOffset <= (fInputText)->nativeIndexingLimit ? (fInputText)->chunkNativeStart+(fInputText)->chunkOffset : (fInputText)->pFuncs->mapOffsetToNative(fInputText)); |
747 | // c will be -1 (U_SENTINEL) at end of text, in which case we |
748 | // skip this next block (so we don't have a negative array index) |
749 | // and handle end of text in the following block. |
750 | if (c >= 0 && ((c<256 && fPattern->fInitialChars8->contains(c)) || |
751 | (c>=256 && fPattern->fInitialChars->contains(c)))) { |
752 | MatchAt(pos, FALSE0, status); |
753 | if (U_FAILURE(status)) { |
754 | return FALSE0; |
755 | } |
756 | if (fMatch) { |
757 | return TRUE1; |
758 | } |
759 | UTEXT_SETNATIVEINDEX(fInputText, pos)do { int64_t __offset = (pos) - (fInputText)->chunkNativeStart ; if (__offset>=0 && __offset<(int64_t)(fInputText )->nativeIndexingLimit && (fInputText)->chunkContents [__offset]<0xdc00) { (fInputText)->chunkOffset=(int32_t )__offset; } else { utext_setNativeIndex_71((fInputText), (pos )); } } while (false); |
760 | } |
761 | if (startPos > testStartLimit) { |
762 | fMatch = FALSE0; |
763 | fHitEnd = TRUE1; |
764 | return FALSE0; |
765 | } |
766 | if (findProgressInterrupt(startPos, status)) |
767 | return FALSE0; |
768 | } |
769 | } |
770 | UPRV_UNREACHABLE_EXITabort(); |
771 | |
772 | case START_STRING: |
773 | case START_CHAR: |
774 | { |
775 | // Match starts on exactly one char. |
776 | U_ASSERT(fPattern->fMinMatchLen > 0)(void)0; |
777 | UChar32 theChar = fPattern->fInitialChar; |
778 | UTEXT_SETNATIVEINDEX(fInputText, startPos)do { int64_t __offset = (startPos) - (fInputText)->chunkNativeStart ; if (__offset>=0 && __offset<(int64_t)(fInputText )->nativeIndexingLimit && (fInputText)->chunkContents [__offset]<0xdc00) { (fInputText)->chunkOffset=(int32_t )__offset; } else { utext_setNativeIndex_71((fInputText), (startPos )); } } while (false); |
779 | for (;;) { |
780 | int64_t pos = startPos; |
781 | c = UTEXT_NEXT32(fInputText)((fInputText)->chunkOffset < (fInputText)->chunkLength && ((fInputText)->chunkContents)[(fInputText)-> chunkOffset]<0xd800 ? ((fInputText)->chunkContents)[((fInputText )->chunkOffset)++] : utext_next32_71(fInputText)); |
782 | startPos = UTEXT_GETNATIVEINDEX(fInputText)((fInputText)->chunkOffset <= (fInputText)->nativeIndexingLimit ? (fInputText)->chunkNativeStart+(fInputText)->chunkOffset : (fInputText)->pFuncs->mapOffsetToNative(fInputText)); |
783 | if (c == theChar) { |
784 | MatchAt(pos, FALSE0, status); |
785 | if (U_FAILURE(status)) { |
786 | return FALSE0; |
787 | } |
788 | if (fMatch) { |
789 | return TRUE1; |
790 | } |
791 | UTEXT_SETNATIVEINDEX(fInputText, startPos)do { int64_t __offset = (startPos) - (fInputText)->chunkNativeStart ; if (__offset>=0 && __offset<(int64_t)(fInputText )->nativeIndexingLimit && (fInputText)->chunkContents [__offset]<0xdc00) { (fInputText)->chunkOffset=(int32_t )__offset; } else { utext_setNativeIndex_71((fInputText), (startPos )); } } while (false); |
792 | } |
793 | if (startPos > testStartLimit) { |
794 | fMatch = FALSE0; |
795 | fHitEnd = TRUE1; |
796 | return FALSE0; |
797 | } |
798 | if (findProgressInterrupt(startPos, status)) |
799 | return FALSE0; |
800 | } |
801 | } |
802 | UPRV_UNREACHABLE_EXITabort(); |
803 | |
804 | case START_LINE: |
805 | { |
806 | UChar32 ch; |
807 | if (startPos == fAnchorStart) { |
808 | MatchAt(startPos, FALSE0, status); |
809 | if (U_FAILURE(status)) { |
810 | return FALSE0; |
811 | } |
812 | if (fMatch) { |
813 | return TRUE1; |
814 | } |
815 | UTEXT_SETNATIVEINDEX(fInputText, startPos)do { int64_t __offset = (startPos) - (fInputText)->chunkNativeStart ; if (__offset>=0 && __offset<(int64_t)(fInputText )->nativeIndexingLimit && (fInputText)->chunkContents [__offset]<0xdc00) { (fInputText)->chunkOffset=(int32_t )__offset; } else { utext_setNativeIndex_71((fInputText), (startPos )); } } while (false); |
816 | ch = UTEXT_NEXT32(fInputText)((fInputText)->chunkOffset < (fInputText)->chunkLength && ((fInputText)->chunkContents)[(fInputText)-> chunkOffset]<0xd800 ? ((fInputText)->chunkContents)[((fInputText )->chunkOffset)++] : utext_next32_71(fInputText)); |
817 | startPos = UTEXT_GETNATIVEINDEX(fInputText)((fInputText)->chunkOffset <= (fInputText)->nativeIndexingLimit ? (fInputText)->chunkNativeStart+(fInputText)->chunkOffset : (fInputText)->pFuncs->mapOffsetToNative(fInputText)); |
818 | } else { |
819 | UTEXT_SETNATIVEINDEX(fInputText, startPos)do { int64_t __offset = (startPos) - (fInputText)->chunkNativeStart ; if (__offset>=0 && __offset<(int64_t)(fInputText )->nativeIndexingLimit && (fInputText)->chunkContents [__offset]<0xdc00) { (fInputText)->chunkOffset=(int32_t )__offset; } else { utext_setNativeIndex_71((fInputText), (startPos )); } } while (false); |
820 | ch = UTEXT_PREVIOUS32(fInputText)((fInputText)->chunkOffset > 0 && (fInputText)-> chunkContents[(fInputText)->chunkOffset-1] < 0xd800 ? ( fInputText)->chunkContents[--((fInputText)->chunkOffset )] : utext_previous32_71(fInputText)); |
821 | UTEXT_SETNATIVEINDEX(fInputText, startPos)do { int64_t __offset = (startPos) - (fInputText)->chunkNativeStart ; if (__offset>=0 && __offset<(int64_t)(fInputText )->nativeIndexingLimit && (fInputText)->chunkContents [__offset]<0xdc00) { (fInputText)->chunkOffset=(int32_t )__offset; } else { utext_setNativeIndex_71((fInputText), (startPos )); } } while (false); |
822 | } |
823 | |
824 | if (fPattern->fFlags & UREGEX_UNIX_LINES) { |
825 | for (;;) { |
826 | if (ch == 0x0a) { |
827 | MatchAt(startPos, FALSE0, status); |
828 | if (U_FAILURE(status)) { |
829 | return FALSE0; |
830 | } |
831 | if (fMatch) { |
832 | return TRUE1; |
833 | } |
834 | UTEXT_SETNATIVEINDEX(fInputText, startPos)do { int64_t __offset = (startPos) - (fInputText)->chunkNativeStart ; if (__offset>=0 && __offset<(int64_t)(fInputText )->nativeIndexingLimit && (fInputText)->chunkContents [__offset]<0xdc00) { (fInputText)->chunkOffset=(int32_t )__offset; } else { utext_setNativeIndex_71((fInputText), (startPos )); } } while (false); |
835 | } |
836 | if (startPos >= testStartLimit) { |
837 | fMatch = FALSE0; |
838 | fHitEnd = TRUE1; |
839 | return FALSE0; |
840 | } |
841 | ch = UTEXT_NEXT32(fInputText)((fInputText)->chunkOffset < (fInputText)->chunkLength && ((fInputText)->chunkContents)[(fInputText)-> chunkOffset]<0xd800 ? ((fInputText)->chunkContents)[((fInputText )->chunkOffset)++] : utext_next32_71(fInputText)); |
842 | startPos = UTEXT_GETNATIVEINDEX(fInputText)((fInputText)->chunkOffset <= (fInputText)->nativeIndexingLimit ? (fInputText)->chunkNativeStart+(fInputText)->chunkOffset : (fInputText)->pFuncs->mapOffsetToNative(fInputText)); |
843 | // Note that it's perfectly OK for a pattern to have a zero-length |
844 | // match at the end of a string, so we must make sure that the loop |
845 | // runs with startPos == testStartLimit the last time through. |
846 | if (findProgressInterrupt(startPos, status)) |
847 | return FALSE0; |
848 | } |
849 | } else { |
850 | for (;;) { |
851 | if (isLineTerminator(ch)) { |
852 | if (ch == 0x0d && startPos < fActiveLimit && UTEXT_CURRENT32(fInputText)((fInputText)->chunkOffset < (fInputText)->chunkLength && ((fInputText)->chunkContents)[(fInputText)-> chunkOffset]<0xd800 ? ((fInputText)->chunkContents)[((fInputText )->chunkOffset)] : utext_current32_71(fInputText)) == 0x0a) { |
853 | (void)UTEXT_NEXT32(fInputText)((fInputText)->chunkOffset < (fInputText)->chunkLength && ((fInputText)->chunkContents)[(fInputText)-> chunkOffset]<0xd800 ? ((fInputText)->chunkContents)[((fInputText )->chunkOffset)++] : utext_next32_71(fInputText)); |
854 | startPos = UTEXT_GETNATIVEINDEX(fInputText)((fInputText)->chunkOffset <= (fInputText)->nativeIndexingLimit ? (fInputText)->chunkNativeStart+(fInputText)->chunkOffset : (fInputText)->pFuncs->mapOffsetToNative(fInputText)); |
855 | } |
856 | MatchAt(startPos, FALSE0, status); |
857 | if (U_FAILURE(status)) { |
858 | return FALSE0; |
859 | } |
860 | if (fMatch) { |
861 | return TRUE1; |
862 | } |
863 | UTEXT_SETNATIVEINDEX(fInputText, startPos)do { int64_t __offset = (startPos) - (fInputText)->chunkNativeStart ; if (__offset>=0 && __offset<(int64_t)(fInputText )->nativeIndexingLimit && (fInputText)->chunkContents [__offset]<0xdc00) { (fInputText)->chunkOffset=(int32_t )__offset; } else { utext_setNativeIndex_71((fInputText), (startPos )); } } while (false); |
864 | } |
865 | if (startPos >= testStartLimit) { |
866 | fMatch = FALSE0; |
867 | fHitEnd = TRUE1; |
868 | return FALSE0; |
869 | } |
870 | ch = UTEXT_NEXT32(fInputText)((fInputText)->chunkOffset < (fInputText)->chunkLength && ((fInputText)->chunkContents)[(fInputText)-> chunkOffset]<0xd800 ? ((fInputText)->chunkContents)[((fInputText )->chunkOffset)++] : utext_next32_71(fInputText)); |
871 | startPos = UTEXT_GETNATIVEINDEX(fInputText)((fInputText)->chunkOffset <= (fInputText)->nativeIndexingLimit ? (fInputText)->chunkNativeStart+(fInputText)->chunkOffset : (fInputText)->pFuncs->mapOffsetToNative(fInputText)); |
872 | // Note that it's perfectly OK for a pattern to have a zero-length |
873 | // match at the end of a string, so we must make sure that the loop |
874 | // runs with startPos == testStartLimit the last time through. |
875 | if (findProgressInterrupt(startPos, status)) |
876 | return FALSE0; |
877 | } |
878 | } |
879 | } |
880 | |
881 | default: |
882 | UPRV_UNREACHABLE_ASSERT(void)0; |
883 | // Unknown value in fPattern->fStartType, should be from StartOfMatch enum. But |
884 | // we have reports of this in production code, don't use UPRV_UNREACHABLE_EXIT. |
885 | // See ICU-21669. |
886 | status = U_INTERNAL_PROGRAM_ERROR; |
887 | return FALSE0; |
888 | } |
889 | |
890 | UPRV_UNREACHABLE_EXITabort(); |
891 | } |
892 | |
893 | |
894 | |
895 | UBool RegexMatcher::find(int64_t start, UErrorCode &status) { |
896 | if (U_FAILURE(status)) { |
897 | return FALSE0; |
898 | } |
899 | if (U_FAILURE(fDeferredStatus)) { |
900 | status = fDeferredStatus; |
901 | return FALSE0; |
902 | } |
903 | this->reset(); // Note: Reset() is specified by Java Matcher documentation. |
904 | // This will reset the region to be the full input length. |
905 | if (start < 0) { |
906 | status = U_INDEX_OUTOFBOUNDS_ERROR; |
907 | return FALSE0; |
908 | } |
909 | |
910 | int64_t nativeStart = start; |
911 | if (nativeStart < fActiveStart || nativeStart > fActiveLimit) { |
912 | status = U_INDEX_OUTOFBOUNDS_ERROR; |
913 | return FALSE0; |
914 | } |
915 | fMatchEnd = nativeStart; |
916 | return find(status); |
917 | } |
918 | |
919 | |
920 | //-------------------------------------------------------------------------------- |
921 | // |
922 | // findUsingChunk() -- like find(), but with the advance knowledge that the |
923 | // entire string is available in the UText's chunk buffer. |
924 | // |
925 | //-------------------------------------------------------------------------------- |
926 | UBool RegexMatcher::findUsingChunk(UErrorCode &status) { |
927 | // Start at the position of the last match end. (Will be zero if the |
928 | // matcher has been reset. |
929 | // |
930 | |
931 | int32_t startPos = (int32_t)fMatchEnd; |
932 | if (startPos==0) { |
933 | startPos = (int32_t)fActiveStart; |
934 | } |
935 | |
936 | const UChar *inputBuf = fInputText->chunkContents; |
937 | |
938 | if (fMatch) { |
939 | // Save the position of any previous successful match. |
940 | fLastMatchEnd = fMatchEnd; |
941 | |
942 | if (fMatchStart == fMatchEnd) { |
943 | // Previous match had zero length. Move start position up one position |
944 | // to avoid sending find() into a loop on zero-length matches. |
945 | if (startPos >= fActiveLimit) { |
946 | fMatch = FALSE0; |
947 | fHitEnd = TRUE1; |
948 | return FALSE0; |
949 | } |
950 | U16_FWD_1(inputBuf, startPos, fInputLength)do { if(((((inputBuf)[(startPos)++])&0xfffffc00)==0xd800) && (startPos)!=(fInputLength) && ((((inputBuf )[startPos])&0xfffffc00)==0xdc00)) { ++(startPos); } } while (false); |
951 | } |
952 | } else { |
953 | if (fLastMatchEnd >= 0) { |
954 | // A previous find() failed to match. Don't try again. |
955 | // (without this test, a pattern with a zero-length match |
956 | // could match again at the end of an input string.) |
957 | fHitEnd = TRUE1; |
958 | return FALSE0; |
959 | } |
960 | } |
961 | |
962 | |
963 | // Compute the position in the input string beyond which a match can not begin, because |
964 | // the minimum length match would extend past the end of the input. |
965 | // Note: some patterns that cannot match anything will have fMinMatchLength==Max Int. |
966 | // Be aware of possible overflows if making changes here. |
967 | // Note: a match can begin at inputBuf + testLen; it is an inclusive limit. |
968 | int32_t testLen = (int32_t)(fActiveLimit - fPattern->fMinMatchLen); |
969 | if (startPos > testLen) { |
970 | fMatch = FALSE0; |
971 | fHitEnd = TRUE1; |
972 | return FALSE0; |
973 | } |
974 | |
975 | UChar32 c; |
976 | U_ASSERT(startPos >= 0)(void)0; |
977 | |
978 | switch (fPattern->fStartType) { |
979 | case START_NO_INFO: |
980 | // No optimization was found. |
981 | // Try a match at each input position. |
982 | for (;;) { |
983 | MatchChunkAt(startPos, FALSE0, status); |
984 | if (U_FAILURE(status)) { |
985 | return FALSE0; |
986 | } |
987 | if (fMatch) { |
988 | return TRUE1; |
989 | } |
990 | if (startPos >= testLen) { |
991 | fHitEnd = TRUE1; |
992 | return FALSE0; |
993 | } |
994 | U16_FWD_1(inputBuf, startPos, fActiveLimit)do { if(((((inputBuf)[(startPos)++])&0xfffffc00)==0xd800) && (startPos)!=(fActiveLimit) && ((((inputBuf )[startPos])&0xfffffc00)==0xdc00)) { ++(startPos); } } while (false); |
995 | // Note that it's perfectly OK for a pattern to have a zero-length |
996 | // match at the end of a string, so we must make sure that the loop |
997 | // runs with startPos == testLen the last time through. |
998 | if (findProgressInterrupt(startPos, status)) |
999 | return FALSE0; |
1000 | } |
1001 | UPRV_UNREACHABLE_EXITabort(); |
1002 | |
1003 | case START_START: |
1004 | // Matches are only possible at the start of the input string |
1005 | // (pattern begins with ^ or \A) |
1006 | if (startPos > fActiveStart) { |
1007 | fMatch = FALSE0; |
1008 | return FALSE0; |
1009 | } |
1010 | MatchChunkAt(startPos, FALSE0, status); |
1011 | if (U_FAILURE(status)) { |
1012 | return FALSE0; |
1013 | } |
1014 | return fMatch; |
1015 | |
1016 | |
1017 | case START_SET: |
1018 | { |
1019 | // Match may start on any char from a pre-computed set. |
1020 | U_ASSERT(fPattern->fMinMatchLen > 0)(void)0; |
1021 | for (;;) { |
1022 | int32_t pos = startPos; |
1023 | U16_NEXT(inputBuf, startPos, fActiveLimit, c)do { (c)=(inputBuf)[(startPos)++]; if((((c)&0xfffffc00)== 0xd800)) { uint16_t __c2; if((startPos)!=(fActiveLimit) && (((__c2=(inputBuf)[(startPos)])&0xfffffc00)==0xdc00)) { ++ (startPos); (c)=(((UChar32)((c))<<10UL)+(UChar32)(__c2) -((0xd800<<10UL)+0xdc00-0x10000)); } } } while (false); // like c = inputBuf[startPos++]; |
1024 | if ((c<256 && fPattern->fInitialChars8->contains(c)) || |
1025 | (c>=256 && fPattern->fInitialChars->contains(c))) { |
1026 | MatchChunkAt(pos, FALSE0, status); |
1027 | if (U_FAILURE(status)) { |
1028 | return FALSE0; |
1029 | } |
1030 | if (fMatch) { |
1031 | return TRUE1; |
1032 | } |
1033 | } |
1034 | if (startPos > testLen) { |
1035 | fMatch = FALSE0; |
1036 | fHitEnd = TRUE1; |
1037 | return FALSE0; |
1038 | } |
1039 | if (findProgressInterrupt(startPos, status)) |
1040 | return FALSE0; |
1041 | } |
1042 | } |
1043 | UPRV_UNREACHABLE_EXITabort(); |
1044 | |
1045 | case START_STRING: |
1046 | case START_CHAR: |
1047 | { |
1048 | // Match starts on exactly one char. |
1049 | U_ASSERT(fPattern->fMinMatchLen > 0)(void)0; |
1050 | UChar32 theChar = fPattern->fInitialChar; |
1051 | for (;;) { |
1052 | int32_t pos = startPos; |
1053 | U16_NEXT(inputBuf, startPos, fActiveLimit, c)do { (c)=(inputBuf)[(startPos)++]; if((((c)&0xfffffc00)== 0xd800)) { uint16_t __c2; if((startPos)!=(fActiveLimit) && (((__c2=(inputBuf)[(startPos)])&0xfffffc00)==0xdc00)) { ++ (startPos); (c)=(((UChar32)((c))<<10UL)+(UChar32)(__c2) -((0xd800<<10UL)+0xdc00-0x10000)); } } } while (false); // like c = inputBuf[startPos++]; |
1054 | if (c == theChar) { |
1055 | MatchChunkAt(pos, FALSE0, status); |
1056 | if (U_FAILURE(status)) { |
1057 | return FALSE0; |
1058 | } |
1059 | if (fMatch) { |
1060 | return TRUE1; |
1061 | } |
1062 | } |
1063 | if (startPos > testLen) { |
1064 | fMatch = FALSE0; |
1065 | fHitEnd = TRUE1; |
1066 | return FALSE0; |
1067 | } |
1068 | if (findProgressInterrupt(startPos, status)) |
1069 | return FALSE0; |
1070 | } |
1071 | } |
1072 | UPRV_UNREACHABLE_EXITabort(); |
1073 | |
1074 | case START_LINE: |
1075 | { |
1076 | UChar32 ch; |
1077 | if (startPos == fAnchorStart) { |
1078 | MatchChunkAt(startPos, FALSE0, status); |
1079 | if (U_FAILURE(status)) { |
1080 | return FALSE0; |
1081 | } |
1082 | if (fMatch) { |
1083 | return TRUE1; |
1084 | } |
1085 | U16_FWD_1(inputBuf, startPos, fActiveLimit)do { if(((((inputBuf)[(startPos)++])&0xfffffc00)==0xd800) && (startPos)!=(fActiveLimit) && ((((inputBuf )[startPos])&0xfffffc00)==0xdc00)) { ++(startPos); } } while (false); |
1086 | } |
1087 | |
1088 | if (fPattern->fFlags & UREGEX_UNIX_LINES) { |
1089 | for (;;) { |
1090 | ch = inputBuf[startPos-1]; |
1091 | if (ch == 0x0a) { |
1092 | MatchChunkAt(startPos, FALSE0, status); |
1093 | if (U_FAILURE(status)) { |
1094 | return FALSE0; |
1095 | } |
1096 | if (fMatch) { |
1097 | return TRUE1; |
1098 | } |
1099 | } |
1100 | if (startPos >= testLen) { |
1101 | fMatch = FALSE0; |
1102 | fHitEnd = TRUE1; |
1103 | return FALSE0; |
1104 | } |
1105 | U16_FWD_1(inputBuf, startPos, fActiveLimit)do { if(((((inputBuf)[(startPos)++])&0xfffffc00)==0xd800) && (startPos)!=(fActiveLimit) && ((((inputBuf )[startPos])&0xfffffc00)==0xdc00)) { ++(startPos); } } while (false); |
1106 | // Note that it's perfectly OK for a pattern to have a zero-length |
1107 | // match at the end of a string, so we must make sure that the loop |
1108 | // runs with startPos == testLen the last time through. |
1109 | if (findProgressInterrupt(startPos, status)) |
1110 | return FALSE0; |
1111 | } |
1112 | } else { |
1113 | for (;;) { |
1114 | ch = inputBuf[startPos-1]; |
1115 | if (isLineTerminator(ch)) { |
1116 | if (ch == 0x0d && startPos < fActiveLimit && inputBuf[startPos] == 0x0a) { |
1117 | startPos++; |
1118 | } |
1119 | MatchChunkAt(startPos, FALSE0, status); |
1120 | if (U_FAILURE(status)) { |
1121 | return FALSE0; |
1122 | } |
1123 | if (fMatch) { |
1124 | return TRUE1; |
1125 | } |
1126 | } |
1127 | if (startPos >= testLen) { |
1128 | fMatch = FALSE0; |
1129 | fHitEnd = TRUE1; |
1130 | return FALSE0; |
1131 | } |
1132 | U16_FWD_1(inputBuf, startPos, fActiveLimit)do { if(((((inputBuf)[(startPos)++])&0xfffffc00)==0xd800) && (startPos)!=(fActiveLimit) && ((((inputBuf )[startPos])&0xfffffc00)==0xdc00)) { ++(startPos); } } while (false); |
1133 | // Note that it's perfectly OK for a pattern to have a zero-length |
1134 | // match at the end of a string, so we must make sure that the loop |
1135 | // runs with startPos == testLen the last time through. |
1136 | if (findProgressInterrupt(startPos, status)) |
1137 | return FALSE0; |
1138 | } |
1139 | } |
1140 | } |
1141 | |
1142 | default: |
1143 | UPRV_UNREACHABLE_ASSERT(void)0; |
1144 | // Unknown value in fPattern->fStartType, should be from StartOfMatch enum. But |
1145 | // we have reports of this in production code, don't use UPRV_UNREACHABLE_EXIT. |
1146 | // See ICU-21669. |
1147 | status = U_INTERNAL_PROGRAM_ERROR; |
1148 | return FALSE0; |
1149 | } |
1150 | |
1151 | UPRV_UNREACHABLE_EXITabort(); |
1152 | } |
1153 | |
1154 | |
1155 | |
1156 | //-------------------------------------------------------------------------------- |
1157 | // |
1158 | // group() |
1159 | // |
1160 | //-------------------------------------------------------------------------------- |
1161 | UnicodeString RegexMatcher::group(UErrorCode &status) const { |
1162 | return group(0, status); |
1163 | } |
1164 | |
1165 | // Return immutable shallow clone |
1166 | UText *RegexMatcher::group(UText *dest, int64_t &group_len, UErrorCode &status) const { |
1167 | return group(0, dest, group_len, status); |
1168 | } |
1169 | |
1170 | // Return immutable shallow clone |
1171 | UText *RegexMatcher::group(int32_t groupNum, UText *dest, int64_t &group_len, UErrorCode &status) const { |
1172 | group_len = 0; |
1173 | if (U_FAILURE(status)) { |
1174 | return dest; |
1175 | } |
1176 | if (U_FAILURE(fDeferredStatus)) { |
1177 | status = fDeferredStatus; |
1178 | } else if (fMatch == FALSE0) { |
1179 | status = U_REGEX_INVALID_STATE; |
1180 | } else if (groupNum < 0 || groupNum > fPattern->fGroupMap->size()) { |
1181 | status = U_INDEX_OUTOFBOUNDS_ERROR; |
1182 | } |
1183 | |
1184 | if (U_FAILURE(status)) { |
1185 | return dest; |
1186 | } |
1187 | |
1188 | int64_t s, e; |
1189 | if (groupNum == 0) { |
1190 | s = fMatchStart; |
1191 | e = fMatchEnd; |
1192 | } else { |
1193 | int32_t groupOffset = fPattern->fGroupMap->elementAti(groupNum-1); |
1194 | U_ASSERT(groupOffset < fPattern->fFrameSize)(void)0; |
1195 | U_ASSERT(groupOffset >= 0)(void)0; |
1196 | s = fFrame->fExtra[groupOffset]; |
1197 | e = fFrame->fExtra[groupOffset+1]; |
1198 | } |
1199 | |
1200 | if (s < 0) { |
1201 | // A capture group wasn't part of the match |
1202 | return utext_cloneutext_clone_71(dest, fInputText, FALSE0, TRUE1, &status); |
1203 | } |
1204 | U_ASSERT(s <= e)(void)0; |
1205 | group_len = e - s; |
1206 | |
1207 | dest = utext_cloneutext_clone_71(dest, fInputText, FALSE0, TRUE1, &status); |
1208 | if (dest) |
1209 | UTEXT_SETNATIVEINDEX(dest, s)do { int64_t __offset = (s) - (dest)->chunkNativeStart; if (__offset>=0 && __offset<(int64_t)(dest)->nativeIndexingLimit && (dest)->chunkContents[__offset]<0xdc00) { ( dest)->chunkOffset=(int32_t)__offset; } else { utext_setNativeIndex_71 ((dest), (s)); } } while (false); |
1210 | return dest; |
1211 | } |
1212 | |
1213 | UnicodeString RegexMatcher::group(int32_t groupNum, UErrorCode &status) const { |
1214 | UnicodeString result; |
1215 | int64_t groupStart = start64(groupNum, status); |
1216 | int64_t groupEnd = end64(groupNum, status); |
1217 | if (U_FAILURE(status) || groupStart == -1 || groupStart == groupEnd) { |
1218 | return result; |
1219 | } |
1220 | |
1221 | // Get the group length using a utext_extract preflight. |
1222 | // UText is actually pretty efficient at this when underlying encoding is UTF-16. |
1223 | int32_t length = utext_extractutext_extract_71(fInputText, groupStart, groupEnd, NULL__null, 0, &status); |
1224 | if (status != U_BUFFER_OVERFLOW_ERROR) { |
1225 | return result; |
1226 | } |
1227 | |
1228 | status = U_ZERO_ERROR; |
1229 | UChar *buf = result.getBuffer(length); |
1230 | if (buf == NULL__null) { |
1231 | status = U_MEMORY_ALLOCATION_ERROR; |
1232 | } else { |
1233 | int32_t extractLength = utext_extractutext_extract_71(fInputText, groupStart, groupEnd, buf, length, &status); |
1234 | result.releaseBuffer(extractLength); |
1235 | U_ASSERT(length == extractLength)(void)0; |
1236 | } |
1237 | return result; |
1238 | } |
1239 | |
1240 | |
1241 | //-------------------------------------------------------------------------------- |
1242 | // |
1243 | // appendGroup() -- currently internal only, appends a group to a UText rather |
1244 | // than replacing its contents |
1245 | // |
1246 | //-------------------------------------------------------------------------------- |
1247 | |
1248 | int64_t RegexMatcher::appendGroup(int32_t groupNum, UText *dest, UErrorCode &status) const { |
1249 | if (U_FAILURE(status)) { |
1250 | return 0; |
1251 | } |
1252 | if (U_FAILURE(fDeferredStatus)) { |
1253 | status = fDeferredStatus; |
1254 | return 0; |
1255 | } |
1256 | int64_t destLen = utext_nativeLengthutext_nativeLength_71(dest); |
1257 | |
1258 | if (fMatch == FALSE0) { |
1259 | status = U_REGEX_INVALID_STATE; |
1260 | return utext_replaceutext_replace_71(dest, destLen, destLen, NULL__null, 0, &status); |
1261 | } |
1262 | if (groupNum < 0 || groupNum > fPattern->fGroupMap->size()) { |
1263 | status = U_INDEX_OUTOFBOUNDS_ERROR; |
1264 | return utext_replaceutext_replace_71(dest, destLen, destLen, NULL__null, 0, &status); |
1265 | } |
1266 | |
1267 | int64_t s, e; |
1268 | if (groupNum == 0) { |
1269 | s = fMatchStart; |
1270 | e = fMatchEnd; |
1271 | } else { |
1272 | int32_t groupOffset = fPattern->fGroupMap->elementAti(groupNum-1); |
1273 | U_ASSERT(groupOffset < fPattern->fFrameSize)(void)0; |
1274 | U_ASSERT(groupOffset >= 0)(void)0; |
1275 | s = fFrame->fExtra[groupOffset]; |
1276 | e = fFrame->fExtra[groupOffset+1]; |
1277 | } |
1278 | |
1279 | if (s < 0) { |
1280 | // A capture group wasn't part of the match |
1281 | return utext_replaceutext_replace_71(dest, destLen, destLen, NULL__null, 0, &status); |
1282 | } |
1283 | U_ASSERT(s <= e)(void)0; |
1284 | |
1285 | int64_t deltaLen; |
1286 | if (UTEXT_FULL_TEXT_IN_CHUNK(fInputText, fInputLength)((0==((fInputText)->chunkNativeStart))&&((fInputLength )==((fInputText)->chunkNativeLimit))&&((fInputLength )==((fInputText)->nativeIndexingLimit)))) { |
1287 | U_ASSERT(e <= fInputLength)(void)0; |
1288 | deltaLen = utext_replaceutext_replace_71(dest, destLen, destLen, fInputText->chunkContents+s, (int32_t)(e-s), &status); |
1289 | } else { |
1290 | int32_t len16; |
1291 | if (UTEXT_USES_U16(fInputText)(__null==((fInputText)->pFuncs->mapNativeIndexToUTF16))) { |
1292 | len16 = (int32_t)(e-s); |
1293 | } else { |
1294 | UErrorCode lengthStatus = U_ZERO_ERROR; |
1295 | len16 = utext_extractutext_extract_71(fInputText, s, e, NULL__null, 0, &lengthStatus); |
1296 | } |
1297 | UChar *groupChars = (UChar *)uprv_mallocuprv_malloc_71(sizeof(UChar)*(len16+1)); |
1298 | if (groupChars == NULL__null) { |
1299 | status = U_MEMORY_ALLOCATION_ERROR; |
1300 | return 0; |
1301 | } |
1302 | utext_extractutext_extract_71(fInputText, s, e, groupChars, len16+1, &status); |
1303 | |
1304 | deltaLen = utext_replaceutext_replace_71(dest, destLen, destLen, groupChars, len16, &status); |
1305 | uprv_freeuprv_free_71(groupChars); |
1306 | } |
1307 | return deltaLen; |
1308 | } |
1309 | |
1310 | |
1311 | |
1312 | //-------------------------------------------------------------------------------- |
1313 | // |
1314 | // groupCount() |
1315 | // |
1316 | //-------------------------------------------------------------------------------- |
1317 | int32_t RegexMatcher::groupCount() const { |
1318 | return fPattern->fGroupMap->size(); |
1319 | } |
1320 | |
1321 | //-------------------------------------------------------------------------------- |
1322 | // |
1323 | // hasAnchoringBounds() |
1324 | // |
1325 | //-------------------------------------------------------------------------------- |
1326 | UBool RegexMatcher::hasAnchoringBounds() const { |
1327 | return fAnchoringBounds; |
1328 | } |
1329 | |
1330 | |
1331 | //-------------------------------------------------------------------------------- |
1332 | // |
1333 | // hasTransparentBounds() |
1334 | // |
1335 | //-------------------------------------------------------------------------------- |
1336 | UBool RegexMatcher::hasTransparentBounds() const { |
1337 | return fTransparentBounds; |
1338 | } |
1339 | |
1340 | |
1341 | |
1342 | //-------------------------------------------------------------------------------- |
1343 | // |
1344 | // hitEnd() |
1345 | // |
1346 | //-------------------------------------------------------------------------------- |
1347 | UBool RegexMatcher::hitEnd() const { |
1348 | return fHitEnd; |
1349 | } |
1350 | |
1351 | |
1352 | //-------------------------------------------------------------------------------- |
1353 | // |
1354 | // input() |
1355 | // |
1356 | //-------------------------------------------------------------------------------- |
1357 | const UnicodeString &RegexMatcher::input() const { |
1358 | if (!fInput) { |
1359 | UErrorCode status = U_ZERO_ERROR; |
1360 | int32_t len16; |
1361 | if (UTEXT_USES_U16(fInputText)(__null==((fInputText)->pFuncs->mapNativeIndexToUTF16))) { |
1362 | len16 = (int32_t)fInputLength; |
1363 | } else { |
1364 | len16 = utext_extractutext_extract_71(fInputText, 0, fInputLength, NULL__null, 0, &status); |
1365 | status = U_ZERO_ERROR; // overflow, length status |
1366 | } |
1367 | UnicodeString *result = new UnicodeString(len16, 0, 0); |
1368 | |
1369 | UChar *inputChars = result->getBuffer(len16); |
1370 | utext_extractutext_extract_71(fInputText, 0, fInputLength, inputChars, len16, &status); // unterminated warning |
1371 | result->releaseBuffer(len16); |
1372 | |
1373 | (*(const UnicodeString **)&fInput) = result; // pointer assignment, rather than operator= |
1374 | } |
1375 | |
1376 | return *fInput; |
1377 | } |
1378 | |
1379 | //-------------------------------------------------------------------------------- |
1380 | // |
1381 | // inputText() |
1382 | // |
1383 | //-------------------------------------------------------------------------------- |
1384 | UText *RegexMatcher::inputText() const { |
1385 | return fInputText; |
1386 | } |
1387 | |
1388 | |
1389 | //-------------------------------------------------------------------------------- |
1390 | // |
1391 | // getInput() -- like inputText(), but makes a clone or copies into another UText |
1392 | // |
1393 | //-------------------------------------------------------------------------------- |
1394 | UText *RegexMatcher::getInput (UText *dest, UErrorCode &status) const { |
1395 | if (U_FAILURE(status)) { |
1396 | return dest; |
1397 | } |
1398 | if (U_FAILURE(fDeferredStatus)) { |
1399 | status = fDeferredStatus; |
1400 | return dest; |
1401 | } |
1402 | |
1403 | if (dest) { |
1404 | if (UTEXT_FULL_TEXT_IN_CHUNK(fInputText, fInputLength)((0==((fInputText)->chunkNativeStart))&&((fInputLength )==((fInputText)->chunkNativeLimit))&&((fInputLength )==((fInputText)->nativeIndexingLimit)))) { |
1405 | utext_replaceutext_replace_71(dest, 0, utext_nativeLengthutext_nativeLength_71(dest), fInputText->chunkContents, (int32_t)fInputLength, &status); |
1406 | } else { |
1407 | int32_t input16Len; |
1408 | if (UTEXT_USES_U16(fInputText)(__null==((fInputText)->pFuncs->mapNativeIndexToUTF16))) { |
1409 | input16Len = (int32_t)fInputLength; |
1410 | } else { |
1411 | UErrorCode lengthStatus = U_ZERO_ERROR; |
1412 | input16Len = utext_extractutext_extract_71(fInputText, 0, fInputLength, NULL__null, 0, &lengthStatus); // buffer overflow error |
1413 | } |
1414 | UChar *inputChars = (UChar *)uprv_mallocuprv_malloc_71(sizeof(UChar)*(input16Len)); |
1415 | if (inputChars == NULL__null) { |
1416 | return dest; |
1417 | } |
1418 | |
1419 | status = U_ZERO_ERROR; |
1420 | utext_extractutext_extract_71(fInputText, 0, fInputLength, inputChars, input16Len, &status); // not terminated warning |
1421 | status = U_ZERO_ERROR; |
1422 | utext_replaceutext_replace_71(dest, 0, utext_nativeLengthutext_nativeLength_71(dest), inputChars, input16Len, &status); |
1423 | |
1424 | uprv_freeuprv_free_71(inputChars); |
1425 | } |
1426 | return dest; |
1427 | } else { |
1428 | return utext_cloneutext_clone_71(NULL__null, fInputText, FALSE0, TRUE1, &status); |
1429 | } |
1430 | } |
1431 | |
1432 | |
1433 | static UBool compat_SyncMutableUTextContents(UText *ut); |
1434 | static UBool compat_SyncMutableUTextContents(UText *ut) { |
1435 | UBool retVal = FALSE0; |
1436 | |
1437 | // In the following test, we're really only interested in whether the UText should switch |
1438 | // between heap and stack allocation. If length hasn't changed, we won't, so the chunkContents |
1439 | // will still point to the correct data. |
1440 | if (utext_nativeLengthutext_nativeLength_71(ut) != ut->nativeIndexingLimit) { |
1441 | UnicodeString *us=(UnicodeString *)ut->context; |
1442 | |
1443 | // Update to the latest length. |
1444 | // For example, (utext_nativeLength(ut) != ut->nativeIndexingLimit). |
1445 | int32_t newLength = us->length(); |
1446 | |
1447 | // Update the chunk description. |
1448 | // The buffer may have switched between stack- and heap-based. |
1449 | ut->chunkContents = us->getBuffer(); |
1450 | ut->chunkLength = newLength; |
1451 | ut->chunkNativeLimit = newLength; |
1452 | ut->nativeIndexingLimit = newLength; |
1453 | retVal = TRUE1; |
1454 | } |
1455 | |
1456 | return retVal; |
1457 | } |
1458 | |
1459 | //-------------------------------------------------------------------------------- |
1460 | // |
1461 | // lookingAt() |
1462 | // |
1463 | //-------------------------------------------------------------------------------- |
1464 | UBool RegexMatcher::lookingAt(UErrorCode &status) { |
1465 | if (U_FAILURE(status)) { |
1466 | return FALSE0; |
1467 | } |
1468 | if (U_FAILURE(fDeferredStatus)) { |
1469 | status = fDeferredStatus; |
1470 | return FALSE0; |
1471 | } |
1472 | |
1473 | if (fInputUniStrMaybeMutable) { |
1474 | if (compat_SyncMutableUTextContents(fInputText)) { |
1475 | fInputLength = utext_nativeLengthutext_nativeLength_71(fInputText); |
1476 | reset(); |
1477 | } |
1478 | } |
1479 | else { |
1480 | resetPreserveRegion(); |
1481 | } |
1482 | if (UTEXT_FULL_TEXT_IN_CHUNK(fInputText, fInputLength)((0==((fInputText)->chunkNativeStart))&&((fInputLength )==((fInputText)->chunkNativeLimit))&&((fInputLength )==((fInputText)->nativeIndexingLimit)))) { |
1483 | MatchChunkAt((int32_t)fActiveStart, FALSE0, status); |
1484 | } else { |
1485 | MatchAt(fActiveStart, FALSE0, status); |
1486 | } |
1487 | return fMatch; |
1488 | } |
1489 | |
1490 | |
1491 | UBool RegexMatcher::lookingAt(int64_t start, UErrorCode &status) { |
1492 | if (U_FAILURE(status)) { |
1493 | return FALSE0; |
1494 | } |
1495 | if (U_FAILURE(fDeferredStatus)) { |
1496 | status = fDeferredStatus; |
1497 | return FALSE0; |
1498 | } |
1499 | reset(); |
1500 | |
1501 | if (start < 0) { |
1502 | status = U_INDEX_OUTOFBOUNDS_ERROR; |
1503 | return FALSE0; |
1504 | } |
1505 | |
1506 | if (fInputUniStrMaybeMutable) { |
1507 | if (compat_SyncMutableUTextContents(fInputText)) { |
1508 | fInputLength = utext_nativeLengthutext_nativeLength_71(fInputText); |
1509 | reset(); |
1510 | } |
1511 | } |
1512 | |
1513 | int64_t nativeStart; |
1514 | nativeStart = start; |
1515 | if (nativeStart < fActiveStart || nativeStart > fActiveLimit) { |
1516 | status = U_INDEX_OUTOFBOUNDS_ERROR; |
1517 | return FALSE0; |
1518 | } |
1519 | |
1520 | if (UTEXT_FULL_TEXT_IN_CHUNK(fInputText, fInputLength)((0==((fInputText)->chunkNativeStart))&&((fInputLength )==((fInputText)->chunkNativeLimit))&&((fInputLength )==((fInputText)->nativeIndexingLimit)))) { |
1521 | MatchChunkAt((int32_t)nativeStart, FALSE0, status); |
1522 | } else { |
1523 | MatchAt(nativeStart, FALSE0, status); |
1524 | } |
1525 | return fMatch; |
1526 | } |
1527 | |
1528 | |
1529 | |
1530 | //-------------------------------------------------------------------------------- |
1531 | // |
1532 | // matches() |
1533 | // |
1534 | //-------------------------------------------------------------------------------- |
1535 | UBool RegexMatcher::matches(UErrorCode &status) { |
1536 | if (U_FAILURE(status)) { |
1537 | return FALSE0; |
1538 | } |
1539 | if (U_FAILURE(fDeferredStatus)) { |
1540 | status = fDeferredStatus; |
1541 | return FALSE0; |
1542 | } |
1543 | |
1544 | if (fInputUniStrMaybeMutable) { |
1545 | if (compat_SyncMutableUTextContents(fInputText)) { |
1546 | fInputLength = utext_nativeLengthutext_nativeLength_71(fInputText); |
1547 | reset(); |
1548 | } |
1549 | } |
1550 | else { |
1551 | resetPreserveRegion(); |
1552 | } |
1553 | |
1554 | if (UTEXT_FULL_TEXT_IN_CHUNK(fInputText, fInputLength)((0==((fInputText)->chunkNativeStart))&&((fInputLength )==((fInputText)->chunkNativeLimit))&&((fInputLength )==((fInputText)->nativeIndexingLimit)))) { |
1555 | MatchChunkAt((int32_t)fActiveStart, TRUE1, status); |
1556 | } else { |
1557 | MatchAt(fActiveStart, TRUE1, status); |
1558 | } |
1559 | return fMatch; |
1560 | } |
1561 | |
1562 | |
1563 | UBool RegexMatcher::matches(int64_t start, UErrorCode &status) { |
1564 | if (U_FAILURE(status)) { |
1565 | return FALSE0; |
1566 | } |
1567 | if (U_FAILURE(fDeferredStatus)) { |
1568 | status = fDeferredStatus; |
1569 | return FALSE0; |
1570 | } |
1571 | reset(); |
1572 | |
1573 | if (start < 0) { |
1574 | status = U_INDEX_OUTOFBOUNDS_ERROR; |
1575 | return FALSE0; |
1576 | } |
1577 | |
1578 | if (fInputUniStrMaybeMutable) { |
1579 | if (compat_SyncMutableUTextContents(fInputText)) { |
1580 | fInputLength = utext_nativeLengthutext_nativeLength_71(fInputText); |
1581 | reset(); |
1582 | } |
1583 | } |
1584 | |
1585 | int64_t nativeStart; |
1586 | nativeStart = start; |
1587 | if (nativeStart < fActiveStart || nativeStart > fActiveLimit) { |
1588 | status = U_INDEX_OUTOFBOUNDS_ERROR; |
1589 | return FALSE0; |
1590 | } |
1591 | |
1592 | if (UTEXT_FULL_TEXT_IN_CHUNK(fInputText, fInputLength)((0==((fInputText)->chunkNativeStart))&&((fInputLength )==((fInputText)->chunkNativeLimit))&&((fInputLength )==((fInputText)->nativeIndexingLimit)))) { |
1593 | MatchChunkAt((int32_t)nativeStart, TRUE1, status); |
1594 | } else { |
1595 | MatchAt(nativeStart, TRUE1, status); |
1596 | } |
1597 | return fMatch; |
1598 | } |
1599 | |
1600 | |
1601 | |
1602 | //-------------------------------------------------------------------------------- |
1603 | // |
1604 | // pattern |
1605 | // |
1606 | //-------------------------------------------------------------------------------- |
1607 | const RegexPattern &RegexMatcher::pattern() const { |
1608 | return *fPattern; |
1609 | } |
1610 | |
1611 | |
1612 | |
1613 | //-------------------------------------------------------------------------------- |
1614 | // |
1615 | // region |
1616 | // |
1617 | //-------------------------------------------------------------------------------- |
1618 | RegexMatcher &RegexMatcher::region(int64_t regionStart, int64_t regionLimit, int64_t startIndex, UErrorCode &status) { |
1619 | if (U_FAILURE(status)) { |
1620 | return *this; |
1621 | } |
1622 | |
1623 | if (regionStart>regionLimit || regionStart<0 || regionLimit<0) { |
1624 | status = U_ILLEGAL_ARGUMENT_ERROR; |
1625 | } |
1626 | |
1627 | int64_t nativeStart = regionStart; |
1628 | int64_t nativeLimit = regionLimit; |
1629 | if (nativeStart > fInputLength || nativeLimit > fInputLength) { |
1630 | status = U_ILLEGAL_ARGUMENT_ERROR; |
1631 | } |
1632 | |
1633 | if (startIndex == -1) |
1634 | this->reset(); |
1635 | else |
1636 | resetPreserveRegion(); |
1637 | |
1638 | fRegionStart = nativeStart; |
1639 | fRegionLimit = nativeLimit; |
1640 | fActiveStart = nativeStart; |
1641 | fActiveLimit = nativeLimit; |
1642 | |
1643 | if (startIndex != -1) { |
1644 | if (startIndex < fActiveStart || startIndex > fActiveLimit) { |
1645 | status = U_INDEX_OUTOFBOUNDS_ERROR; |
1646 | } |
1647 | fMatchEnd = startIndex; |
1648 | } |
1649 | |
1650 | if (!fTransparentBounds) { |
1651 | fLookStart = nativeStart; |
1652 | fLookLimit = nativeLimit; |
1653 | } |
1654 | if (fAnchoringBounds) { |
1655 | fAnchorStart = nativeStart; |
1656 | fAnchorLimit = nativeLimit; |
1657 | } |
1658 | return *this; |
1659 | } |
1660 | |
1661 | RegexMatcher &RegexMatcher::region(int64_t start, int64_t limit, UErrorCode &status) { |
1662 | return region(start, limit, -1, status); |
1663 | } |
1664 | |
1665 | //-------------------------------------------------------------------------------- |
1666 | // |
1667 | // regionEnd |
1668 | // |
1669 | //-------------------------------------------------------------------------------- |
1670 | int32_t RegexMatcher::regionEnd() const { |
1671 | return (int32_t)fRegionLimit; |
1672 | } |
1673 | |
1674 | int64_t RegexMatcher::regionEnd64() const { |
1675 | return fRegionLimit; |
1676 | } |
1677 | |
1678 | //-------------------------------------------------------------------------------- |
1679 | // |
1680 | // regionStart |
1681 | // |
1682 | //-------------------------------------------------------------------------------- |
1683 | int32_t RegexMatcher::regionStart() const { |
1684 | return (int32_t)fRegionStart; |
1685 | } |
1686 | |
1687 | int64_t RegexMatcher::regionStart64() const { |
1688 | return fRegionStart; |
1689 | } |
1690 | |
1691 | |
1692 | //-------------------------------------------------------------------------------- |
1693 | // |
1694 | // replaceAll |
1695 | // |
1696 | //-------------------------------------------------------------------------------- |
1697 | UnicodeString RegexMatcher::replaceAll(const UnicodeString &replacement, UErrorCode &status) { |
1698 | UText replacementText = UTEXT_INITIALIZER{ UTEXT_MAGIC, 0, 0, sizeof(UText), 0, 0, 0, 0, 0, 0, __null, __null, __null, __null, __null, __null, __null, __null, 0, 0 , 0, 0, 0, 0 }; |
1699 | UText resultText = UTEXT_INITIALIZER{ UTEXT_MAGIC, 0, 0, sizeof(UText), 0, 0, 0, 0, 0, 0, __null, __null, __null, __null, __null, __null, __null, __null, 0, 0 , 0, 0, 0, 0 }; |
1700 | UnicodeString resultString; |
1701 | if (U_FAILURE(status)) { |
1702 | return resultString; |
1703 | } |
1704 | |
1705 | utext_openConstUnicodeStringutext_openConstUnicodeString_71(&replacementText, &replacement, &status); |
1706 | utext_openUnicodeStringutext_openUnicodeString_71(&resultText, &resultString, &status); |
1707 | |
1708 | replaceAll(&replacementText, &resultText, status); |
1709 | |
1710 | utext_closeutext_close_71(&resultText); |
1711 | utext_closeutext_close_71(&replacementText); |
1712 | |
1713 | return resultString; |
1714 | } |
1715 | |
1716 | |
1717 | // |
1718 | // replaceAll, UText mode |
1719 | // |
1720 | UText *RegexMatcher::replaceAll(UText *replacement, UText *dest, UErrorCode &status) { |
1721 | if (U_FAILURE(status)) { |
1722 | return dest; |
1723 | } |
1724 | if (U_FAILURE(fDeferredStatus)) { |
1725 | status = fDeferredStatus; |
1726 | return dest; |
1727 | } |
1728 | |
1729 | if (dest == NULL__null) { |
1730 | UnicodeString emptyString; |
1731 | UText empty = UTEXT_INITIALIZER{ UTEXT_MAGIC, 0, 0, sizeof(UText), 0, 0, 0, 0, 0, 0, __null, __null, __null, __null, __null, __null, __null, __null, 0, 0 , 0, 0, 0, 0 }; |
1732 | |
1733 | utext_openUnicodeStringutext_openUnicodeString_71(&empty, &emptyString, &status); |
1734 | dest = utext_cloneutext_clone_71(NULL__null, &empty, TRUE1, FALSE0, &status); |
1735 | utext_closeutext_close_71(&empty); |
1736 | } |
1737 | |
1738 | if (U_SUCCESS(status)) { |
1739 | reset(); |
1740 | while (find()) { |
1741 | appendReplacement(dest, replacement, status); |
1742 | if (U_FAILURE(status)) { |
1743 | break; |
1744 | } |
1745 | } |
1746 | appendTail(dest, status); |
1747 | } |
1748 | |
1749 | return dest; |
1750 | } |
1751 | |
1752 | |
1753 | //-------------------------------------------------------------------------------- |
1754 | // |
1755 | // replaceFirst |
1756 | // |
1757 | //-------------------------------------------------------------------------------- |
1758 | UnicodeString RegexMatcher::replaceFirst(const UnicodeString &replacement, UErrorCode &status) { |
1759 | UText replacementText = UTEXT_INITIALIZER{ UTEXT_MAGIC, 0, 0, sizeof(UText), 0, 0, 0, 0, 0, 0, __null, __null, __null, __null, __null, __null, __null, __null, 0, 0 , 0, 0, 0, 0 }; |
1760 | UText resultText = UTEXT_INITIALIZER{ UTEXT_MAGIC, 0, 0, sizeof(UText), 0, 0, 0, 0, 0, 0, __null, __null, __null, __null, __null, __null, __null, __null, 0, 0 , 0, 0, 0, 0 }; |
1761 | UnicodeString resultString; |
1762 | |
1763 | utext_openConstUnicodeStringutext_openConstUnicodeString_71(&replacementText, &replacement, &status); |
1764 | utext_openUnicodeStringutext_openUnicodeString_71(&resultText, &resultString, &status); |
1765 | |
1766 | replaceFirst(&replacementText, &resultText, status); |
1767 | |
1768 | utext_closeutext_close_71(&resultText); |
1769 | utext_closeutext_close_71(&replacementText); |
1770 | |
1771 | return resultString; |
1772 | } |
1773 | |
1774 | // |
1775 | // replaceFirst, UText mode |
1776 | // |
1777 | UText *RegexMatcher::replaceFirst(UText *replacement, UText *dest, UErrorCode &status) { |
1778 | if (U_FAILURE(status)) { |
1779 | return dest; |
1780 | } |
1781 | if (U_FAILURE(fDeferredStatus)) { |
1782 | status = fDeferredStatus; |
1783 | return dest; |
1784 | } |
1785 | |
1786 | reset(); |
1787 | if (!find()) { |
1788 | return getInput(dest, status); |
1789 | } |
1790 | |
1791 | if (dest == NULL__null) { |
1792 | UnicodeString emptyString; |
1793 | UText empty = UTEXT_INITIALIZER{ UTEXT_MAGIC, 0, 0, sizeof(UText), 0, 0, 0, 0, 0, 0, __null, __null, __null, __null, __null, __null, __null, __null, 0, 0 , 0, 0, 0, 0 }; |
1794 | |
1795 | utext_openUnicodeStringutext_openUnicodeString_71(&empty, &emptyString, &status); |
1796 | dest = utext_cloneutext_clone_71(NULL__null, &empty, TRUE1, FALSE0, &status); |
1797 | utext_closeutext_close_71(&empty); |
1798 | } |
1799 | |
1800 | appendReplacement(dest, replacement, status); |
1801 | appendTail(dest, status); |
1802 | |
1803 | return dest; |
1804 | } |
1805 | |
1806 | |
1807 | //-------------------------------------------------------------------------------- |
1808 | // |
1809 | // requireEnd |
1810 | // |
1811 | //-------------------------------------------------------------------------------- |
1812 | UBool RegexMatcher::requireEnd() const { |
1813 | return fRequireEnd; |
1814 | } |
1815 | |
1816 | |
1817 | //-------------------------------------------------------------------------------- |
1818 | // |
1819 | // reset |
1820 | // |
1821 | //-------------------------------------------------------------------------------- |
1822 | RegexMatcher &RegexMatcher::reset() { |
1823 | fRegionStart = 0; |
1824 | fRegionLimit = fInputLength; |
1825 | fActiveStart = 0; |
1826 | fActiveLimit = fInputLength; |
1827 | fAnchorStart = 0; |
1828 | fAnchorLimit = fInputLength; |
1829 | fLookStart = 0; |
1830 | fLookLimit = fInputLength; |
1831 | resetPreserveRegion(); |
1832 | return *this; |
1833 | } |
1834 | |
1835 | |
1836 | |
1837 | void RegexMatcher::resetPreserveRegion() { |
1838 | fMatchStart = 0; |
1839 | fMatchEnd = 0; |
1840 | fLastMatchEnd = -1; |
1841 | fAppendPosition = 0; |
1842 | fMatch = FALSE0; |
1843 | fHitEnd = FALSE0; |
1844 | fRequireEnd = FALSE0; |
1845 | fTime = 0; |
1846 | fTickCounter = TIMER_INITIAL_VALUE; |
1847 | //resetStack(); // more expensive than it looks... |
1848 | } |
1849 | |
1850 | |
1851 | RegexMatcher &RegexMatcher::reset(const UnicodeString &input) { |
1852 | fInputText = utext_openConstUnicodeStringutext_openConstUnicodeString_71(fInputText, &input, &fDeferredStatus); |
1853 | if (fPattern->fNeedsAltInput) { |
1854 | fAltInputText = utext_cloneutext_clone_71(fAltInputText, fInputText, FALSE0, TRUE1, &fDeferredStatus); |
1855 | } |
1856 | if (U_FAILURE(fDeferredStatus)) { |
1857 | return *this; |
1858 | } |
1859 | fInputLength = utext_nativeLengthutext_nativeLength_71(fInputText); |
1860 | |
1861 | reset(); |
1862 | delete fInput; |
1863 | fInput = NULL__null; |
1864 | |
1865 | // Do the following for any UnicodeString. |
1866 | // This is for compatibility for those clients who modify the input string "live" during regex operations. |
1867 | fInputUniStrMaybeMutable = TRUE1; |
1868 | |
1869 | #if UCONFIG_NO_BREAK_ITERATION0==0 |
1870 | if (fWordBreakItr) { |
1871 | fWordBreakItr->setText(fInputText, fDeferredStatus); |
1872 | } |
1873 | if (fGCBreakItr) { |
1874 | fGCBreakItr->setText(fInputText, fDeferredStatus); |
1875 | } |
1876 | #endif |
1877 | |
1878 | return *this; |
1879 | } |
1880 | |
1881 | |
1882 | RegexMatcher &RegexMatcher::reset(UText *input) { |
1883 | if (fInputText != input) { |
1884 | fInputText = utext_cloneutext_clone_71(fInputText, input, FALSE0, TRUE1, &fDeferredStatus); |
1885 | if (fPattern->fNeedsAltInput) fAltInputText = utext_cloneutext_clone_71(fAltInputText, fInputText, FALSE0, TRUE1, &fDeferredStatus); |
1886 | if (U_FAILURE(fDeferredStatus)) { |
1887 | return *this; |
1888 | } |
1889 | fInputLength = utext_nativeLengthutext_nativeLength_71(fInputText); |
1890 | |
1891 | delete fInput; |
1892 | fInput = NULL__null; |
1893 | |
1894 | #if UCONFIG_NO_BREAK_ITERATION0==0 |
1895 | if (fWordBreakItr) { |
1896 | fWordBreakItr->setText(input, fDeferredStatus); |
1897 | } |
1898 | if (fGCBreakItr) { |
1899 | fGCBreakItr->setText(fInputText, fDeferredStatus); |
1900 | } |
1901 | #endif |
1902 | } |
1903 | reset(); |
1904 | fInputUniStrMaybeMutable = FALSE0; |
1905 | |
1906 | return *this; |
1907 | } |
1908 | |
1909 | /*RegexMatcher &RegexMatcher::reset(const UChar *) { |
1910 | fDeferredStatus = U_INTERNAL_PROGRAM_ERROR; |
1911 | return *this; |
1912 | }*/ |
1913 | |
1914 | RegexMatcher &RegexMatcher::reset(int64_t position, UErrorCode &status) { |
1915 | if (U_FAILURE(status)) { |
1916 | return *this; |
1917 | } |
1918 | reset(); // Reset also resets the region to be the entire string. |
1919 | |
1920 | if (position < 0 || position > fActiveLimit) { |
1921 | status = U_INDEX_OUTOFBOUNDS_ERROR; |
1922 | return *this; |
1923 | } |
1924 | fMatchEnd = position; |
1925 | return *this; |
1926 | } |
1927 | |
1928 | |
1929 | //-------------------------------------------------------------------------------- |
1930 | // |
1931 | // refresh |
1932 | // |
1933 | //-------------------------------------------------------------------------------- |
1934 | RegexMatcher &RegexMatcher::refreshInputText(UText *input, UErrorCode &status) { |
1935 | if (U_FAILURE(status)) { |
1936 | return *this; |
1937 | } |
1938 | if (input == NULL__null) { |
1939 | status = U_ILLEGAL_ARGUMENT_ERROR; |
1940 | return *this; |
1941 | } |
1942 | if (utext_nativeLengthutext_nativeLength_71(fInputText) != utext_nativeLengthutext_nativeLength_71(input)) { |
1943 | status = U_ILLEGAL_ARGUMENT_ERROR; |
1944 | return *this; |
1945 | } |
1946 | int64_t pos = utext_getNativeIndexutext_getNativeIndex_71(fInputText); |
1947 | // Shallow read-only clone of the new UText into the existing input UText |
1948 | fInputText = utext_cloneutext_clone_71(fInputText, input, FALSE0, TRUE1, &status); |
1949 | if (U_FAILURE(status)) { |
1950 | return *this; |
1951 | } |
1952 | utext_setNativeIndexutext_setNativeIndex_71(fInputText, pos); |
1953 | |
1954 | if (fAltInputText != NULL__null) { |
1955 | pos = utext_getNativeIndexutext_getNativeIndex_71(fAltInputText); |
1956 | fAltInputText = utext_cloneutext_clone_71(fAltInputText, input, FALSE0, TRUE1, &status); |
1957 | if (U_FAILURE(status)) { |
1958 | return *this; |
1959 | } |
1960 | utext_setNativeIndexutext_setNativeIndex_71(fAltInputText, pos); |
1961 | } |
1962 | return *this; |
1963 | } |
1964 | |
1965 | |
1966 | |
1967 | //-------------------------------------------------------------------------------- |
1968 | // |
1969 | // setTrace |
1970 | // |
1971 | //-------------------------------------------------------------------------------- |
1972 | void RegexMatcher::setTrace(UBool state) { |
1973 | fTraceDebug = state; |
1974 | } |
1975 | |
1976 | |
1977 | |
1978 | /** |
1979 | * UText, replace entire contents of the destination UText with a substring of the source UText. |
1980 | * |
1981 | * @param src The source UText |
1982 | * @param dest The destination UText. Must be writable. |
1983 | * May be NULL, in which case a new UText will be allocated. |
1984 | * @param start Start index of source substring. |
1985 | * @param limit Limit index of source substring. |
1986 | * @param status An error code. |
1987 | */ |
1988 | static UText *utext_extract_replace(UText *src, UText *dest, int64_t start, int64_t limit, UErrorCode *status) { |
1989 | if (U_FAILURE(*status)) { |
1990 | return dest; |
1991 | } |
1992 | if (start == limit) { |
1993 | if (dest) { |
1994 | utext_replaceutext_replace_71(dest, 0, utext_nativeLengthutext_nativeLength_71(dest), NULL__null, 0, status); |
1995 | return dest; |
1996 | } else { |
1997 | return utext_openUCharsutext_openUChars_71(NULL__null, NULL__null, 0, status); |
1998 | } |
1999 | } |
2000 | int32_t length = utext_extractutext_extract_71(src, start, limit, NULL__null, 0, status); |
2001 | if (*status != U_BUFFER_OVERFLOW_ERROR && U_FAILURE(*status)) { |
2002 | return dest; |
2003 | } |
2004 | *status = U_ZERO_ERROR; |
2005 | MaybeStackArray<UChar, 40> buffer; |
2006 | if (length >= buffer.getCapacity()) { |
2007 | UChar *newBuf = buffer.resize(length+1); // Leave space for terminating Nul. |
2008 | if (newBuf == NULL__null) { |
2009 | *status = U_MEMORY_ALLOCATION_ERROR; |
2010 | } |
2011 | } |
2012 | utext_extractutext_extract_71(src, start, limit, buffer.getAlias(), length+1, status); |
2013 | if (dest) { |
2014 | utext_replaceutext_replace_71(dest, 0, utext_nativeLengthutext_nativeLength_71(dest), buffer.getAlias(), length, status); |
2015 | return dest; |
2016 | } |
2017 | |
2018 | // Caller did not provide a preexisting UText. |
2019 | // Open a new one, and have it adopt the text buffer storage. |
2020 | if (U_FAILURE(*status)) { |
2021 | return NULL__null; |
2022 | } |
2023 | int32_t ownedLength = 0; |
2024 | UChar *ownedBuf = buffer.orphanOrClone(length+1, ownedLength); |
2025 | if (ownedBuf == NULL__null) { |
2026 | *status = U_MEMORY_ALLOCATION_ERROR; |
2027 | return NULL__null; |
2028 | } |
2029 | UText *result = utext_openUCharsutext_openUChars_71(NULL__null, ownedBuf, length, status); |
2030 | if (U_FAILURE(*status)) { |
2031 | uprv_freeuprv_free_71(ownedBuf); |
2032 | return NULL__null; |
2033 | } |
2034 | result->providerProperties |= (1 << UTEXT_PROVIDER_OWNS_TEXT); |
2035 | return result; |
2036 | } |
2037 | |
2038 | |
2039 | //--------------------------------------------------------------------- |
2040 | // |
2041 | // split |
2042 | // |
2043 | //--------------------------------------------------------------------- |
2044 | int32_t RegexMatcher::split(const UnicodeString &input, |
2045 | UnicodeString dest[], |
2046 | int32_t destCapacity, |
2047 | UErrorCode &status) |
2048 | { |
2049 | UText inputText = UTEXT_INITIALIZER{ UTEXT_MAGIC, 0, 0, sizeof(UText), 0, 0, 0, 0, 0, 0, __null, __null, __null, __null, __null, __null, __null, __null, 0, 0 , 0, 0, 0, 0 }; |
2050 | utext_openConstUnicodeStringutext_openConstUnicodeString_71(&inputText, &input, &status); |
2051 | if (U_FAILURE(status)) { |
2052 | return 0; |
2053 | } |
2054 | |
2055 | UText **destText = (UText **)uprv_mallocuprv_malloc_71(sizeof(UText*)*destCapacity); |
2056 | if (destText == NULL__null) { |
2057 | status = U_MEMORY_ALLOCATION_ERROR; |
2058 | return 0; |
2059 | } |
2060 | int32_t i; |
2061 | for (i = 0; i < destCapacity; i++) { |
2062 | destText[i] = utext_openUnicodeStringutext_openUnicodeString_71(NULL__null, &dest[i], &status); |
2063 | } |
2064 | |
2065 | int32_t fieldCount = split(&inputText, destText, destCapacity, status); |
2066 | |
2067 | for (i = 0; i < destCapacity; i++) { |
2068 | utext_closeutext_close_71(destText[i]); |
2069 | } |
2070 | |
2071 | uprv_freeuprv_free_71(destText); |
2072 | utext_closeutext_close_71(&inputText); |
2073 | return fieldCount; |
2074 | } |
2075 | |
2076 | // |
2077 | // split, UText mode |
2078 | // |
2079 | int32_t RegexMatcher::split(UText *input, |
2080 | UText *dest[], |
2081 | int32_t destCapacity, |
2082 | UErrorCode &status) |
2083 | { |
2084 | // |
2085 | // Check arguments for validity |
2086 | // |
2087 | if (U_FAILURE(status)) { |
2088 | return 0; |
2089 | } |
2090 | |
2091 | if (destCapacity < 1) { |
2092 | status = U_ILLEGAL_ARGUMENT_ERROR; |
2093 | return 0; |
2094 | } |
2095 | |
2096 | // |
2097 | // Reset for the input text |
2098 | // |
2099 | reset(input); |
2100 | int64_t nextOutputStringStart = 0; |
2101 | if (fActiveLimit == 0) { |
2102 | return 0; |
2103 | } |
2104 | |
2105 | // |
2106 | // Loop through the input text, searching for the delimiter pattern |
2107 | // |
2108 | int32_t i; |
2109 | int32_t numCaptureGroups = fPattern->fGroupMap->size(); |
2110 | for (i=0; ; i++) { |
2111 | if (i>=destCapacity-1) { |
2112 | // There is one or zero output string left. |
2113 | // Fill the last output string with whatever is left from the input, then exit the loop. |
2114 | // ( i will be == destCapacity if we filled the output array while processing |
2115 | // capture groups of the delimiter expression, in which case we will discard the |
2116 | // last capture group saved in favor of the unprocessed remainder of the |
2117 | // input string.) |
2118 | i = destCapacity-1; |
2119 | if (fActiveLimit > nextOutputStringStart) { |
2120 | if (UTEXT_FULL_TEXT_IN_CHUNK(input, fInputLength)((0==((input)->chunkNativeStart))&&((fInputLength) ==((input)->chunkNativeLimit))&&((fInputLength)==( (input)->nativeIndexingLimit)))) { |
2121 | if (dest[i]) { |
2122 | utext_replaceutext_replace_71(dest[i], 0, utext_nativeLengthutext_nativeLength_71(dest[i]), |
2123 | input->chunkContents+nextOutputStringStart, |
2124 | (int32_t)(fActiveLimit-nextOutputStringStart), &status); |
2125 | } else { |
2126 | UText remainingText = UTEXT_INITIALIZER{ UTEXT_MAGIC, 0, 0, sizeof(UText), 0, 0, 0, 0, 0, 0, __null, __null, __null, __null, __null, __null, __null, __null, 0, 0 , 0, 0, 0, 0 }; |
2127 | utext_openUCharsutext_openUChars_71(&remainingText, input->chunkContents+nextOutputStringStart, |
2128 | fActiveLimit-nextOutputStringStart, &status); |
2129 | dest[i] = utext_cloneutext_clone_71(NULL__null, &remainingText, TRUE1, FALSE0, &status); |
2130 | utext_closeutext_close_71(&remainingText); |
2131 | } |
2132 | } else { |
2133 | UErrorCode lengthStatus = U_ZERO_ERROR; |
2134 | int32_t remaining16Length = |
2135 | utext_extractutext_extract_71(input, nextOutputStringStart, fActiveLimit, NULL__null, 0, &lengthStatus); |
2136 | UChar *remainingChars = (UChar *)uprv_mallocuprv_malloc_71(sizeof(UChar)*(remaining16Length+1)); |
2137 | if (remainingChars == NULL__null) { |
2138 | status = U_MEMORY_ALLOCATION_ERROR; |
2139 | break; |
2140 | } |
2141 | |
2142 | utext_extractutext_extract_71(input, nextOutputStringStart, fActiveLimit, remainingChars, remaining16Length+1, &status); |
2143 | if (dest[i]) { |
2144 | utext_replaceutext_replace_71(dest[i], 0, utext_nativeLengthutext_nativeLength_71(dest[i]), remainingChars, remaining16Length, &status); |
2145 | } else { |
2146 | UText remainingText = UTEXT_INITIALIZER{ UTEXT_MAGIC, 0, 0, sizeof(UText), 0, 0, 0, 0, 0, 0, __null, __null, __null, __null, __null, __null, __null, __null, 0, 0 , 0, 0, 0, 0 }; |
2147 | utext_openUCharsutext_openUChars_71(&remainingText, remainingChars, remaining16Length, &status); |
2148 | dest[i] = utext_cloneutext_clone_71(NULL__null, &remainingText, TRUE1, FALSE0, &status); |
2149 | utext_closeutext_close_71(&remainingText); |
2150 | } |
2151 | |
2152 | uprv_freeuprv_free_71(remainingChars); |
2153 | } |
2154 | } |
2155 | break; |
2156 | } |
2157 | if (find()) { |
2158 | // We found another delimiter. Move everything from where we started looking |
2159 | // up until the start of the delimiter into the next output string. |
2160 | if (UTEXT_FULL_TEXT_IN_CHUNK(input, fInputLength)((0==((input)->chunkNativeStart))&&((fInputLength) ==((input)->chunkNativeLimit))&&((fInputLength)==( (input)->nativeIndexingLimit)))) { |
2161 | if (dest[i]) { |
2162 | utext_replaceutext_replace_71(dest[i], 0, utext_nativeLengthutext_nativeLength_71(dest[i]), |
2163 | input->chunkContents+nextOutputStringStart, |
2164 | (int32_t)(fMatchStart-nextOutputStringStart), &status); |
2165 | } else { |
2166 | UText remainingText = UTEXT_INITIALIZER{ UTEXT_MAGIC, 0, 0, sizeof(UText), 0, 0, 0, 0, 0, 0, __null, __null, __null, __null, __null, __null, __null, __null, 0, 0 , 0, 0, 0, 0 }; |
2167 | utext_openUCharsutext_openUChars_71(&remainingText, input->chunkContents+nextOutputStringStart, |
2168 | fMatchStart-nextOutputStringStart, &status); |
2169 | dest[i] = utext_cloneutext_clone_71(NULL__null, &remainingText, TRUE1, FALSE0, &status); |
2170 | utext_closeutext_close_71(&remainingText); |
2171 | } |
2172 | } else { |
2173 | UErrorCode lengthStatus = U_ZERO_ERROR; |
2174 | int32_t remaining16Length = utext_extractutext_extract_71(input, nextOutputStringStart, fMatchStart, NULL__null, 0, &lengthStatus); |
2175 | UChar *remainingChars = (UChar *)uprv_mallocuprv_malloc_71(sizeof(UChar)*(remaining16Length+1)); |
2176 | if (remainingChars == NULL__null) { |
2177 | status = U_MEMORY_ALLOCATION_ERROR; |
2178 | break; |
2179 | } |
2180 | utext_extractutext_extract_71(input, nextOutputStringStart, fMatchStart, remainingChars, remaining16Length+1, &status); |
2181 | if (dest[i]) { |
2182 | utext_replaceutext_replace_71(dest[i], 0, utext_nativeLengthutext_nativeLength_71(dest[i]), remainingChars, remaining16Length, &status); |
2183 | } else { |
2184 | UText remainingText = UTEXT_INITIALIZER{ UTEXT_MAGIC, 0, 0, sizeof(UText), 0, 0, 0, 0, 0, 0, __null, __null, __null, __null, __null, __null, __null, __null, 0, 0 , 0, 0, 0, 0 }; |
2185 | utext_openUCharsutext_openUChars_71(&remainingText, remainingChars, remaining16Length, &status); |
2186 | dest[i] = utext_cloneutext_clone_71(NULL__null, &remainingText, TRUE1, FALSE0, &status); |
2187 | utext_closeutext_close_71(&remainingText); |
2188 | } |
2189 | |
2190 | uprv_freeuprv_free_71(remainingChars); |
2191 | } |
2192 | nextOutputStringStart = fMatchEnd; |
2193 | |
2194 | // If the delimiter pattern has capturing parentheses, the captured |
2195 | // text goes out into the next n destination strings. |
2196 | int32_t groupNum; |
2197 | for (groupNum=1; groupNum<=numCaptureGroups; groupNum++) { |
2198 | if (i >= destCapacity-2) { |
2199 | // Never fill the last available output string with capture group text. |
2200 | // It will filled with the last field, the remainder of the |
2201 | // unsplit input text. |
2202 | break; |
2203 | } |
2204 | i++; |
2205 | dest[i] = utext_extract_replace(fInputText, dest[i], |
2206 | start64(groupNum, status), end64(groupNum, status), &status); |
2207 | } |
2208 | |
2209 | if (nextOutputStringStart == fActiveLimit) { |
2210 | // The delimiter was at the end of the string. We're done, but first |
2211 | // we output one last empty string, for the empty field following |
2212 | // the delimiter at the end of input. |
2213 | if (i+1 < destCapacity) { |
2214 | ++i; |
2215 | if (dest[i] == NULL__null) { |
2216 | dest[i] = utext_openUCharsutext_openUChars_71(NULL__null, NULL__null, 0, &status); |
2217 | } else { |
2218 | static const UChar emptyString[] = {(UChar)0}; |
2219 | utext_replaceutext_replace_71(dest[i], 0, utext_nativeLengthutext_nativeLength_71(dest[i]), emptyString, 0, &status); |
2220 | } |
2221 | } |
2222 | break; |
2223 | |
2224 | } |
2225 | } |
2226 | else |
2227 | { |
2228 | // We ran off the end of the input while looking for the next delimiter. |
2229 | // All the remaining text goes into the current output string. |
2230 | if (UTEXT_FULL_TEXT_IN_CHUNK(input, fInputLength)((0==((input)->chunkNativeStart))&&((fInputLength) ==((input)->chunkNativeLimit))&&((fInputLength)==( (input)->nativeIndexingLimit)))) { |
2231 | if (dest[i]) { |
2232 | utext_replaceutext_replace_71(dest[i], 0, utext_nativeLengthutext_nativeLength_71(dest[i]), |
2233 | input->chunkContents+nextOutputStringStart, |
2234 | (int32_t)(fActiveLimit-nextOutputStringStart), &status); |
2235 | } else { |
2236 | UText remainingText = UTEXT_INITIALIZER{ UTEXT_MAGIC, 0, 0, sizeof(UText), 0, 0, 0, 0, 0, 0, __null, __null, __null, __null, __null, __null, __null, __null, 0, 0 , 0, 0, 0, 0 }; |
2237 | utext_openUCharsutext_openUChars_71(&remainingText, input->chunkContents+nextOutputStringStart, |
2238 | fActiveLimit-nextOutputStringStart, &status); |
2239 | dest[i] = utext_cloneutext_clone_71(NULL__null, &remainingText, TRUE1, FALSE0, &status); |
2240 | utext_closeutext_close_71(&remainingText); |
2241 | } |
2242 | } else { |
2243 | UErrorCode lengthStatus = U_ZERO_ERROR; |
2244 | int32_t remaining16Length = utext_extractutext_extract_71(input, nextOutputStringStart, fActiveLimit, NULL__null, 0, &lengthStatus); |
2245 | UChar *remainingChars = (UChar *)uprv_mallocuprv_malloc_71(sizeof(UChar)*(remaining16Length+1)); |
2246 | if (remainingChars == NULL__null) { |
2247 | status = U_MEMORY_ALLOCATION_ERROR; |
2248 | break; |
2249 | } |
2250 | |
2251 | utext_extractutext_extract_71(input, nextOutputStringStart, fActiveLimit, remainingChars, remaining16Length+1, &status); |
2252 | if (dest[i]) { |
2253 | utext_replaceutext_replace_71(dest[i], 0, utext_nativeLengthutext_nativeLength_71(dest[i]), remainingChars, remaining16Length, &status); |
2254 | } else { |
2255 | UText remainingText = UTEXT_INITIALIZER{ UTEXT_MAGIC, 0, 0, sizeof(UText), 0, 0, 0, 0, 0, 0, __null, __null, __null, __null, __null, __null, __null, __null, 0, 0 , 0, 0, 0, 0 }; |
2256 | utext_openUCharsutext_openUChars_71(&remainingText, remainingChars, remaining16Length, &status); |
2257 | dest[i] = utext_cloneutext_clone_71(NULL__null, &remainingText, TRUE1, FALSE0, &status); |
2258 | utext_closeutext_close_71(&remainingText); |
2259 | } |
2260 | |
2261 | uprv_freeuprv_free_71(remainingChars); |
2262 | } |
2263 | break; |
2264 | } |
2265 | if (U_FAILURE(status)) { |
2266 | break; |
2267 | } |
2268 | } // end of for loop |
2269 | return i+1; |
2270 | } |
2271 | |
2272 | |
2273 | //-------------------------------------------------------------------------------- |
2274 | // |
2275 | // start |
2276 | // |
2277 | //-------------------------------------------------------------------------------- |
2278 | int32_t RegexMatcher::start(UErrorCode &status) const { |
2279 | return start(0, status); |
2280 | } |
2281 | |
2282 | int64_t RegexMatcher::start64(UErrorCode &status) const { |
2283 | return start64(0, status); |
2284 | } |
2285 | |
2286 | //-------------------------------------------------------------------------------- |
2287 | // |
2288 | // start(int32_t group, UErrorCode &status) |
2289 | // |
2290 | //-------------------------------------------------------------------------------- |
2291 | |
2292 | int64_t RegexMatcher::start64(int32_t group, UErrorCode &status) const { |
2293 | if (U_FAILURE(status)) { |
2294 | return -1; |
2295 | } |
2296 | if (U_FAILURE(fDeferredStatus)) { |
2297 | status = fDeferredStatus; |
2298 | return -1; |
2299 | } |
2300 | if (fMatch == FALSE0) { |
2301 | status = U_REGEX_INVALID_STATE; |
2302 | return -1; |
2303 | } |
2304 | if (group < 0 || group > fPattern->fGroupMap->size()) { |
2305 | status = U_INDEX_OUTOFBOUNDS_ERROR; |
2306 | return -1; |
2307 | } |
2308 | int64_t s; |
2309 | if (group == 0) { |
2310 | s = fMatchStart; |
2311 | } else { |
2312 | int32_t groupOffset = fPattern->fGroupMap->elementAti(group-1); |
2313 | U_ASSERT(groupOffset < fPattern->fFrameSize)(void)0; |
2314 | U_ASSERT(groupOffset >= 0)(void)0; |
2315 | s = fFrame->fExtra[groupOffset]; |
2316 | } |
2317 | |
2318 | return s; |
2319 | } |
2320 | |
2321 | |
2322 | int32_t RegexMatcher::start(int32_t group, UErrorCode &status) const { |
2323 | return (int32_t)start64(group, status); |
2324 | } |
2325 | |
2326 | //-------------------------------------------------------------------------------- |
2327 | // |
2328 | // useAnchoringBounds |
2329 | // |
2330 | //-------------------------------------------------------------------------------- |
2331 | RegexMatcher &RegexMatcher::useAnchoringBounds(UBool b) { |
2332 | fAnchoringBounds = b; |
2333 | fAnchorStart = (fAnchoringBounds ? fRegionStart : 0); |
2334 | fAnchorLimit = (fAnchoringBounds ? fRegionLimit : fInputLength); |
2335 | return *this; |
2336 | } |
2337 | |
2338 | |
2339 | //-------------------------------------------------------------------------------- |
2340 | // |
2341 | // useTransparentBounds |
2342 | // |
2343 | //-------------------------------------------------------------------------------- |
2344 | RegexMatcher &RegexMatcher::useTransparentBounds(UBool b) { |
2345 | fTransparentBounds = b; |
2346 | fLookStart = (fTransparentBounds ? 0 : fRegionStart); |
2347 | fLookLimit = (fTransparentBounds ? fInputLength : fRegionLimit); |
2348 | return *this; |
2349 | } |
2350 | |
2351 | //-------------------------------------------------------------------------------- |
2352 | // |
2353 | // setTimeLimit |
2354 | // |
2355 | //-------------------------------------------------------------------------------- |
2356 | void RegexMatcher::setTimeLimit(int32_t limit, UErrorCode &status) { |
2357 | if (U_FAILURE(status)) { |
2358 | return; |
2359 | } |
2360 | if (U_FAILURE(fDeferredStatus)) { |
2361 | status = fDeferredStatus; |
2362 | return; |
2363 | } |
2364 | if (limit < 0) { |
2365 | status = U_ILLEGAL_ARGUMENT_ERROR; |
2366 | return; |
2367 | } |
2368 | fTimeLimit = limit; |
2369 | } |
2370 | |
2371 | |
2372 | //-------------------------------------------------------------------------------- |
2373 | // |
2374 | // getTimeLimit |
2375 | // |
2376 | //-------------------------------------------------------------------------------- |
2377 | int32_t RegexMatcher::getTimeLimit() const { |
2378 | return fTimeLimit; |
2379 | } |
2380 | |
2381 | |
2382 | //-------------------------------------------------------------------------------- |
2383 | // |
2384 | // setStackLimit |
2385 | // |
2386 | //-------------------------------------------------------------------------------- |
2387 | void RegexMatcher::setStackLimit(int32_t limit, UErrorCode &status) { |
2388 | if (U_FAILURE(status)) { |
2389 | return; |
2390 | } |
2391 | if (U_FAILURE(fDeferredStatus)) { |
2392 | status = fDeferredStatus; |
2393 | return; |
2394 | } |
2395 | if (limit < 0) { |
2396 | status = U_ILLEGAL_ARGUMENT_ERROR; |
2397 | return; |
2398 | } |
2399 | |
2400 | // Reset the matcher. This is needed here in case there is a current match |
2401 | // whose final stack frame (containing the match results, pointed to by fFrame) |
2402 | // would be lost by resizing to a smaller stack size. |
2403 | reset(); |
2404 | |
2405 | if (limit == 0) { |
2406 | // Unlimited stack expansion |
2407 | fStack->setMaxCapacity(0); |
2408 | } else { |
2409 | // Change the units of the limit from bytes to ints, and bump the size up |
2410 | // to be big enough to hold at least one stack frame for the pattern, |
2411 | // if it isn't there already. |
2412 | int32_t adjustedLimit = limit / sizeof(int32_t); |
2413 | if (adjustedLimit < fPattern->fFrameSize) { |
2414 | adjustedLimit = fPattern->fFrameSize; |
2415 | } |
2416 | fStack->setMaxCapacity(adjustedLimit); |
2417 | } |
2418 | fStackLimit = limit; |
2419 | } |
2420 | |
2421 | |
2422 | //-------------------------------------------------------------------------------- |
2423 | // |
2424 | // getStackLimit |
2425 | // |
2426 | //-------------------------------------------------------------------------------- |
2427 | int32_t RegexMatcher::getStackLimit() const { |
2428 | return fStackLimit; |
2429 | } |
2430 | |
2431 | |
2432 | //-------------------------------------------------------------------------------- |
2433 | // |
2434 | // setMatchCallback |
2435 | // |
2436 | //-------------------------------------------------------------------------------- |
2437 | void RegexMatcher::setMatchCallback(URegexMatchCallback *callback, |
2438 | const void *context, |
2439 | UErrorCode &status) { |
2440 | if (U_FAILURE(status)) { |
2441 | return; |
2442 | } |
2443 | fCallbackFn = callback; |
2444 | fCallbackContext = context; |
2445 | } |
2446 | |
2447 | |
2448 | //-------------------------------------------------------------------------------- |
2449 | // |
2450 | // getMatchCallback |
2451 | // |
2452 | //-------------------------------------------------------------------------------- |
2453 | void RegexMatcher::getMatchCallback(URegexMatchCallback *&callback, |
2454 | const void *&context, |
2455 | UErrorCode &status) { |
2456 | if (U_FAILURE(status)) { |
2457 | return; |
2458 | } |
2459 | callback = fCallbackFn; |
2460 | context = fCallbackContext; |
2461 | } |
2462 | |
2463 | |
2464 | //-------------------------------------------------------------------------------- |
2465 | // |
2466 | // setMatchCallback |
2467 | // |
2468 | //-------------------------------------------------------------------------------- |
2469 | void RegexMatcher::setFindProgressCallback(URegexFindProgressCallback *callback, |
2470 | const void *context, |
2471 | UErrorCode &status) { |
2472 | if (U_FAILURE(status)) { |
2473 | return; |
2474 | } |
2475 | fFindProgressCallbackFn = callback; |
2476 | fFindProgressCallbackContext = context; |
2477 | } |
2478 | |
2479 | |
2480 | //-------------------------------------------------------------------------------- |
2481 | // |
2482 | // getMatchCallback |
2483 | // |
2484 | //-------------------------------------------------------------------------------- |
2485 | void RegexMatcher::getFindProgressCallback(URegexFindProgressCallback *&callback, |
2486 | const void *&context, |
2487 | UErrorCode &status) { |
2488 | if (U_FAILURE(status)) { |
2489 | return; |
2490 | } |
2491 | callback = fFindProgressCallbackFn; |
2492 | context = fFindProgressCallbackContext; |
2493 | } |
2494 | |
2495 | |
2496 | //================================================================================ |
2497 | // |
2498 | // Code following this point in this file is the internal |
2499 | // Match Engine Implementation. |
2500 | // |
2501 | //================================================================================ |
2502 | |
2503 | |
2504 | //-------------------------------------------------------------------------------- |
2505 | // |
2506 | // resetStack |
2507 | // Discard any previous contents of the state save stack, and initialize a |
2508 | // new stack frame to all -1. The -1s are needed for capture group limits, |
2509 | // where they indicate that a group has not yet matched anything. |
2510 | //-------------------------------------------------------------------------------- |
2511 | REStackFrame *RegexMatcher::resetStack() { |
2512 | // Discard any previous contents of the state save stack, and initialize a |
2513 | // new stack frame with all -1 data. The -1s are needed for capture group limits, |
2514 | // where they indicate that a group has not yet matched anything. |
2515 | fStack->removeAllElements(); |
2516 | |
2517 | REStackFrame *iFrame = (REStackFrame *)fStack->reserveBlock(fPattern->fFrameSize, fDeferredStatus); |
2518 | if(U_FAILURE(fDeferredStatus)) { |
2519 | return NULL__null; |
2520 | } |
2521 | |
2522 | int32_t i; |
2523 | for (i=0; i<fPattern->fFrameSize-RESTACKFRAME_HDRCOUNT2; i++) { |
2524 | iFrame->fExtra[i] = -1; |
2525 | } |
2526 | return iFrame; |
2527 | } |
2528 | |
2529 | |
2530 | |
2531 | //-------------------------------------------------------------------------------- |
2532 | // |
2533 | // isWordBoundary |
2534 | // in perl, "xab..cd..", \b is true at positions 0,3,5,7 |
2535 | // For us, |
2536 | // If the current char is a combining mark, |
2537 | // \b is FALSE. |
2538 | // Else Scan backwards to the first non-combining char. |
2539 | // We are at a boundary if the this char and the original chars are |
2540 | // opposite in membership in \w set |
2541 | // |
2542 | // parameters: pos - the current position in the input buffer |
2543 | // |
2544 | // TODO: double-check edge cases at region boundaries. |
2545 | // |
2546 | //-------------------------------------------------------------------------------- |
2547 | UBool RegexMatcher::isWordBoundary(int64_t pos) { |
2548 | UBool isBoundary = FALSE0; |
2549 | UBool cIsWord = FALSE0; |
2550 | |
2551 | if (pos >= fLookLimit) { |
2552 | fHitEnd = TRUE1; |
2553 | } else { |
2554 | // Determine whether char c at current position is a member of the word set of chars. |
2555 | // If we're off the end of the string, behave as though we're not at a word char. |
2556 | UTEXT_SETNATIVEINDEX(fInputText, pos)do { int64_t __offset = (pos) - (fInputText)->chunkNativeStart ; if (__offset>=0 && __offset<(int64_t)(fInputText )->nativeIndexingLimit && (fInputText)->chunkContents [__offset]<0xdc00) { (fInputText)->chunkOffset=(int32_t )__offset; } else { utext_setNativeIndex_71((fInputText), (pos )); } } while (false); |
2557 | UChar32 c = UTEXT_CURRENT32(fInputText)((fInputText)->chunkOffset < (fInputText)->chunkLength && ((fInputText)->chunkContents)[(fInputText)-> chunkOffset]<0xd800 ? ((fInputText)->chunkContents)[((fInputText )->chunkOffset)] : utext_current32_71(fInputText)); |
2558 | if (u_hasBinaryPropertyu_hasBinaryProperty_71(c, UCHAR_GRAPHEME_EXTEND) || u_charTypeu_charType_71(c) == U_FORMAT_CHAR) { |
2559 | // Current char is a combining one. Not a boundary. |
2560 | return FALSE0; |
2561 | } |
2562 | cIsWord = RegexStaticSets::gStaticSets->fPropSets[URX_ISWORD_SET].contains(c); |
2563 | } |
2564 | |
2565 | // Back up until we come to a non-combining char, determine whether |
2566 | // that char is a word char. |
2567 | UBool prevCIsWord = FALSE0; |
2568 | for (;;) { |
2569 | if (UTEXT_GETNATIVEINDEX(fInputText)((fInputText)->chunkOffset <= (fInputText)->nativeIndexingLimit ? (fInputText)->chunkNativeStart+(fInputText)->chunkOffset : (fInputText)->pFuncs->mapOffsetToNative(fInputText)) <= fLookStart) { |
2570 | break; |
2571 | } |
2572 | UChar32 prevChar = UTEXT_PREVIOUS32(fInputText)((fInputText)->chunkOffset > 0 && (fInputText)-> chunkContents[(fInputText)->chunkOffset-1] < 0xd800 ? ( fInputText)->chunkContents[--((fInputText)->chunkOffset )] : utext_previous32_71(fInputText)); |
2573 | if (!(u_hasBinaryPropertyu_hasBinaryProperty_71(prevChar, UCHAR_GRAPHEME_EXTEND) |
2574 | || u_charTypeu_charType_71(prevChar) == U_FORMAT_CHAR)) { |
2575 | prevCIsWord = RegexStaticSets::gStaticSets->fPropSets[URX_ISWORD_SET].contains(prevChar); |
2576 | break; |
2577 | } |
2578 | } |
2579 | isBoundary = cIsWord ^ prevCIsWord; |
2580 | return isBoundary; |
2581 | } |
2582 | |
2583 | UBool RegexMatcher::isChunkWordBoundary(int32_t pos) { |
2584 | UBool isBoundary = FALSE0; |
2585 | UBool cIsWord = FALSE0; |
2586 | |
2587 | const UChar *inputBuf = fInputText->chunkContents; |
2588 | |
2589 | if (pos >= fLookLimit) { |
2590 | fHitEnd = TRUE1; |
2591 | } else { |
2592 | // Determine whether char c at current position is a member of the word set of chars. |
2593 | // If we're off the end of the string, behave as though we're not at a word char. |
2594 | UChar32 c; |
2595 | U16_GET(inputBuf, fLookStart, pos, fLookLimit, c)do { (c)=(inputBuf)[pos]; if((((c)&0xfffff800)==0xd800)) { uint16_t __c2; if((((c)&0x400)==0)) { if((pos)+1!=(fLookLimit ) && (((__c2=(inputBuf)[(pos)+1])&0xfffffc00)==0xdc00 )) { (c)=(((UChar32)((c))<<10UL)+(UChar32)(__c2)-((0xd800 <<10UL)+0xdc00-0x10000)); } } else { if((pos)>(fLookStart ) && (((__c2=(inputBuf)[(pos)-1])&0xfffffc00)==0xd800 )) { (c)=(((UChar32)(__c2)<<10UL)+(UChar32)((c))-((0xd800 <<10UL)+0xdc00-0x10000)); } } } } while (false); |
2596 | if (u_hasBinaryPropertyu_hasBinaryProperty_71(c, UCHAR_GRAPHEME_EXTEND) || u_charTypeu_charType_71(c) == U_FORMAT_CHAR) { |
2597 | // Current char is a combining one. Not a boundary. |
2598 | return FALSE0; |
2599 | } |
2600 | cIsWord = RegexStaticSets::gStaticSets->fPropSets[URX_ISWORD_SET].contains(c); |
2601 | } |
2602 | |
2603 | // Back up until we come to a non-combining char, determine whether |
2604 | // that char is a word char. |
2605 | UBool prevCIsWord = FALSE0; |
2606 | for (;;) { |
2607 | if (pos <= fLookStart) { |
2608 | break; |
2609 | } |
2610 | UChar32 prevChar; |
2611 | U16_PREV(inputBuf, fLookStart, pos, prevChar)do { (prevChar)=(inputBuf)[--(pos)]; if((((prevChar)&0xfffffc00 )==0xdc00)) { uint16_t __c2; if((pos)>(fLookStart) && (((__c2=(inputBuf)[(pos)-1])&0xfffffc00)==0xd800)) { --( pos); (prevChar)=(((UChar32)(__c2)<<10UL)+(UChar32)((prevChar ))-((0xd800<<10UL)+0xdc00-0x10000)); } } } while (false ); |
2612 | if (!(u_hasBinaryPropertyu_hasBinaryProperty_71(prevChar, UCHAR_GRAPHEME_EXTEND) |
2613 | || u_charTypeu_charType_71(prevChar) == U_FORMAT_CHAR)) { |
2614 | prevCIsWord = RegexStaticSets::gStaticSets->fPropSets[URX_ISWORD_SET].contains(prevChar); |
2615 | break; |
2616 | } |
2617 | } |
2618 | isBoundary = cIsWord ^ prevCIsWord; |
2619 | return isBoundary; |
2620 | } |
2621 | |
2622 | //-------------------------------------------------------------------------------- |
2623 | // |
2624 | // isUWordBoundary |
2625 | // |
2626 | // Test for a word boundary using RBBI word break. |
2627 | // |
2628 | // parameters: pos - the current position in the input buffer |
2629 | // |
2630 | //-------------------------------------------------------------------------------- |
2631 | UBool RegexMatcher::isUWordBoundary(int64_t pos, UErrorCode &status) { |
2632 | UBool returnVal = FALSE0; |
2633 | |
2634 | #if UCONFIG_NO_BREAK_ITERATION0==0 |
2635 | // Note: this point will never be reached if break iteration is configured out. |
2636 | // Regex patterns that would require this function will fail to compile. |
2637 | |
2638 | // If we haven't yet created a break iterator for this matcher, do it now. |
2639 | if (fWordBreakItr == nullptr) { |
2640 | fWordBreakItr = BreakIterator::createWordInstance(Locale::getEnglish(), status); |
2641 | if (U_FAILURE(status)) { |
2642 | return FALSE0; |
2643 | } |
2644 | fWordBreakItr->setText(fInputText, status); |
2645 | } |
2646 | |
2647 | // Note: zero width boundary tests like \b see through transparent region bounds, |
2648 | // which is why fLookLimit is used here, rather than fActiveLimit. |
2649 | if (pos >= fLookLimit) { |
2650 | fHitEnd = TRUE1; |
2651 | returnVal = TRUE1; // With Unicode word rules, only positions within the interior of "real" |
2652 | // words are not boundaries. All non-word chars stand by themselves, |
2653 | // with word boundaries on both sides. |
2654 | } else { |
2655 | returnVal = fWordBreakItr->isBoundary((int32_t)pos); |
2656 | } |
2657 | #endif |
2658 | return returnVal; |
2659 | } |
2660 | |
2661 | |
2662 | int64_t RegexMatcher::followingGCBoundary(int64_t pos, UErrorCode &status) { |
2663 | int64_t result = pos; |
2664 | |
2665 | #if UCONFIG_NO_BREAK_ITERATION0==0 |
2666 | // Note: this point will never be reached if break iteration is configured out. |
2667 | // Regex patterns that would require this function will fail to compile. |
2668 | |
2669 | // If we haven't yet created a break iterator for this matcher, do it now. |
2670 | if (fGCBreakItr == nullptr) { |
2671 | fGCBreakItr = BreakIterator::createCharacterInstance(Locale::getEnglish(), status); |
2672 | if (U_FAILURE(status)) { |
2673 | return pos; |
2674 | } |
2675 | fGCBreakItr->setText(fInputText, status); |
2676 | } |
2677 | result = fGCBreakItr->following(pos); |
2678 | if (result == BreakIterator::DONE) { |
2679 | result = pos; |
2680 | } |
2681 | #endif |
2682 | return result; |
2683 | } |
2684 | |
2685 | //-------------------------------------------------------------------------------- |
2686 | // |
2687 | // IncrementTime This function is called once each TIMER_INITIAL_VALUE state |
2688 | // saves. Increment the "time" counter, and call the |
2689 | // user callback function if there is one installed. |
2690 | // |
2691 | // If the match operation needs to be aborted, either for a time-out |
2692 | // or because the user callback asked for it, just set an error status. |
2693 | // The engine will pick that up and stop in its outer loop. |
2694 | // |
2695 | //-------------------------------------------------------------------------------- |
2696 | void RegexMatcher::IncrementTime(UErrorCode &status) { |
2697 | fTickCounter = TIMER_INITIAL_VALUE; |
2698 | fTime++; |
2699 | if (fCallbackFn != NULL__null) { |
2700 | if ((*fCallbackFn)(fCallbackContext, fTime) == FALSE0) { |
2701 | status = U_REGEX_STOPPED_BY_CALLER; |
2702 | return; |
2703 | } |
2704 | } |
2705 | if (fTimeLimit > 0 && fTime >= fTimeLimit) { |
2706 | status = U_REGEX_TIME_OUT; |
2707 | } |
2708 | } |
2709 | |
2710 | //-------------------------------------------------------------------------------- |
2711 | // |
2712 | // StateSave |
2713 | // Make a new stack frame, initialized as a copy of the current stack frame. |
2714 | // Set the pattern index in the original stack frame from the operand value |
2715 | // in the opcode. Execution of the engine continues with the state in |
2716 | // the newly created stack frame |
2717 | // |
2718 | // Note that reserveBlock() may grow the stack, resulting in the |
2719 | // whole thing being relocated in memory. |
2720 | // |
2721 | // Parameters: |
2722 | // fp The top frame pointer when called. At return, a new |
2723 | // fame will be present |
2724 | // savePatIdx An index into the compiled pattern. Goes into the original |
2725 | // (not new) frame. If execution ever back-tracks out of the |
2726 | // new frame, this will be where we continue from in the pattern. |
2727 | // Return |
2728 | // The new frame pointer. |
2729 | // |
2730 | //-------------------------------------------------------------------------------- |
2731 | inline REStackFrame *RegexMatcher::StateSave(REStackFrame *fp, int64_t savePatIdx, UErrorCode &status) { |
2732 | if (U_FAILURE(status)) { |
2733 | return fp; |
2734 | } |
2735 | // push storage for a new frame. |
2736 | int64_t *newFP = fStack->reserveBlock(fFrameSize, status); |
2737 | if (U_FAILURE(status)) { |
2738 | // Failure on attempted stack expansion. |
2739 | // Stack function set some other error code, change it to a more |
2740 | // specific one for regular expressions. |
2741 | status = U_REGEX_STACK_OVERFLOW; |
2742 | // We need to return a writable stack frame, so just return the |
2743 | // previous frame. The match operation will stop quickly |
2744 | // because of the error status, after which the frame will never |
2745 | // be looked at again. |
2746 | return fp; |
2747 | } |
2748 | fp = (REStackFrame *)(newFP - fFrameSize); // in case of realloc of stack. |
2749 | |
2750 | // New stack frame = copy of old top frame. |
2751 | int64_t *source = (int64_t *)fp; |
2752 | int64_t *dest = newFP; |
2753 | for (;;) { |
2754 | *dest++ = *source++; |
2755 | if (source == newFP) { |
2756 | break; |
2757 | } |
2758 | } |
2759 | |
2760 | fTickCounter--; |
2761 | if (fTickCounter <= 0) { |
2762 | IncrementTime(status); // Re-initializes fTickCounter |
2763 | } |
2764 | fp->fPatIdx = savePatIdx; |
2765 | return (REStackFrame *)newFP; |
2766 | } |
2767 | |
2768 | #if defined(REGEX_DEBUG) |
2769 | namespace { |
2770 | UnicodeString StringFromUText(UText *ut) { |
2771 | UnicodeString result; |
2772 | for (UChar32 c = utext_next32Fromutext_next32From_71(ut, 0); c != U_SENTINEL(-1); c = UTEXT_NEXT32(ut)((ut)->chunkOffset < (ut)->chunkLength && (( ut)->chunkContents)[(ut)->chunkOffset]<0xd800 ? ((ut )->chunkContents)[((ut)->chunkOffset)++] : utext_next32_71 (ut))) { |
2773 | result.append(c); |
2774 | } |
2775 | return result; |
2776 | } |
2777 | } |
2778 | #endif // REGEX_DEBUG |
2779 | |
2780 | |
2781 | //-------------------------------------------------------------------------------- |
2782 | // |
2783 | // MatchAt This is the actual matching engine. |
2784 | // |
2785 | // startIdx: begin matching a this index. |
2786 | // toEnd: if true, match must extend to end of the input region |
2787 | // |
2788 | //-------------------------------------------------------------------------------- |
2789 | void RegexMatcher::MatchAt(int64_t startIdx, UBool toEnd, UErrorCode &status) { |
2790 | UBool isMatch = FALSE0; // True if the we have a match. |
2791 | |
2792 | int64_t backSearchIndex = U_INT64_MAX((int64_t)(9223372036854775807L)); // used after greedy single-character matches for searching backwards |
2793 | |
2794 | int32_t op; // Operation from the compiled pattern, split into |
2795 | int32_t opType; // the opcode |
2796 | int32_t opValue; // and the operand value. |
2797 | |
2798 | #ifdef REGEX_RUN_DEBUG |
2799 | if (fTraceDebug) { |
2800 | printf("MatchAt(startIdx=%ld)\n", startIdx); |
2801 | printf("Original Pattern: \"%s\"\n", CStr(StringFromUText(fPattern->fPattern))()); |
2802 | printf("Input String: \"%s\"\n\n", CStr(StringFromUText(fInputText))()); |
2803 | } |
2804 | #endif |
2805 | |
2806 | if (U_FAILURE(status)) { |
2807 | return; |
2808 | } |
2809 | |
2810 | // Cache frequently referenced items from the compiled pattern |
2811 | // |
2812 | int64_t *pat = fPattern->fCompiledPat->getBuffer(); |
2813 | |
2814 | const UChar *litText = fPattern->fLiteralText.getBuffer(); |
2815 | UVector *fSets = fPattern->fSets; |
2816 | |
2817 | fFrameSize = fPattern->fFrameSize; |
2818 | REStackFrame *fp = resetStack(); |
2819 | if (U_FAILURE(fDeferredStatus)) { |
2820 | status = fDeferredStatus; |
2821 | return; |
2822 | } |
2823 | |
2824 | fp->fPatIdx = 0; |
2825 | fp->fInputIdx = startIdx; |
2826 | |
2827 | // Zero out the pattern's static data |
2828 | int32_t i; |
2829 | for (i = 0; i<fPattern->fDataSize; i++) { |
2830 | fData[i] = 0; |
2831 | } |
2832 | |
2833 | // |
2834 | // Main loop for interpreting the compiled pattern. |
2835 | // One iteration of the loop per pattern operation performed. |
2836 | // |
2837 | for (;;) { |
2838 | op = (int32_t)pat[fp->fPatIdx]; |
2839 | opType = URX_TYPE(op)((uint32_t)(op) >> 24); |
2840 | opValue = URX_VAL(op)((op) & 0xffffff); |
2841 | #ifdef REGEX_RUN_DEBUG |
2842 | if (fTraceDebug) { |
2843 | UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx)do { int64_t __offset = (fp->fInputIdx) - (fInputText)-> chunkNativeStart; if (__offset>=0 && __offset<( int64_t)(fInputText)->nativeIndexingLimit && (fInputText )->chunkContents[__offset]<0xdc00) { (fInputText)->chunkOffset =(int32_t)__offset; } else { utext_setNativeIndex_71((fInputText ), (fp->fInputIdx)); } } while (false); |
2844 | printf("inputIdx=%ld inputChar=%x sp=%3ld activeLimit=%ld ", fp->fInputIdx, |
2845 | UTEXT_CURRENT32(fInputText)((fInputText)->chunkOffset < (fInputText)->chunkLength && ((fInputText)->chunkContents)[(fInputText)-> chunkOffset]<0xd800 ? ((fInputText)->chunkContents)[((fInputText )->chunkOffset)] : utext_current32_71(fInputText)), (int64_t *)fp-fStack->getBuffer(), fActiveLimit); |
2846 | fPattern->dumpOp(fp->fPatIdx); |
2847 | } |
2848 | #endif |
2849 | fp->fPatIdx++; |
2850 | |
2851 | switch (opType) { |
2852 | |
2853 | |
2854 | case URX_NOP: |
2855 | break; |
2856 | |
2857 | |
2858 | case URX_BACKTRACK: |
2859 | // Force a backtrack. In some circumstances, the pattern compiler |
2860 | // will notice that the pattern can't possibly match anything, and will |
2861 | // emit one of these at that point. |
2862 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
2863 | break; |
2864 | |
2865 | |
2866 | case URX_ONECHAR: |
2867 | if (fp->fInputIdx < fActiveLimit) { |
2868 | UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx)do { int64_t __offset = (fp->fInputIdx) - (fInputText)-> chunkNativeStart; if (__offset>=0 && __offset<( int64_t)(fInputText)->nativeIndexingLimit && (fInputText )->chunkContents[__offset]<0xdc00) { (fInputText)->chunkOffset =(int32_t)__offset; } else { utext_setNativeIndex_71((fInputText ), (fp->fInputIdx)); } } while (false); |
2869 | UChar32 c = UTEXT_NEXT32(fInputText)((fInputText)->chunkOffset < (fInputText)->chunkLength && ((fInputText)->chunkContents)[(fInputText)-> chunkOffset]<0xd800 ? ((fInputText)->chunkContents)[((fInputText )->chunkOffset)++] : utext_next32_71(fInputText)); |
2870 | if (c == opValue) { |
2871 | fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText)((fInputText)->chunkOffset <= (fInputText)->nativeIndexingLimit ? (fInputText)->chunkNativeStart+(fInputText)->chunkOffset : (fInputText)->pFuncs->mapOffsetToNative(fInputText)); |
2872 | break; |
2873 | } |
2874 | } else { |
2875 | fHitEnd = TRUE1; |
2876 | } |
2877 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
2878 | break; |
2879 | |
2880 | |
2881 | case URX_STRING: |
2882 | { |
2883 | // Test input against a literal string. |
2884 | // Strings require two slots in the compiled pattern, one for the |
2885 | // offset to the string text, and one for the length. |
2886 | |
2887 | int32_t stringStartIdx = opValue; |
2888 | op = (int32_t)pat[fp->fPatIdx]; // Fetch the second operand |
2889 | fp->fPatIdx++; |
2890 | opType = URX_TYPE(op)((uint32_t)(op) >> 24); |
2891 | int32_t stringLen = URX_VAL(op)((op) & 0xffffff); |
2892 | U_ASSERT(opType == URX_STRING_LEN)(void)0; |
2893 | U_ASSERT(stringLen >= 2)(void)0; |
2894 | |
2895 | const UChar *patternString = litText+stringStartIdx; |
2896 | int32_t patternStringIndex = 0; |
2897 | UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx)do { int64_t __offset = (fp->fInputIdx) - (fInputText)-> chunkNativeStart; if (__offset>=0 && __offset<( int64_t)(fInputText)->nativeIndexingLimit && (fInputText )->chunkContents[__offset]<0xdc00) { (fInputText)->chunkOffset =(int32_t)__offset; } else { utext_setNativeIndex_71((fInputText ), (fp->fInputIdx)); } } while (false); |
2898 | UChar32 inputChar; |
2899 | UChar32 patternChar; |
2900 | UBool success = TRUE1; |
2901 | while (patternStringIndex < stringLen) { |
2902 | if (UTEXT_GETNATIVEINDEX(fInputText)((fInputText)->chunkOffset <= (fInputText)->nativeIndexingLimit ? (fInputText)->chunkNativeStart+(fInputText)->chunkOffset : (fInputText)->pFuncs->mapOffsetToNative(fInputText)) >= fActiveLimit) { |
2903 | success = FALSE0; |
2904 | fHitEnd = TRUE1; |
2905 | break; |
2906 | } |
2907 | inputChar = UTEXT_NEXT32(fInputText)((fInputText)->chunkOffset < (fInputText)->chunkLength && ((fInputText)->chunkContents)[(fInputText)-> chunkOffset]<0xd800 ? ((fInputText)->chunkContents)[((fInputText )->chunkOffset)++] : utext_next32_71(fInputText)); |
2908 | U16_NEXT(patternString, patternStringIndex, stringLen, patternChar)do { (patternChar)=(patternString)[(patternStringIndex)++]; if ((((patternChar)&0xfffffc00)==0xd800)) { uint16_t __c2; if ((patternStringIndex)!=(stringLen) && (((__c2=(patternString )[(patternStringIndex)])&0xfffffc00)==0xdc00)) { ++(patternStringIndex ); (patternChar)=(((UChar32)((patternChar))<<10UL)+(UChar32 )(__c2)-((0xd800<<10UL)+0xdc00-0x10000)); } } } while ( false); |
2909 | if (patternChar != inputChar) { |
2910 | success = FALSE0; |
2911 | break; |
2912 | } |
2913 | } |
2914 | |
2915 | if (success) { |
2916 | fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText)((fInputText)->chunkOffset <= (fInputText)->nativeIndexingLimit ? (fInputText)->chunkNativeStart+(fInputText)->chunkOffset : (fInputText)->pFuncs->mapOffsetToNative(fInputText)); |
2917 | } else { |
2918 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
2919 | } |
2920 | } |
2921 | break; |
2922 | |
2923 | |
2924 | case URX_STATE_SAVE: |
2925 | fp = StateSave(fp, opValue, status); |
2926 | break; |
2927 | |
2928 | |
2929 | case URX_END: |
2930 | // The match loop will exit via this path on a successful match, |
2931 | // when we reach the end of the pattern. |
2932 | if (toEnd && fp->fInputIdx != fActiveLimit) { |
2933 | // The pattern matched, but not to the end of input. Try some more. |
2934 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
2935 | break; |
2936 | } |
2937 | isMatch = TRUE1; |
2938 | goto breakFromLoop; |
2939 | |
2940 | // Start and End Capture stack frame variables are laid out out like this: |
2941 | // fp->fExtra[opValue] - The start of a completed capture group |
2942 | // opValue+1 - The end of a completed capture group |
2943 | // opValue+2 - the start of a capture group whose end |
2944 | // has not yet been reached (and might not ever be). |
2945 | case URX_START_CAPTURE: |
2946 | U_ASSERT(opValue >= 0 && opValue < fFrameSize-3)(void)0; |
2947 | fp->fExtra[opValue+2] = fp->fInputIdx; |
2948 | break; |
2949 | |
2950 | |
2951 | case URX_END_CAPTURE: |
2952 | U_ASSERT(opValue >= 0 && opValue < fFrameSize-3)(void)0; |
2953 | U_ASSERT(fp->fExtra[opValue+2] >= 0)(void)0; // Start pos for this group must be set. |
2954 | fp->fExtra[opValue] = fp->fExtra[opValue+2]; // Tentative start becomes real. |
2955 | fp->fExtra[opValue+1] = fp->fInputIdx; // End position |
2956 | U_ASSERT(fp->fExtra[opValue] <= fp->fExtra[opValue+1])(void)0; |
2957 | break; |
2958 | |
2959 | |
2960 | case URX_DOLLAR: // $, test for End of line |
2961 | // or for position before new line at end of input |
2962 | { |
2963 | if (fp->fInputIdx >= fAnchorLimit) { |
2964 | // We really are at the end of input. Success. |
2965 | fHitEnd = TRUE1; |
2966 | fRequireEnd = TRUE1; |
2967 | break; |
2968 | } |
2969 | |
2970 | UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx)do { int64_t __offset = (fp->fInputIdx) - (fInputText)-> chunkNativeStart; if (__offset>=0 && __offset<( int64_t)(fInputText)->nativeIndexingLimit && (fInputText )->chunkContents[__offset]<0xdc00) { (fInputText)->chunkOffset =(int32_t)__offset; } else { utext_setNativeIndex_71((fInputText ), (fp->fInputIdx)); } } while (false); |
2971 | |
2972 | // If we are positioned just before a new-line that is located at the |
2973 | // end of input, succeed. |
2974 | UChar32 c = UTEXT_NEXT32(fInputText)((fInputText)->chunkOffset < (fInputText)->chunkLength && ((fInputText)->chunkContents)[(fInputText)-> chunkOffset]<0xd800 ? ((fInputText)->chunkContents)[((fInputText )->chunkOffset)++] : utext_next32_71(fInputText)); |
2975 | if (UTEXT_GETNATIVEINDEX(fInputText)((fInputText)->chunkOffset <= (fInputText)->nativeIndexingLimit ? (fInputText)->chunkNativeStart+(fInputText)->chunkOffset : (fInputText)->pFuncs->mapOffsetToNative(fInputText)) >= fAnchorLimit) { |
2976 | if (isLineTerminator(c)) { |
2977 | // If not in the middle of a CR/LF sequence |
2978 | if ( !(c==0x0a && fp->fInputIdx>fAnchorStart && ((void)UTEXT_PREVIOUS32(fInputText)((fInputText)->chunkOffset > 0 && (fInputText)-> chunkContents[(fInputText)->chunkOffset-1] < 0xd800 ? ( fInputText)->chunkContents[--((fInputText)->chunkOffset )] : utext_previous32_71(fInputText)), UTEXT_PREVIOUS32(fInputText)((fInputText)->chunkOffset > 0 && (fInputText)-> chunkContents[(fInputText)->chunkOffset-1] < 0xd800 ? ( fInputText)->chunkContents[--((fInputText)->chunkOffset )] : utext_previous32_71(fInputText)))==0x0d)) { |
2979 | // At new-line at end of input. Success |
2980 | fHitEnd = TRUE1; |
2981 | fRequireEnd = TRUE1; |
2982 | |
2983 | break; |
2984 | } |
2985 | } |
2986 | } else { |
2987 | UChar32 nextC = UTEXT_NEXT32(fInputText)((fInputText)->chunkOffset < (fInputText)->chunkLength && ((fInputText)->chunkContents)[(fInputText)-> chunkOffset]<0xd800 ? ((fInputText)->chunkContents)[((fInputText )->chunkOffset)++] : utext_next32_71(fInputText)); |
2988 | if (c == 0x0d && nextC == 0x0a && UTEXT_GETNATIVEINDEX(fInputText)((fInputText)->chunkOffset <= (fInputText)->nativeIndexingLimit ? (fInputText)->chunkNativeStart+(fInputText)->chunkOffset : (fInputText)->pFuncs->mapOffsetToNative(fInputText)) >= fAnchorLimit) { |
2989 | fHitEnd = TRUE1; |
2990 | fRequireEnd = TRUE1; |
2991 | break; // At CR/LF at end of input. Success |
2992 | } |
2993 | } |
2994 | |
2995 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
2996 | } |
2997 | break; |
2998 | |
2999 | |
3000 | case URX_DOLLAR_D: // $, test for End of Line, in UNIX_LINES mode. |
3001 | if (fp->fInputIdx >= fAnchorLimit) { |
3002 | // Off the end of input. Success. |
3003 | fHitEnd = TRUE1; |
3004 | fRequireEnd = TRUE1; |
3005 | break; |
3006 | } else { |
3007 | UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx)do { int64_t __offset = (fp->fInputIdx) - (fInputText)-> chunkNativeStart; if (__offset>=0 && __offset<( int64_t)(fInputText)->nativeIndexingLimit && (fInputText )->chunkContents[__offset]<0xdc00) { (fInputText)->chunkOffset =(int32_t)__offset; } else { utext_setNativeIndex_71((fInputText ), (fp->fInputIdx)); } } while (false); |
3008 | UChar32 c = UTEXT_NEXT32(fInputText)((fInputText)->chunkOffset < (fInputText)->chunkLength && ((fInputText)->chunkContents)[(fInputText)-> chunkOffset]<0xd800 ? ((fInputText)->chunkContents)[((fInputText )->chunkOffset)++] : utext_next32_71(fInputText)); |
3009 | // Either at the last character of input, or off the end. |
3010 | if (c == 0x0a && UTEXT_GETNATIVEINDEX(fInputText)((fInputText)->chunkOffset <= (fInputText)->nativeIndexingLimit ? (fInputText)->chunkNativeStart+(fInputText)->chunkOffset : (fInputText)->pFuncs->mapOffsetToNative(fInputText)) == fAnchorLimit) { |
3011 | fHitEnd = TRUE1; |
3012 | fRequireEnd = TRUE1; |
3013 | break; |
3014 | } |
3015 | } |
3016 | |
3017 | // Not at end of input. Back-track out. |
3018 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
3019 | break; |
3020 | |
3021 | |
3022 | case URX_DOLLAR_M: // $, test for End of line in multi-line mode |
3023 | { |
3024 | if (fp->fInputIdx >= fAnchorLimit) { |
3025 | // We really are at the end of input. Success. |
3026 | fHitEnd = TRUE1; |
3027 | fRequireEnd = TRUE1; |
3028 | break; |
3029 | } |
3030 | // If we are positioned just before a new-line, succeed. |
3031 | // It makes no difference where the new-line is within the input. |
3032 | UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx)do { int64_t __offset = (fp->fInputIdx) - (fInputText)-> chunkNativeStart; if (__offset>=0 && __offset<( int64_t)(fInputText)->nativeIndexingLimit && (fInputText )->chunkContents[__offset]<0xdc00) { (fInputText)->chunkOffset =(int32_t)__offset; } else { utext_setNativeIndex_71((fInputText ), (fp->fInputIdx)); } } while (false); |
3033 | UChar32 c = UTEXT_CURRENT32(fInputText)((fInputText)->chunkOffset < (fInputText)->chunkLength && ((fInputText)->chunkContents)[(fInputText)-> chunkOffset]<0xd800 ? ((fInputText)->chunkContents)[((fInputText )->chunkOffset)] : utext_current32_71(fInputText)); |
3034 | if (isLineTerminator(c)) { |
3035 | // At a line end, except for the odd chance of being in the middle of a CR/LF sequence |
3036 | // In multi-line mode, hitting a new-line just before the end of input does not |
3037 | // set the hitEnd or requireEnd flags |
3038 | if ( !(c==0x0a && fp->fInputIdx>fAnchorStart && UTEXT_PREVIOUS32(fInputText)((fInputText)->chunkOffset > 0 && (fInputText)-> chunkContents[(fInputText)->chunkOffset-1] < 0xd800 ? ( fInputText)->chunkContents[--((fInputText)->chunkOffset )] : utext_previous32_71(fInputText))==0x0d)) { |
3039 | break; |
3040 | } |
3041 | } |
3042 | // not at a new line. Fail. |
3043 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
3044 | } |
3045 | break; |
3046 | |
3047 | |
3048 | case URX_DOLLAR_MD: // $, test for End of line in multi-line and UNIX_LINES mode |
3049 | { |
3050 | if (fp->fInputIdx >= fAnchorLimit) { |
3051 | // We really are at the end of input. Success. |
3052 | fHitEnd = TRUE1; |
3053 | fRequireEnd = TRUE1; // Java set requireEnd in this case, even though |
3054 | break; // adding a new-line would not lose the match. |
3055 | } |
3056 | // If we are not positioned just before a new-line, the test fails; backtrack out. |
3057 | // It makes no difference where the new-line is within the input. |
3058 | UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx)do { int64_t __offset = (fp->fInputIdx) - (fInputText)-> chunkNativeStart; if (__offset>=0 && __offset<( int64_t)(fInputText)->nativeIndexingLimit && (fInputText )->chunkContents[__offset]<0xdc00) { (fInputText)->chunkOffset =(int32_t)__offset; } else { utext_setNativeIndex_71((fInputText ), (fp->fInputIdx)); } } while (false); |
3059 | if (UTEXT_CURRENT32(fInputText)((fInputText)->chunkOffset < (fInputText)->chunkLength && ((fInputText)->chunkContents)[(fInputText)-> chunkOffset]<0xd800 ? ((fInputText)->chunkContents)[((fInputText )->chunkOffset)] : utext_current32_71(fInputText)) != 0x0a) { |
3060 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
3061 | } |
3062 | } |
3063 | break; |
3064 | |
3065 | |
3066 | case URX_CARET: // ^, test for start of line |
3067 | if (fp->fInputIdx != fAnchorStart) { |
3068 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
3069 | } |
3070 | break; |
3071 | |
3072 | |
3073 | case URX_CARET_M: // ^, test for start of line in mulit-line mode |
3074 | { |
3075 | if (fp->fInputIdx == fAnchorStart) { |
3076 | // We are at the start input. Success. |
3077 | break; |
3078 | } |
3079 | // Check whether character just before the current pos is a new-line |
3080 | // unless we are at the end of input |
3081 | UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx)do { int64_t __offset = (fp->fInputIdx) - (fInputText)-> chunkNativeStart; if (__offset>=0 && __offset<( int64_t)(fInputText)->nativeIndexingLimit && (fInputText )->chunkContents[__offset]<0xdc00) { (fInputText)->chunkOffset =(int32_t)__offset; } else { utext_setNativeIndex_71((fInputText ), (fp->fInputIdx)); } } while (false); |
3082 | UChar32 c = UTEXT_PREVIOUS32(fInputText)((fInputText)->chunkOffset > 0 && (fInputText)-> chunkContents[(fInputText)->chunkOffset-1] < 0xd800 ? ( fInputText)->chunkContents[--((fInputText)->chunkOffset )] : utext_previous32_71(fInputText)); |
3083 | if ((fp->fInputIdx < fAnchorLimit) && isLineTerminator(c)) { |
3084 | // It's a new-line. ^ is true. Success. |
3085 | // TODO: what should be done with positions between a CR and LF? |
3086 | break; |
3087 | } |
3088 | // Not at the start of a line. Fail. |
3089 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
3090 | } |
3091 | break; |
3092 | |
3093 | |
3094 | case URX_CARET_M_UNIX: // ^, test for start of line in mulit-line + Unix-line mode |
3095 | { |
3096 | U_ASSERT(fp->fInputIdx >= fAnchorStart)(void)0; |
3097 | if (fp->fInputIdx <= fAnchorStart) { |
3098 | // We are at the start input. Success. |
3099 | break; |
3100 | } |
3101 | // Check whether character just before the current pos is a new-line |
3102 | U_ASSERT(fp->fInputIdx <= fAnchorLimit)(void)0; |
3103 | UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx)do { int64_t __offset = (fp->fInputIdx) - (fInputText)-> chunkNativeStart; if (__offset>=0 && __offset<( int64_t)(fInputText)->nativeIndexingLimit && (fInputText )->chunkContents[__offset]<0xdc00) { (fInputText)->chunkOffset =(int32_t)__offset; } else { utext_setNativeIndex_71((fInputText ), (fp->fInputIdx)); } } while (false); |
3104 | UChar32 c = UTEXT_PREVIOUS32(fInputText)((fInputText)->chunkOffset > 0 && (fInputText)-> chunkContents[(fInputText)->chunkOffset-1] < 0xd800 ? ( fInputText)->chunkContents[--((fInputText)->chunkOffset )] : utext_previous32_71(fInputText)); |
3105 | if (c != 0x0a) { |
3106 | // Not at the start of a line. Back-track out. |
3107 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
3108 | } |
3109 | } |
3110 | break; |
3111 | |
3112 | case URX_BACKSLASH_B: // Test for word boundaries |
3113 | { |
3114 | UBool success = isWordBoundary(fp->fInputIdx); |
3115 | success ^= (UBool)(opValue != 0); // flip sense for \B |
3116 | if (!success) { |
3117 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
3118 | } |
3119 | } |
3120 | break; |
3121 | |
3122 | |
3123 | case URX_BACKSLASH_BU: // Test for word boundaries, Unicode-style |
3124 | { |
3125 | UBool success = isUWordBoundary(fp->fInputIdx, status); |
3126 | success ^= (UBool)(opValue != 0); // flip sense for \B |
3127 | if (!success) { |
3128 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
3129 | } |
3130 | } |
3131 | break; |
3132 | |
3133 | |
3134 | case URX_BACKSLASH_D: // Test for decimal digit |
3135 | { |
3136 | if (fp->fInputIdx >= fActiveLimit) { |
3137 | fHitEnd = TRUE1; |
3138 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
3139 | break; |
3140 | } |
3141 | |
3142 | UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx)do { int64_t __offset = (fp->fInputIdx) - (fInputText)-> chunkNativeStart; if (__offset>=0 && __offset<( int64_t)(fInputText)->nativeIndexingLimit && (fInputText )->chunkContents[__offset]<0xdc00) { (fInputText)->chunkOffset =(int32_t)__offset; } else { utext_setNativeIndex_71((fInputText ), (fp->fInputIdx)); } } while (false); |
3143 | |
3144 | UChar32 c = UTEXT_NEXT32(fInputText)((fInputText)->chunkOffset < (fInputText)->chunkLength && ((fInputText)->chunkContents)[(fInputText)-> chunkOffset]<0xd800 ? ((fInputText)->chunkContents)[((fInputText )->chunkOffset)++] : utext_next32_71(fInputText)); |
3145 | int8_t ctype = u_charTypeu_charType_71(c); // TODO: make a unicode set for this. Will be faster. |
3146 | UBool success = (ctype == U_DECIMAL_DIGIT_NUMBER); |
3147 | success ^= (UBool)(opValue != 0); // flip sense for \D |
3148 | if (success) { |
3149 | fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText)((fInputText)->chunkOffset <= (fInputText)->nativeIndexingLimit ? (fInputText)->chunkNativeStart+(fInputText)->chunkOffset : (fInputText)->pFuncs->mapOffsetToNative(fInputText)); |
3150 | } else { |
3151 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
3152 | } |
3153 | } |
3154 | break; |
3155 | |
3156 | |
3157 | case URX_BACKSLASH_G: // Test for position at end of previous match |
3158 | if (!((fMatch && fp->fInputIdx==fMatchEnd) || (fMatch==FALSE0 && fp->fInputIdx==fActiveStart))) { |
3159 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
3160 | } |
3161 | break; |
3162 | |
3163 | |
3164 | case URX_BACKSLASH_H: // Test for \h, horizontal white space. |
3165 | { |
3166 | if (fp->fInputIdx >= fActiveLimit) { |
3167 | fHitEnd = TRUE1; |
3168 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
3169 | break; |
3170 | } |
3171 | UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx)do { int64_t __offset = (fp->fInputIdx) - (fInputText)-> chunkNativeStart; if (__offset>=0 && __offset<( int64_t)(fInputText)->nativeIndexingLimit && (fInputText )->chunkContents[__offset]<0xdc00) { (fInputText)->chunkOffset =(int32_t)__offset; } else { utext_setNativeIndex_71((fInputText ), (fp->fInputIdx)); } } while (false); |
3172 | UChar32 c = UTEXT_NEXT32(fInputText)((fInputText)->chunkOffset < (fInputText)->chunkLength && ((fInputText)->chunkContents)[(fInputText)-> chunkOffset]<0xd800 ? ((fInputText)->chunkContents)[((fInputText )->chunkOffset)++] : utext_next32_71(fInputText)); |
3173 | int8_t ctype = u_charTypeu_charType_71(c); |
3174 | UBool success = (ctype == U_SPACE_SEPARATOR || c == 9); // SPACE_SEPARATOR || TAB |
3175 | success ^= (UBool)(opValue != 0); // flip sense for \H |
3176 | if (success) { |
3177 | fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText)((fInputText)->chunkOffset <= (fInputText)->nativeIndexingLimit ? (fInputText)->chunkNativeStart+(fInputText)->chunkOffset : (fInputText)->pFuncs->mapOffsetToNative(fInputText)); |
3178 | } else { |
3179 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
3180 | } |
3181 | } |
3182 | break; |
3183 | |
3184 | |
3185 | case URX_BACKSLASH_R: // Test for \R, any line break sequence. |
3186 | { |
3187 | if (fp->fInputIdx >= fActiveLimit) { |
3188 | fHitEnd = TRUE1; |
3189 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
3190 | break; |
3191 | } |
3192 | UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx)do { int64_t __offset = (fp->fInputIdx) - (fInputText)-> chunkNativeStart; if (__offset>=0 && __offset<( int64_t)(fInputText)->nativeIndexingLimit && (fInputText )->chunkContents[__offset]<0xdc00) { (fInputText)->chunkOffset =(int32_t)__offset; } else { utext_setNativeIndex_71((fInputText ), (fp->fInputIdx)); } } while (false); |
3193 | UChar32 c = UTEXT_NEXT32(fInputText)((fInputText)->chunkOffset < (fInputText)->chunkLength && ((fInputText)->chunkContents)[(fInputText)-> chunkOffset]<0xd800 ? ((fInputText)->chunkContents)[((fInputText )->chunkOffset)++] : utext_next32_71(fInputText)); |
3194 | if (isLineTerminator(c)) { |
3195 | if (c == 0x0d && utext_current32utext_current32_71(fInputText) == 0x0a) { |
3196 | utext_next32utext_next32_71(fInputText); |
3197 | } |
3198 | fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText)((fInputText)->chunkOffset <= (fInputText)->nativeIndexingLimit ? (fInputText)->chunkNativeStart+(fInputText)->chunkOffset : (fInputText)->pFuncs->mapOffsetToNative(fInputText)); |
3199 | } else { |
3200 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
3201 | } |
3202 | } |
3203 | break; |
3204 | |
3205 | |
3206 | case URX_BACKSLASH_V: // \v, any single line ending character. |
3207 | { |
3208 | if (fp->fInputIdx >= fActiveLimit) { |
3209 | fHitEnd = TRUE1; |
3210 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
3211 | break; |
3212 | } |
3213 | UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx)do { int64_t __offset = (fp->fInputIdx) - (fInputText)-> chunkNativeStart; if (__offset>=0 && __offset<( int64_t)(fInputText)->nativeIndexingLimit && (fInputText )->chunkContents[__offset]<0xdc00) { (fInputText)->chunkOffset =(int32_t)__offset; } else { utext_setNativeIndex_71((fInputText ), (fp->fInputIdx)); } } while (false); |
3214 | UChar32 c = UTEXT_NEXT32(fInputText)((fInputText)->chunkOffset < (fInputText)->chunkLength && ((fInputText)->chunkContents)[(fInputText)-> chunkOffset]<0xd800 ? ((fInputText)->chunkContents)[((fInputText )->chunkOffset)++] : utext_next32_71(fInputText)); |
3215 | UBool success = isLineTerminator(c); |
3216 | success ^= (UBool)(opValue != 0); // flip sense for \V |
3217 | if (success) { |
3218 | fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText)((fInputText)->chunkOffset <= (fInputText)->nativeIndexingLimit ? (fInputText)->chunkNativeStart+(fInputText)->chunkOffset : (fInputText)->pFuncs->mapOffsetToNative(fInputText)); |
3219 | } else { |
3220 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
3221 | } |
3222 | } |
3223 | break; |
3224 | |
3225 | |
3226 | case URX_BACKSLASH_X: |
3227 | // Match a Grapheme, as defined by Unicode UAX 29. |
3228 | |
3229 | // Fail if at end of input |
3230 | if (fp->fInputIdx >= fActiveLimit) { |
3231 | fHitEnd = TRUE1; |
3232 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
3233 | break; |
3234 | } |
3235 | |
3236 | fp->fInputIdx = followingGCBoundary(fp->fInputIdx, status); |
3237 | if (fp->fInputIdx >= fActiveLimit) { |
3238 | fHitEnd = TRUE1; |
3239 | fp->fInputIdx = fActiveLimit; |
3240 | } |
3241 | break; |
3242 | |
3243 | |
3244 | case URX_BACKSLASH_Z: // Test for end of Input |
3245 | if (fp->fInputIdx < fAnchorLimit) { |
3246 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
3247 | } else { |
3248 | fHitEnd = TRUE1; |
3249 | fRequireEnd = TRUE1; |
3250 | } |
3251 | break; |
3252 | |
3253 | |
3254 | |
3255 | case URX_STATIC_SETREF: |
3256 | { |
3257 | // Test input character against one of the predefined sets |
3258 | // (Word Characters, for example) |
3259 | // The high bit of the op value is a flag for the match polarity. |
3260 | // 0: success if input char is in set. |
3261 | // 1: success if input char is not in set. |
3262 | if (fp->fInputIdx >= fActiveLimit) { |
3263 | fHitEnd = TRUE1; |
3264 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
3265 | break; |
3266 | } |
3267 | |
3268 | UBool success = ((opValue & URX_NEG_SET) == URX_NEG_SET); |
3269 | opValue &= ~URX_NEG_SET; |
3270 | U_ASSERT(opValue > 0 && opValue < URX_LAST_SET)(void)0; |
3271 | |
3272 | UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx)do { int64_t __offset = (fp->fInputIdx) - (fInputText)-> chunkNativeStart; if (__offset>=0 && __offset<( int64_t)(fInputText)->nativeIndexingLimit && (fInputText )->chunkContents[__offset]<0xdc00) { (fInputText)->chunkOffset =(int32_t)__offset; } else { utext_setNativeIndex_71((fInputText ), (fp->fInputIdx)); } } while (false); |
3273 | UChar32 c = UTEXT_NEXT32(fInputText)((fInputText)->chunkOffset < (fInputText)->chunkLength && ((fInputText)->chunkContents)[(fInputText)-> chunkOffset]<0xd800 ? ((fInputText)->chunkContents)[((fInputText )->chunkOffset)++] : utext_next32_71(fInputText)); |
3274 | if (c < 256) { |
3275 | Regex8BitSet &s8 = RegexStaticSets::gStaticSets->fPropSets8[opValue]; |
3276 | if (s8.contains(c)) { |
3277 | success = !success; |
3278 | } |
3279 | } else { |
3280 | const UnicodeSet &s = RegexStaticSets::gStaticSets->fPropSets[opValue]; |
3281 | if (s.contains(c)) { |
3282 | success = !success; |
3283 | } |
3284 | } |
3285 | if (success) { |
3286 | fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText)((fInputText)->chunkOffset <= (fInputText)->nativeIndexingLimit ? (fInputText)->chunkNativeStart+(fInputText)->chunkOffset : (fInputText)->pFuncs->mapOffsetToNative(fInputText)); |
3287 | } else { |
3288 | // the character wasn't in the set. |
3289 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
3290 | } |
3291 | } |
3292 | break; |
3293 | |
3294 | |
3295 | case URX_STAT_SETREF_N: |
3296 | { |
3297 | // Test input character for NOT being a member of one of |
3298 | // the predefined sets (Word Characters, for example) |
3299 | if (fp->fInputIdx >= fActiveLimit) { |
3300 | fHitEnd = TRUE1; |
3301 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
3302 | break; |
3303 | } |
3304 | |
3305 | U_ASSERT(opValue > 0 && opValue < URX_LAST_SET)(void)0; |
3306 | |
3307 | UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx)do { int64_t __offset = (fp->fInputIdx) - (fInputText)-> chunkNativeStart; if (__offset>=0 && __offset<( int64_t)(fInputText)->nativeIndexingLimit && (fInputText )->chunkContents[__offset]<0xdc00) { (fInputText)->chunkOffset =(int32_t)__offset; } else { utext_setNativeIndex_71((fInputText ), (fp->fInputIdx)); } } while (false); |
3308 | |
3309 | UChar32 c = UTEXT_NEXT32(fInputText)((fInputText)->chunkOffset < (fInputText)->chunkLength && ((fInputText)->chunkContents)[(fInputText)-> chunkOffset]<0xd800 ? ((fInputText)->chunkContents)[((fInputText )->chunkOffset)++] : utext_next32_71(fInputText)); |
3310 | if (c < 256) { |
3311 | Regex8BitSet &s8 = RegexStaticSets::gStaticSets->fPropSets8[opValue]; |
3312 | if (s8.contains(c) == FALSE0) { |
3313 | fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText)((fInputText)->chunkOffset <= (fInputText)->nativeIndexingLimit ? (fInputText)->chunkNativeStart+(fInputText)->chunkOffset : (fInputText)->pFuncs->mapOffsetToNative(fInputText)); |
3314 | break; |
3315 | } |
3316 | } else { |
3317 | const UnicodeSet &s = RegexStaticSets::gStaticSets->fPropSets[opValue]; |
3318 | if (s.contains(c) == FALSE0) { |
3319 | fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText)((fInputText)->chunkOffset <= (fInputText)->nativeIndexingLimit ? (fInputText)->chunkNativeStart+(fInputText)->chunkOffset : (fInputText)->pFuncs->mapOffsetToNative(fInputText)); |
3320 | break; |
3321 | } |
3322 | } |
3323 | // the character wasn't in the set. |
3324 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
3325 | } |
3326 | break; |
3327 | |
3328 | |
3329 | case URX_SETREF: |
3330 | if (fp->fInputIdx >= fActiveLimit) { |
3331 | fHitEnd = TRUE1; |
3332 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
3333 | break; |
3334 | } else { |
3335 | UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx)do { int64_t __offset = (fp->fInputIdx) - (fInputText)-> chunkNativeStart; if (__offset>=0 && __offset<( int64_t)(fInputText)->nativeIndexingLimit && (fInputText )->chunkContents[__offset]<0xdc00) { (fInputText)->chunkOffset =(int32_t)__offset; } else { utext_setNativeIndex_71((fInputText ), (fp->fInputIdx)); } } while (false); |
3336 | |
3337 | // There is input left. Pick up one char and test it for set membership. |
3338 | UChar32 c = UTEXT_NEXT32(fInputText)((fInputText)->chunkOffset < (fInputText)->chunkLength && ((fInputText)->chunkContents)[(fInputText)-> chunkOffset]<0xd800 ? ((fInputText)->chunkContents)[((fInputText )->chunkOffset)++] : utext_next32_71(fInputText)); |
3339 | U_ASSERT(opValue > 0 && opValue < fSets->size())(void)0; |
3340 | if (c<256) { |
3341 | Regex8BitSet *s8 = &fPattern->fSets8[opValue]; |
3342 | if (s8->contains(c)) { |
3343 | fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText)((fInputText)->chunkOffset <= (fInputText)->nativeIndexingLimit ? (fInputText)->chunkNativeStart+(fInputText)->chunkOffset : (fInputText)->pFuncs->mapOffsetToNative(fInputText)); |
3344 | break; |
3345 | } |
3346 | } else { |
3347 | UnicodeSet *s = (UnicodeSet *)fSets->elementAt(opValue); |
3348 | if (s->contains(c)) { |
3349 | // The character is in the set. A Match. |
3350 | fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText)((fInputText)->chunkOffset <= (fInputText)->nativeIndexingLimit ? (fInputText)->chunkNativeStart+(fInputText)->chunkOffset : (fInputText)->pFuncs->mapOffsetToNative(fInputText)); |
3351 | break; |
3352 | } |
3353 | } |
3354 | |
3355 | // the character wasn't in the set. |
3356 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
3357 | } |
3358 | break; |
3359 | |
3360 | |
3361 | case URX_DOTANY: |
3362 | { |
3363 | // . matches anything, but stops at end-of-line. |
3364 | if (fp->fInputIdx >= fActiveLimit) { |
3365 | // At end of input. Match failed. Backtrack out. |
3366 | fHitEnd = TRUE1; |
3367 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
3368 | break; |
3369 | } |
3370 | |
3371 | UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx)do { int64_t __offset = (fp->fInputIdx) - (fInputText)-> chunkNativeStart; if (__offset>=0 && __offset<( int64_t)(fInputText)->nativeIndexingLimit && (fInputText )->chunkContents[__offset]<0xdc00) { (fInputText)->chunkOffset =(int32_t)__offset; } else { utext_setNativeIndex_71((fInputText ), (fp->fInputIdx)); } } while (false); |
3372 | |
3373 | // There is input left. Advance over one char, unless we've hit end-of-line |
3374 | UChar32 c = UTEXT_NEXT32(fInputText)((fInputText)->chunkOffset < (fInputText)->chunkLength && ((fInputText)->chunkContents)[(fInputText)-> chunkOffset]<0xd800 ? ((fInputText)->chunkContents)[((fInputText )->chunkOffset)++] : utext_next32_71(fInputText)); |
3375 | if (isLineTerminator(c)) { |
3376 | // End of line in normal mode. . does not match. |
3377 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
3378 | break; |
3379 | } |
3380 | fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText)((fInputText)->chunkOffset <= (fInputText)->nativeIndexingLimit ? (fInputText)->chunkNativeStart+(fInputText)->chunkOffset : (fInputText)->pFuncs->mapOffsetToNative(fInputText)); |
3381 | } |
3382 | break; |
3383 | |
3384 | |
3385 | case URX_DOTANY_ALL: |
3386 | { |
3387 | // ., in dot-matches-all (including new lines) mode |
3388 | if (fp->fInputIdx >= fActiveLimit) { |
3389 | // At end of input. Match failed. Backtrack out. |
3390 | fHitEnd = TRUE1; |
3391 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
3392 | break; |
3393 | } |
3394 | |
3395 | UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx)do { int64_t __offset = (fp->fInputIdx) - (fInputText)-> chunkNativeStart; if (__offset>=0 && __offset<( int64_t)(fInputText)->nativeIndexingLimit && (fInputText )->chunkContents[__offset]<0xdc00) { (fInputText)->chunkOffset =(int32_t)__offset; } else { utext_setNativeIndex_71((fInputText ), (fp->fInputIdx)); } } while (false); |
3396 | |
3397 | // There is input left. Advance over one char, except if we are |
3398 | // at a cr/lf, advance over both of them. |
3399 | UChar32 c; |
3400 | c = UTEXT_NEXT32(fInputText)((fInputText)->chunkOffset < (fInputText)->chunkLength && ((fInputText)->chunkContents)[(fInputText)-> chunkOffset]<0xd800 ? ((fInputText)->chunkContents)[((fInputText )->chunkOffset)++] : utext_next32_71(fInputText)); |
3401 | fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText)((fInputText)->chunkOffset <= (fInputText)->nativeIndexingLimit ? (fInputText)->chunkNativeStart+(fInputText)->chunkOffset : (fInputText)->pFuncs->mapOffsetToNative(fInputText)); |
3402 | if (c==0x0d && fp->fInputIdx < fActiveLimit) { |
3403 | // In the case of a CR/LF, we need to advance over both. |
3404 | UChar32 nextc = UTEXT_CURRENT32(fInputText)((fInputText)->chunkOffset < (fInputText)->chunkLength && ((fInputText)->chunkContents)[(fInputText)-> chunkOffset]<0xd800 ? ((fInputText)->chunkContents)[((fInputText )->chunkOffset)] : utext_current32_71(fInputText)); |
3405 | if (nextc == 0x0a) { |
3406 | (void)UTEXT_NEXT32(fInputText)((fInputText)->chunkOffset < (fInputText)->chunkLength && ((fInputText)->chunkContents)[(fInputText)-> chunkOffset]<0xd800 ? ((fInputText)->chunkContents)[((fInputText )->chunkOffset)++] : utext_next32_71(fInputText)); |
3407 | fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText)((fInputText)->chunkOffset <= (fInputText)->nativeIndexingLimit ? (fInputText)->chunkNativeStart+(fInputText)->chunkOffset : (fInputText)->pFuncs->mapOffsetToNative(fInputText)); |
3408 | } |
3409 | } |
3410 | } |
3411 | break; |
3412 | |
3413 | |
3414 | case URX_DOTANY_UNIX: |
3415 | { |
3416 | // '.' operator, matches all, but stops at end-of-line. |
3417 | // UNIX_LINES mode, so 0x0a is the only recognized line ending. |
3418 | if (fp->fInputIdx >= fActiveLimit) { |
3419 | // At end of input. Match failed. Backtrack out. |
3420 | fHitEnd = TRUE1; |
3421 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
3422 | break; |
3423 | } |
3424 | |
3425 | UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx)do { int64_t __offset = (fp->fInputIdx) - (fInputText)-> chunkNativeStart; if (__offset>=0 && __offset<( int64_t)(fInputText)->nativeIndexingLimit && (fInputText )->chunkContents[__offset]<0xdc00) { (fInputText)->chunkOffset =(int32_t)__offset; } else { utext_setNativeIndex_71((fInputText ), (fp->fInputIdx)); } } while (false); |
3426 | |
3427 | // There is input left. Advance over one char, unless we've hit end-of-line |
3428 | UChar32 c = UTEXT_NEXT32(fInputText)((fInputText)->chunkOffset < (fInputText)->chunkLength && ((fInputText)->chunkContents)[(fInputText)-> chunkOffset]<0xd800 ? ((fInputText)->chunkContents)[((fInputText )->chunkOffset)++] : utext_next32_71(fInputText)); |
3429 | if (c == 0x0a) { |
3430 | // End of line in normal mode. '.' does not match the \n |
3431 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
3432 | } else { |
3433 | fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText)((fInputText)->chunkOffset <= (fInputText)->nativeIndexingLimit ? (fInputText)->chunkNativeStart+(fInputText)->chunkOffset : (fInputText)->pFuncs->mapOffsetToNative(fInputText)); |
3434 | } |
3435 | } |
3436 | break; |
3437 | |
3438 | |
3439 | case URX_JMP: |
3440 | fp->fPatIdx = opValue; |
3441 | break; |
3442 | |
3443 | case URX_FAIL: |
3444 | isMatch = FALSE0; |
3445 | goto breakFromLoop; |
3446 | |
3447 | case URX_JMP_SAV: |
3448 | U_ASSERT(opValue < fPattern->fCompiledPat->size())(void)0; |
3449 | fp = StateSave(fp, fp->fPatIdx, status); // State save to loc following current |
3450 | fp->fPatIdx = opValue; // Then JMP. |
3451 | break; |
3452 | |
3453 | case URX_JMP_SAV_X: |
3454 | // This opcode is used with (x)+, when x can match a zero length string. |
3455 | // Same as JMP_SAV, except conditional on the match having made forward progress. |
3456 | // Destination of the JMP must be a URX_STO_INP_LOC, from which we get the |
3457 | // data address of the input position at the start of the loop. |
3458 | { |
3459 | U_ASSERT(opValue > 0 && opValue < fPattern->fCompiledPat->size())(void)0; |
3460 | int32_t stoOp = (int32_t)pat[opValue-1]; |
3461 | U_ASSERT(URX_TYPE(stoOp) == URX_STO_INP_LOC)(void)0; |
3462 | int32_t frameLoc = URX_VAL(stoOp)((stoOp) & 0xffffff); |
3463 | U_ASSERT(frameLoc >= 0 && frameLoc < fFrameSize)(void)0; |
3464 | int64_t prevInputIdx = fp->fExtra[frameLoc]; |
3465 | U_ASSERT(prevInputIdx <= fp->fInputIdx)(void)0; |
3466 | if (prevInputIdx < fp->fInputIdx) { |
3467 | // The match did make progress. Repeat the loop. |
3468 | fp = StateSave(fp, fp->fPatIdx, status); // State save to loc following current |
3469 | fp->fPatIdx = opValue; |
3470 | fp->fExtra[frameLoc] = fp->fInputIdx; |
3471 | } |
3472 | // If the input position did not advance, we do nothing here, |
3473 | // execution will fall out of the loop. |
3474 | } |
3475 | break; |
3476 | |
3477 | case URX_CTR_INIT: |
3478 | { |
3479 | U_ASSERT(opValue >= 0 && opValue < fFrameSize-2)(void)0; |
3480 | fp->fExtra[opValue] = 0; // Set the loop counter variable to zero |
3481 | |
3482 | // Pick up the three extra operands that CTR_INIT has, and |
3483 | // skip the pattern location counter past |
3484 | int32_t instrOperandLoc = (int32_t)fp->fPatIdx; |
3485 | fp->fPatIdx += 3; |
3486 | int32_t loopLoc = URX_VAL(pat[instrOperandLoc])((pat[instrOperandLoc]) & 0xffffff); |
3487 | int32_t minCount = (int32_t)pat[instrOperandLoc+1]; |
3488 | int32_t maxCount = (int32_t)pat[instrOperandLoc+2]; |
3489 | U_ASSERT(minCount>=0)(void)0; |
3490 | U_ASSERT(maxCount>=minCount || maxCount==-1)(void)0; |
3491 | U_ASSERT(loopLoc>=fp->fPatIdx)(void)0; |
3492 | |
3493 | if (minCount == 0) { |
3494 | fp = StateSave(fp, loopLoc+1, status); |
3495 | } |
3496 | if (maxCount == -1) { |
3497 | fp->fExtra[opValue+1] = fp->fInputIdx; // For loop breaking. |
3498 | } else if (maxCount == 0) { |
3499 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
3500 | } |
3501 | } |
3502 | break; |
3503 | |
3504 | case URX_CTR_LOOP: |
3505 | { |
3506 | U_ASSERT(opValue>0 && opValue < fp->fPatIdx-2)(void)0; |
3507 | int32_t initOp = (int32_t)pat[opValue]; |
3508 | U_ASSERT(URX_TYPE(initOp) == URX_CTR_INIT)(void)0; |
3509 | int64_t *pCounter = &fp->fExtra[URX_VAL(initOp)((initOp) & 0xffffff)]; |
3510 | int32_t minCount = (int32_t)pat[opValue+2]; |
3511 | int32_t maxCount = (int32_t)pat[opValue+3]; |
3512 | (*pCounter)++; |
3513 | if ((uint64_t)*pCounter >= (uint32_t)maxCount && maxCount != -1) { |
3514 | U_ASSERT(*pCounter == maxCount)(void)0; |
3515 | break; |
3516 | } |
3517 | if (*pCounter >= minCount) { |
3518 | if (maxCount == -1) { |
3519 | // Loop has no hard upper bound. |
3520 | // Check that it is progressing through the input, break if it is not. |
3521 | int64_t *pLastInputIdx = &fp->fExtra[URX_VAL(initOp)((initOp) & 0xffffff) + 1]; |
3522 | if (fp->fInputIdx == *pLastInputIdx) { |
3523 | break; |
3524 | } else { |
3525 | *pLastInputIdx = fp->fInputIdx; |
3526 | } |
3527 | } |
3528 | fp = StateSave(fp, fp->fPatIdx, status); |
3529 | } else { |
3530 | // Increment time-out counter. (StateSave() does it if count >= minCount) |
3531 | fTickCounter--; |
3532 | if (fTickCounter <= 0) { |
3533 | IncrementTime(status); // Re-initializes fTickCounter |
3534 | } |
3535 | } |
3536 | |
3537 | fp->fPatIdx = opValue + 4; // Loop back. |
3538 | } |
3539 | break; |
3540 | |
3541 | case URX_CTR_INIT_NG: |
3542 | { |
3543 | // Initialize a non-greedy loop |
3544 | U_ASSERT(opValue >= 0 && opValue < fFrameSize-2)(void)0; |
3545 | fp->fExtra[opValue] = 0; // Set the loop counter variable to zero |
3546 | |
3547 | // Pick up the three extra operands that CTR_INIT_NG has, and |
3548 | // skip the pattern location counter past |
3549 | int32_t instrOperandLoc = (int32_t)fp->fPatIdx; |
3550 | fp->fPatIdx += 3; |
3551 | int32_t loopLoc = URX_VAL(pat[instrOperandLoc])((pat[instrOperandLoc]) & 0xffffff); |
3552 | int32_t minCount = (int32_t)pat[instrOperandLoc+1]; |
3553 | int32_t maxCount = (int32_t)pat[instrOperandLoc+2]; |
3554 | U_ASSERT(minCount>=0)(void)0; |
3555 | U_ASSERT(maxCount>=minCount || maxCount==-1)(void)0; |
3556 | U_ASSERT(loopLoc>fp->fPatIdx)(void)0; |
3557 | if (maxCount == -1) { |
3558 | fp->fExtra[opValue+1] = fp->fInputIdx; // Save initial input index for loop breaking. |
3559 | } |
3560 | |
3561 | if (minCount == 0) { |
3562 | if (maxCount != 0) { |
3563 | fp = StateSave(fp, fp->fPatIdx, status); |
3564 | } |
3565 | fp->fPatIdx = loopLoc+1; // Continue with stuff after repeated block |
3566 | } |
3567 | } |
3568 | break; |
3569 | |
3570 | case URX_CTR_LOOP_NG: |
3571 | { |
3572 | // Non-greedy {min, max} loops |
3573 | U_ASSERT(opValue>0 && opValue < fp->fPatIdx-2)(void)0; |
3574 | int32_t initOp = (int32_t)pat[opValue]; |
3575 | U_ASSERT(URX_TYPE(initOp) == URX_CTR_INIT_NG)(void)0; |
3576 | int64_t *pCounter = &fp->fExtra[URX_VAL(initOp)((initOp) & 0xffffff)]; |
3577 | int32_t minCount = (int32_t)pat[opValue+2]; |
3578 | int32_t maxCount = (int32_t)pat[opValue+3]; |
3579 | |
3580 | (*pCounter)++; |
3581 | if ((uint64_t)*pCounter >= (uint32_t)maxCount && maxCount != -1) { |
3582 | // The loop has matched the maximum permitted number of times. |
3583 | // Break out of here with no action. Matching will |
3584 | // continue with the following pattern. |
3585 | U_ASSERT(*pCounter == maxCount)(void)0; |
3586 | break; |
3587 | } |
3588 | |
3589 | if (*pCounter < minCount) { |
3590 | // We haven't met the minimum number of matches yet. |
3591 | // Loop back for another one. |
3592 | fp->fPatIdx = opValue + 4; // Loop back. |
3593 | // Increment time-out counter. (StateSave() does it if count >= minCount) |
3594 | fTickCounter--; |
3595 | if (fTickCounter <= 0) { |
3596 | IncrementTime(status); // Re-initializes fTickCounter |
3597 | } |
3598 | } else { |
3599 | // We do have the minimum number of matches. |
3600 | |
3601 | // If there is no upper bound on the loop iterations, check that the input index |
3602 | // is progressing, and stop the loop if it is not. |
3603 | if (maxCount == -1) { |
3604 | int64_t *pLastInputIdx = &fp->fExtra[URX_VAL(initOp)((initOp) & 0xffffff) + 1]; |
3605 | if (fp->fInputIdx == *pLastInputIdx) { |
3606 | break; |
3607 | } |
3608 | *pLastInputIdx = fp->fInputIdx; |
3609 | } |
3610 | |
3611 | // Loop Continuation: we will fall into the pattern following the loop |
3612 | // (non-greedy, don't execute loop body first), but first do |
3613 | // a state save to the top of the loop, so that a match failure |
3614 | // in the following pattern will try another iteration of the loop. |
3615 | fp = StateSave(fp, opValue + 4, status); |
3616 | } |
3617 | } |
3618 | break; |
3619 | |
3620 | case URX_STO_SP: |
3621 | U_ASSERT(opValue >= 0 && opValue < fPattern->fDataSize)(void)0; |
3622 | fData[opValue] = fStack->size(); |
3623 | break; |
3624 | |
3625 | case URX_LD_SP: |
3626 | { |
3627 | U_ASSERT(opValue >= 0 && opValue < fPattern->fDataSize)(void)0; |
3628 | int32_t newStackSize = (int32_t)fData[opValue]; |
3629 | U_ASSERT(newStackSize <= fStack->size())(void)0; |
3630 | int64_t *newFP = fStack->getBuffer() + newStackSize - fFrameSize; |
3631 | if (newFP == (int64_t *)fp) { |
3632 | break; |
3633 | } |
3634 | int32_t j; |
3635 | for (j=0; j<fFrameSize; j++) { |
3636 | newFP[j] = ((int64_t *)fp)[j]; |
3637 | } |
3638 | fp = (REStackFrame *)newFP; |
3639 | fStack->setSize(newStackSize); |
3640 | } |
3641 | break; |
3642 | |
3643 | case URX_BACKREF: |
3644 | { |
3645 | U_ASSERT(opValue < fFrameSize)(void)0; |
3646 | int64_t groupStartIdx = fp->fExtra[opValue]; |
3647 | int64_t groupEndIdx = fp->fExtra[opValue+1]; |
3648 | U_ASSERT(groupStartIdx <= groupEndIdx)(void)0; |
3649 | if (groupStartIdx < 0) { |
3650 | // This capture group has not participated in the match thus far, |
3651 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); // FAIL, no match. |
3652 | break; |
3653 | } |
3654 | UTEXT_SETNATIVEINDEX(fAltInputText, groupStartIdx)do { int64_t __offset = (groupStartIdx) - (fAltInputText)-> chunkNativeStart; if (__offset>=0 && __offset<( int64_t)(fAltInputText)->nativeIndexingLimit && (fAltInputText )->chunkContents[__offset]<0xdc00) { (fAltInputText)-> chunkOffset=(int32_t)__offset; } else { utext_setNativeIndex_71 ((fAltInputText), (groupStartIdx)); } } while (false); |
3655 | UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx)do { int64_t __offset = (fp->fInputIdx) - (fInputText)-> chunkNativeStart; if (__offset>=0 && __offset<( int64_t)(fInputText)->nativeIndexingLimit && (fInputText )->chunkContents[__offset]<0xdc00) { (fInputText)->chunkOffset =(int32_t)__offset; } else { utext_setNativeIndex_71((fInputText ), (fp->fInputIdx)); } } while (false); |
3656 | |
3657 | // Note: if the capture group match was of an empty string the backref |
3658 | // match succeeds. Verified by testing: Perl matches succeed |
3659 | // in this case, so we do too. |
3660 | |
3661 | UBool success = TRUE1; |
3662 | for (;;) { |
3663 | if (utext_getNativeIndexutext_getNativeIndex_71(fAltInputText) >= groupEndIdx) { |
3664 | success = TRUE1; |
3665 | break; |
3666 | } |
3667 | if (utext_getNativeIndexutext_getNativeIndex_71(fInputText) >= fActiveLimit) { |
3668 | success = FALSE0; |
3669 | fHitEnd = TRUE1; |
3670 | break; |
3671 | } |
3672 | UChar32 captureGroupChar = utext_next32utext_next32_71(fAltInputText); |
3673 | UChar32 inputChar = utext_next32utext_next32_71(fInputText); |
3674 | if (inputChar != captureGroupChar) { |
3675 | success = FALSE0; |
3676 | break; |
3677 | } |
3678 | } |
3679 | |
3680 | if (success) { |
3681 | fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText)((fInputText)->chunkOffset <= (fInputText)->nativeIndexingLimit ? (fInputText)->chunkNativeStart+(fInputText)->chunkOffset : (fInputText)->pFuncs->mapOffsetToNative(fInputText)); |
3682 | } else { |
3683 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
3684 | } |
3685 | } |
3686 | break; |
3687 | |
3688 | |
3689 | |
3690 | case URX_BACKREF_I: |
3691 | { |
3692 | U_ASSERT(opValue < fFrameSize)(void)0; |
3693 | int64_t groupStartIdx = fp->fExtra[opValue]; |
3694 | int64_t groupEndIdx = fp->fExtra[opValue+1]; |
3695 | U_ASSERT(groupStartIdx <= groupEndIdx)(void)0; |
3696 | if (groupStartIdx < 0) { |
3697 | // This capture group has not participated in the match thus far, |
3698 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); // FAIL, no match. |
3699 | break; |
3700 | } |
3701 | utext_setNativeIndexutext_setNativeIndex_71(fAltInputText, groupStartIdx); |
3702 | utext_setNativeIndexutext_setNativeIndex_71(fInputText, fp->fInputIdx); |
3703 | CaseFoldingUTextIterator captureGroupItr(*fAltInputText); |
3704 | CaseFoldingUTextIterator inputItr(*fInputText); |
3705 | |
3706 | // Note: if the capture group match was of an empty string the backref |
3707 | // match succeeds. Verified by testing: Perl matches succeed |
3708 | // in this case, so we do too. |
3709 | |
3710 | UBool success = TRUE1; |
3711 | for (;;) { |
3712 | if (!captureGroupItr.inExpansion() && utext_getNativeIndexutext_getNativeIndex_71(fAltInputText) >= groupEndIdx) { |
3713 | success = TRUE1; |
3714 | break; |
3715 | } |
3716 | if (!inputItr.inExpansion() && utext_getNativeIndexutext_getNativeIndex_71(fInputText) >= fActiveLimit) { |
3717 | success = FALSE0; |
3718 | fHitEnd = TRUE1; |
3719 | break; |
3720 | } |
3721 | UChar32 captureGroupChar = captureGroupItr.next(); |
3722 | UChar32 inputChar = inputItr.next(); |
3723 | if (inputChar != captureGroupChar) { |
3724 | success = FALSE0; |
3725 | break; |
3726 | } |
3727 | } |
3728 | |
3729 | if (success && inputItr.inExpansion()) { |
3730 | // We obtained a match by consuming part of a string obtained from |
3731 | // case-folding a single code point of the input text. |
3732 | // This does not count as an overall match. |
3733 | success = FALSE0; |
3734 | } |
3735 | |
3736 | if (success) { |
3737 | fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText)((fInputText)->chunkOffset <= (fInputText)->nativeIndexingLimit ? (fInputText)->chunkNativeStart+(fInputText)->chunkOffset : (fInputText)->pFuncs->mapOffsetToNative(fInputText)); |
3738 | } else { |
3739 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
3740 | } |
3741 | |
3742 | } |
3743 | break; |
3744 | |
3745 | case URX_STO_INP_LOC: |
3746 | { |
3747 | U_ASSERT(opValue >= 0 && opValue < fFrameSize)(void)0; |
3748 | fp->fExtra[opValue] = fp->fInputIdx; |
3749 | } |
3750 | break; |
3751 | |
3752 | case URX_JMPX: |
3753 | { |
3754 | int32_t instrOperandLoc = (int32_t)fp->fPatIdx; |
3755 | fp->fPatIdx += 1; |
3756 | int32_t dataLoc = URX_VAL(pat[instrOperandLoc])((pat[instrOperandLoc]) & 0xffffff); |
3757 | U_ASSERT(dataLoc >= 0 && dataLoc < fFrameSize)(void)0; |
3758 | int64_t savedInputIdx = fp->fExtra[dataLoc]; |
3759 | U_ASSERT(savedInputIdx <= fp->fInputIdx)(void)0; |
3760 | if (savedInputIdx < fp->fInputIdx) { |
3761 | fp->fPatIdx = opValue; // JMP |
3762 | } else { |
3763 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); // FAIL, no progress in loop. |
3764 | } |
3765 | } |
3766 | break; |
3767 | |
3768 | case URX_LA_START: |
3769 | { |
3770 | // Entering a look around block. |
3771 | // Save Stack Ptr, Input Pos. |
3772 | U_ASSERT(opValue>=0 && opValue+3<fPattern->fDataSize)(void)0; |
3773 | fData[opValue] = fStack->size(); |
3774 | fData[opValue+1] = fp->fInputIdx; |
3775 | fData[opValue+2] = fActiveStart; |
3776 | fData[opValue+3] = fActiveLimit; |
3777 | fActiveStart = fLookStart; // Set the match region change for |
3778 | fActiveLimit = fLookLimit; // transparent bounds. |
3779 | } |
3780 | break; |
3781 | |
3782 | case URX_LA_END: |
3783 | { |
3784 | // Leaving a look-ahead block. |
3785 | // restore Stack Ptr, Input Pos to positions they had on entry to block. |
3786 | U_ASSERT(opValue>=0 && opValue+3<fPattern->fDataSize)(void)0; |
3787 | int32_t stackSize = fStack->size(); |
3788 | int32_t newStackSize =(int32_t)fData[opValue]; |
3789 | U_ASSERT(stackSize >= newStackSize)(void)0; |
3790 | if (stackSize > newStackSize) { |
3791 | // Copy the current top frame back to the new (cut back) top frame. |
3792 | // This makes the capture groups from within the look-ahead |
3793 | // expression available. |
3794 | int64_t *newFP = fStack->getBuffer() + newStackSize - fFrameSize; |
3795 | int32_t j; |
3796 | for (j=0; j<fFrameSize; j++) { |
3797 | newFP[j] = ((int64_t *)fp)[j]; |
3798 | } |
3799 | fp = (REStackFrame *)newFP; |
3800 | fStack->setSize(newStackSize); |
3801 | } |
3802 | fp->fInputIdx = fData[opValue+1]; |
3803 | |
3804 | // Restore the active region bounds in the input string; they may have |
3805 | // been changed because of transparent bounds on a Region. |
3806 | fActiveStart = fData[opValue+2]; |
3807 | fActiveLimit = fData[opValue+3]; |
3808 | U_ASSERT(fActiveStart >= 0)(void)0; |
3809 | U_ASSERT(fActiveLimit <= fInputLength)(void)0; |
3810 | } |
3811 | break; |
3812 | |
3813 | case URX_ONECHAR_I: |
3814 | // Case insensitive one char. The char from the pattern is already case folded. |
3815 | // Input text is not, but case folding the input can not reduce two or more code |
3816 | // points to one. |
3817 | if (fp->fInputIdx < fActiveLimit) { |
3818 | UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx)do { int64_t __offset = (fp->fInputIdx) - (fInputText)-> chunkNativeStart; if (__offset>=0 && __offset<( int64_t)(fInputText)->nativeIndexingLimit && (fInputText )->chunkContents[__offset]<0xdc00) { (fInputText)->chunkOffset =(int32_t)__offset; } else { utext_setNativeIndex_71((fInputText ), (fp->fInputIdx)); } } while (false); |
3819 | |
3820 | UChar32 c = UTEXT_NEXT32(fInputText)((fInputText)->chunkOffset < (fInputText)->chunkLength && ((fInputText)->chunkContents)[(fInputText)-> chunkOffset]<0xd800 ? ((fInputText)->chunkContents)[((fInputText )->chunkOffset)++] : utext_next32_71(fInputText)); |
3821 | if (u_foldCaseu_foldCase_71(c, U_FOLD_CASE_DEFAULT0) == opValue) { |
3822 | fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText)((fInputText)->chunkOffset <= (fInputText)->nativeIndexingLimit ? (fInputText)->chunkNativeStart+(fInputText)->chunkOffset : (fInputText)->pFuncs->mapOffsetToNative(fInputText)); |
3823 | break; |
3824 | } |
3825 | } else { |
3826 | fHitEnd = TRUE1; |
3827 | } |
3828 | |
3829 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
3830 | break; |
3831 | |
3832 | case URX_STRING_I: |
3833 | { |
3834 | // Case-insensitive test input against a literal string. |
3835 | // Strings require two slots in the compiled pattern, one for the |
3836 | // offset to the string text, and one for the length. |
3837 | // The compiled string has already been case folded. |
3838 | { |
3839 | const UChar *patternString = litText + opValue; |
3840 | int32_t patternStringIdx = 0; |
3841 | |
3842 | op = (int32_t)pat[fp->fPatIdx]; |
3843 | fp->fPatIdx++; |
3844 | opType = URX_TYPE(op)((uint32_t)(op) >> 24); |
3845 | opValue = URX_VAL(op)((op) & 0xffffff); |
3846 | U_ASSERT(opType == URX_STRING_LEN)(void)0; |
3847 | int32_t patternStringLen = opValue; // Length of the string from the pattern. |
3848 | |
3849 | |
3850 | UChar32 cPattern; |
3851 | UChar32 cText; |
3852 | UBool success = TRUE1; |
3853 | |
3854 | UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx)do { int64_t __offset = (fp->fInputIdx) - (fInputText)-> chunkNativeStart; if (__offset>=0 && __offset<( int64_t)(fInputText)->nativeIndexingLimit && (fInputText )->chunkContents[__offset]<0xdc00) { (fInputText)->chunkOffset =(int32_t)__offset; } else { utext_setNativeIndex_71((fInputText ), (fp->fInputIdx)); } } while (false); |
3855 | CaseFoldingUTextIterator inputIterator(*fInputText); |
3856 | while (patternStringIdx < patternStringLen) { |
3857 | if (!inputIterator.inExpansion() && UTEXT_GETNATIVEINDEX(fInputText)((fInputText)->chunkOffset <= (fInputText)->nativeIndexingLimit ? (fInputText)->chunkNativeStart+(fInputText)->chunkOffset : (fInputText)->pFuncs->mapOffsetToNative(fInputText)) >= fActiveLimit) { |
3858 | success = FALSE0; |
3859 | fHitEnd = TRUE1; |
3860 | break; |
3861 | } |
3862 | U16_NEXT(patternString, patternStringIdx, patternStringLen, cPattern)do { (cPattern)=(patternString)[(patternStringIdx)++]; if(((( cPattern)&0xfffffc00)==0xd800)) { uint16_t __c2; if((patternStringIdx )!=(patternStringLen) && (((__c2=(patternString)[(patternStringIdx )])&0xfffffc00)==0xdc00)) { ++(patternStringIdx); (cPattern )=(((UChar32)((cPattern))<<10UL)+(UChar32)(__c2)-((0xd800 <<10UL)+0xdc00-0x10000)); } } } while (false); |
3863 | cText = inputIterator.next(); |
3864 | if (cText != cPattern) { |
3865 | success = FALSE0; |
3866 | break; |
3867 | } |
3868 | } |
3869 | if (inputIterator.inExpansion()) { |
3870 | success = FALSE0; |
3871 | } |
3872 | |
3873 | if (success) { |
3874 | fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText)((fInputText)->chunkOffset <= (fInputText)->nativeIndexingLimit ? (fInputText)->chunkNativeStart+(fInputText)->chunkOffset : (fInputText)->pFuncs->mapOffsetToNative(fInputText)); |
3875 | } else { |
3876 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
3877 | } |
3878 | } |
3879 | } |
3880 | break; |
3881 | |
3882 | case URX_LB_START: |
3883 | { |
3884 | // Entering a look-behind block. |
3885 | // Save Stack Ptr, Input Pos and active input region. |
3886 | // TODO: implement transparent bounds. Ticket #6067 |
3887 | U_ASSERT(opValue>=0 && opValue+4<fPattern->fDataSize)(void)0; |
3888 | fData[opValue] = fStack->size(); |
3889 | fData[opValue+1] = fp->fInputIdx; |
3890 | // Save input string length, then reset to pin any matches to end at |
3891 | // the current position. |
3892 | fData[opValue+2] = fActiveStart; |
3893 | fData[opValue+3] = fActiveLimit; |
3894 | fActiveStart = fRegionStart; |
3895 | fActiveLimit = fp->fInputIdx; |
3896 | // Init the variable containing the start index for attempted matches. |
3897 | fData[opValue+4] = -1; |
3898 | } |
3899 | break; |
3900 | |
3901 | |
3902 | case URX_LB_CONT: |
3903 | { |
3904 | // Positive Look-Behind, at top of loop checking for matches of LB expression |
3905 | // at all possible input starting positions. |
3906 | |
3907 | // Fetch the min and max possible match lengths. They are the operands |
3908 | // of this op in the pattern. |
3909 | int32_t minML = (int32_t)pat[fp->fPatIdx++]; |
3910 | int32_t maxML = (int32_t)pat[fp->fPatIdx++]; |
3911 | if (!UTEXT_USES_U16(fInputText)(__null==((fInputText)->pFuncs->mapNativeIndexToUTF16))) { |
3912 | // utf-8 fix to maximum match length. The pattern compiler assumes utf-16. |
3913 | // The max length need not be exact; it just needs to be >= actual maximum. |
3914 | maxML *= 3; |
3915 | } |
3916 | U_ASSERT(minML <= maxML)(void)0; |
3917 | U_ASSERT(minML >= 0)(void)0; |
3918 | |
3919 | // Fetch (from data) the last input index where a match was attempted. |
3920 | U_ASSERT(opValue>=0 && opValue+4<fPattern->fDataSize)(void)0; |
3921 | int64_t &lbStartIdx = fData[opValue+4]; |
3922 | if (lbStartIdx < 0) { |
3923 | // First time through loop. |
3924 | lbStartIdx = fp->fInputIdx - minML; |
3925 | if (lbStartIdx > 0) { |
3926 | // move index to a code point boundary, if it's not on one already. |
3927 | UTEXT_SETNATIVEINDEX(fInputText, lbStartIdx)do { int64_t __offset = (lbStartIdx) - (fInputText)->chunkNativeStart ; if (__offset>=0 && __offset<(int64_t)(fInputText )->nativeIndexingLimit && (fInputText)->chunkContents [__offset]<0xdc00) { (fInputText)->chunkOffset=(int32_t )__offset; } else { utext_setNativeIndex_71((fInputText), (lbStartIdx )); } } while (false); |
3928 | lbStartIdx = UTEXT_GETNATIVEINDEX(fInputText)((fInputText)->chunkOffset <= (fInputText)->nativeIndexingLimit ? (fInputText)->chunkNativeStart+(fInputText)->chunkOffset : (fInputText)->pFuncs->mapOffsetToNative(fInputText)); |
3929 | } |
3930 | } else { |
3931 | // 2nd through nth time through the loop. |
3932 | // Back up start position for match by one. |
3933 | if (lbStartIdx == 0) { |
3934 | (lbStartIdx)--; |
3935 | } else { |
3936 | UTEXT_SETNATIVEINDEX(fInputText, lbStartIdx)do { int64_t __offset = (lbStartIdx) - (fInputText)->chunkNativeStart ; if (__offset>=0 && __offset<(int64_t)(fInputText )->nativeIndexingLimit && (fInputText)->chunkContents [__offset]<0xdc00) { (fInputText)->chunkOffset=(int32_t )__offset; } else { utext_setNativeIndex_71((fInputText), (lbStartIdx )); } } while (false); |
3937 | (void)UTEXT_PREVIOUS32(fInputText)((fInputText)->chunkOffset > 0 && (fInputText)-> chunkContents[(fInputText)->chunkOffset-1] < 0xd800 ? ( fInputText)->chunkContents[--((fInputText)->chunkOffset )] : utext_previous32_71(fInputText)); |
3938 | lbStartIdx = UTEXT_GETNATIVEINDEX(fInputText)((fInputText)->chunkOffset <= (fInputText)->nativeIndexingLimit ? (fInputText)->chunkNativeStart+(fInputText)->chunkOffset : (fInputText)->pFuncs->mapOffsetToNative(fInputText)); |
3939 | } |
3940 | } |
3941 | |
3942 | if (lbStartIdx < 0 || lbStartIdx < fp->fInputIdx - maxML) { |
3943 | // We have tried all potential match starting points without |
3944 | // getting a match. Backtrack out, and out of the |
3945 | // Look Behind altogether. |
3946 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
3947 | fActiveStart = fData[opValue+2]; |
3948 | fActiveLimit = fData[opValue+3]; |
3949 | U_ASSERT(fActiveStart >= 0)(void)0; |
3950 | U_ASSERT(fActiveLimit <= fInputLength)(void)0; |
3951 | break; |
3952 | } |
3953 | |
3954 | // Save state to this URX_LB_CONT op, so failure to match will repeat the loop. |
3955 | // (successful match will fall off the end of the loop.) |
3956 | fp = StateSave(fp, fp->fPatIdx-3, status); |
3957 | fp->fInputIdx = lbStartIdx; |
3958 | } |
3959 | break; |
3960 | |
3961 | case URX_LB_END: |
3962 | // End of a look-behind block, after a successful match. |
3963 | { |
3964 | U_ASSERT(opValue>=0 && opValue+4<fPattern->fDataSize)(void)0; |
3965 | if (fp->fInputIdx != fActiveLimit) { |
3966 | // The look-behind expression matched, but the match did not |
3967 | // extend all the way to the point that we are looking behind from. |
3968 | // FAIL out of here, which will take us back to the LB_CONT, which |
3969 | // will retry the match starting at another position or fail |
3970 | // the look-behind altogether, whichever is appropriate. |
3971 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
3972 | break; |
3973 | } |
3974 | |
3975 | // Look-behind match is good. Restore the original input string region, |
3976 | // which had been truncated to pin the end of the lookbehind match to the |
3977 | // position being looked-behind. |
3978 | fActiveStart = fData[opValue+2]; |
3979 | fActiveLimit = fData[opValue+3]; |
3980 | U_ASSERT(fActiveStart >= 0)(void)0; |
3981 | U_ASSERT(fActiveLimit <= fInputLength)(void)0; |
3982 | } |
3983 | break; |
3984 | |
3985 | |
3986 | case URX_LBN_CONT: |
3987 | { |
3988 | // Negative Look-Behind, at top of loop checking for matches of LB expression |
3989 | // at all possible input starting positions. |
3990 | |
3991 | // Fetch the extra parameters of this op. |
3992 | int32_t minML = (int32_t)pat[fp->fPatIdx++]; |
3993 | int32_t maxML = (int32_t)pat[fp->fPatIdx++]; |
3994 | if (!UTEXT_USES_U16(fInputText)(__null==((fInputText)->pFuncs->mapNativeIndexToUTF16))) { |
3995 | // utf-8 fix to maximum match length. The pattern compiler assumes utf-16. |
3996 | // The max length need not be exact; it just needs to be >= actual maximum. |
3997 | maxML *= 3; |
3998 | } |
3999 | int32_t continueLoc = (int32_t)pat[fp->fPatIdx++]; |
4000 | continueLoc = URX_VAL(continueLoc)((continueLoc) & 0xffffff); |
4001 | U_ASSERT(minML <= maxML)(void)0; |
4002 | U_ASSERT(minML >= 0)(void)0; |
4003 | U_ASSERT(continueLoc > fp->fPatIdx)(void)0; |
4004 | |
4005 | // Fetch (from data) the last input index where a match was attempted. |
4006 | U_ASSERT(opValue>=0 && opValue+4<fPattern->fDataSize)(void)0; |
4007 | int64_t &lbStartIdx = fData[opValue+4]; |
4008 | if (lbStartIdx < 0) { |
4009 | // First time through loop. |
4010 | lbStartIdx = fp->fInputIdx - minML; |
4011 | if (lbStartIdx > 0) { |
4012 | // move index to a code point boundary, if it's not on one already. |
4013 | UTEXT_SETNATIVEINDEX(fInputText, lbStartIdx)do { int64_t __offset = (lbStartIdx) - (fInputText)->chunkNativeStart ; if (__offset>=0 && __offset<(int64_t)(fInputText )->nativeIndexingLimit && (fInputText)->chunkContents [__offset]<0xdc00) { (fInputText)->chunkOffset=(int32_t )__offset; } else { utext_setNativeIndex_71((fInputText), (lbStartIdx )); } } while (false); |
4014 | lbStartIdx = UTEXT_GETNATIVEINDEX(fInputText)((fInputText)->chunkOffset <= (fInputText)->nativeIndexingLimit ? (fInputText)->chunkNativeStart+(fInputText)->chunkOffset : (fInputText)->pFuncs->mapOffsetToNative(fInputText)); |
4015 | } |
4016 | } else { |
4017 | // 2nd through nth time through the loop. |
4018 | // Back up start position for match by one. |
4019 | if (lbStartIdx == 0) { |
4020 | (lbStartIdx)--; |
4021 | } else { |
4022 | UTEXT_SETNATIVEINDEX(fInputText, lbStartIdx)do { int64_t __offset = (lbStartIdx) - (fInputText)->chunkNativeStart ; if (__offset>=0 && __offset<(int64_t)(fInputText )->nativeIndexingLimit && (fInputText)->chunkContents [__offset]<0xdc00) { (fInputText)->chunkOffset=(int32_t )__offset; } else { utext_setNativeIndex_71((fInputText), (lbStartIdx )); } } while (false); |
4023 | (void)UTEXT_PREVIOUS32(fInputText)((fInputText)->chunkOffset > 0 && (fInputText)-> chunkContents[(fInputText)->chunkOffset-1] < 0xd800 ? ( fInputText)->chunkContents[--((fInputText)->chunkOffset )] : utext_previous32_71(fInputText)); |
4024 | lbStartIdx = UTEXT_GETNATIVEINDEX(fInputText)((fInputText)->chunkOffset <= (fInputText)->nativeIndexingLimit ? (fInputText)->chunkNativeStart+(fInputText)->chunkOffset : (fInputText)->pFuncs->mapOffsetToNative(fInputText)); |
4025 | } |
4026 | } |
4027 | |
4028 | if (lbStartIdx < 0 || lbStartIdx < fp->fInputIdx - maxML) { |
4029 | // We have tried all potential match starting points without |
4030 | // getting a match, which means that the negative lookbehind as |
4031 | // a whole has succeeded. Jump forward to the continue location |
4032 | fActiveStart = fData[opValue+2]; |
4033 | fActiveLimit = fData[opValue+3]; |
4034 | U_ASSERT(fActiveStart >= 0)(void)0; |
4035 | U_ASSERT(fActiveLimit <= fInputLength)(void)0; |
4036 | fp->fPatIdx = continueLoc; |
4037 | break; |
4038 | } |
4039 | |
4040 | // Save state to this URX_LB_CONT op, so failure to match will repeat the loop. |
4041 | // (successful match will cause a FAIL out of the loop altogether.) |
4042 | fp = StateSave(fp, fp->fPatIdx-4, status); |
4043 | fp->fInputIdx = lbStartIdx; |
4044 | } |
4045 | break; |
4046 | |
4047 | case URX_LBN_END: |
4048 | // End of a negative look-behind block, after a successful match. |
4049 | { |
4050 | U_ASSERT(opValue>=0 && opValue+4<fPattern->fDataSize)(void)0; |
4051 | if (fp->fInputIdx != fActiveLimit) { |
4052 | // The look-behind expression matched, but the match did not |
4053 | // extend all the way to the point that we are looking behind from. |
4054 | // FAIL out of here, which will take us back to the LB_CONT, which |
4055 | // will retry the match starting at another position or succeed |
4056 | // the look-behind altogether, whichever is appropriate. |
4057 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
4058 | break; |
4059 | } |
4060 | |
4061 | // Look-behind expression matched, which means look-behind test as |
4062 | // a whole Fails |
4063 | |
4064 | // Restore the original input string length, which had been truncated |
4065 | // inorder to pin the end of the lookbehind match |
4066 | // to the position being looked-behind. |
4067 | fActiveStart = fData[opValue+2]; |
4068 | fActiveLimit = fData[opValue+3]; |
4069 | U_ASSERT(fActiveStart >= 0)(void)0; |
4070 | U_ASSERT(fActiveLimit <= fInputLength)(void)0; |
4071 | |
4072 | // Restore original stack position, discarding any state saved |
4073 | // by the successful pattern match. |
4074 | U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize)(void)0; |
4075 | int32_t newStackSize = (int32_t)fData[opValue]; |
4076 | U_ASSERT(fStack->size() > newStackSize)(void)0; |
4077 | fStack->setSize(newStackSize); |
4078 | |
4079 | // FAIL, which will take control back to someplace |
4080 | // prior to entering the look-behind test. |
4081 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
4082 | } |
4083 | break; |
4084 | |
4085 | |
4086 | case URX_LOOP_SR_I: |
4087 | // Loop Initialization for the optimized implementation of |
4088 | // [some character set]* |
4089 | // This op scans through all matching input. |
4090 | // The following LOOP_C op emulates stack unwinding if the following pattern fails. |
4091 | { |
4092 | U_ASSERT(opValue > 0 && opValue < fSets->size())(void)0; |
4093 | Regex8BitSet *s8 = &fPattern->fSets8[opValue]; |
4094 | UnicodeSet *s = (UnicodeSet *)fSets->elementAt(opValue); |
4095 | |
4096 | // Loop through input, until either the input is exhausted or |
4097 | // we reach a character that is not a member of the set. |
4098 | int64_t ix = fp->fInputIdx; |
4099 | UTEXT_SETNATIVEINDEX(fInputText, ix)do { int64_t __offset = (ix) - (fInputText)->chunkNativeStart ; if (__offset>=0 && __offset<(int64_t)(fInputText )->nativeIndexingLimit && (fInputText)->chunkContents [__offset]<0xdc00) { (fInputText)->chunkOffset=(int32_t )__offset; } else { utext_setNativeIndex_71((fInputText), (ix )); } } while (false); |
4100 | for (;;) { |
4101 | if (ix >= fActiveLimit) { |
4102 | fHitEnd = TRUE1; |
4103 | break; |
4104 | } |
4105 | UChar32 c = UTEXT_NEXT32(fInputText)((fInputText)->chunkOffset < (fInputText)->chunkLength && ((fInputText)->chunkContents)[(fInputText)-> chunkOffset]<0xd800 ? ((fInputText)->chunkContents)[((fInputText )->chunkOffset)++] : utext_next32_71(fInputText)); |
4106 | if (c<256) { |
4107 | if (s8->contains(c) == FALSE0) { |
4108 | break; |
4109 | } |
4110 | } else { |
4111 | if (s->contains(c) == FALSE0) { |
4112 | break; |
4113 | } |
4114 | } |
4115 | ix = UTEXT_GETNATIVEINDEX(fInputText)((fInputText)->chunkOffset <= (fInputText)->nativeIndexingLimit ? (fInputText)->chunkNativeStart+(fInputText)->chunkOffset : (fInputText)->pFuncs->mapOffsetToNative(fInputText)); |
4116 | } |
4117 | |
4118 | // If there were no matching characters, skip over the loop altogether. |
4119 | // The loop doesn't run at all, a * op always succeeds. |
4120 | if (ix == fp->fInputIdx) { |
4121 | fp->fPatIdx++; // skip the URX_LOOP_C op. |
4122 | break; |
4123 | } |
4124 | |
4125 | // Peek ahead in the compiled pattern, to the URX_LOOP_C that |
4126 | // must follow. It's operand is the stack location |
4127 | // that holds the starting input index for the match of this [set]* |
4128 | int32_t loopcOp = (int32_t)pat[fp->fPatIdx]; |
4129 | U_ASSERT(URX_TYPE(loopcOp) == URX_LOOP_C)(void)0; |
4130 | int32_t stackLoc = URX_VAL(loopcOp)((loopcOp) & 0xffffff); |
4131 | U_ASSERT(stackLoc >= 0 && stackLoc < fFrameSize)(void)0; |
4132 | fp->fExtra[stackLoc] = fp->fInputIdx; |
4133 | fp->fInputIdx = ix; |
4134 | |
4135 | // Save State to the URX_LOOP_C op that follows this one, |
4136 | // so that match failures in the following code will return to there. |
4137 | // Then bump the pattern idx so the LOOP_C is skipped on the way out of here. |
4138 | fp = StateSave(fp, fp->fPatIdx, status); |
4139 | fp->fPatIdx++; |
4140 | } |
4141 | break; |
4142 | |
4143 | |
4144 | case URX_LOOP_DOT_I: |
4145 | // Loop Initialization for the optimized implementation of .* |
4146 | // This op scans through all remaining input. |
4147 | // The following LOOP_C op emulates stack unwinding if the following pattern fails. |
4148 | { |
4149 | // Loop through input until the input is exhausted (we reach an end-of-line) |
4150 | // In DOTALL mode, we can just go straight to the end of the input. |
4151 | int64_t ix; |
4152 | if ((opValue & 1) == 1) { |
4153 | // Dot-matches-All mode. Jump straight to the end of the string. |
4154 | ix = fActiveLimit; |
4155 | fHitEnd = TRUE1; |
4156 | } else { |
4157 | // NOT DOT ALL mode. Line endings do not match '.' |
4158 | // Scan forward until a line ending or end of input. |
4159 | ix = fp->fInputIdx; |
4160 | UTEXT_SETNATIVEINDEX(fInputText, ix)do { int64_t __offset = (ix) - (fInputText)->chunkNativeStart ; if (__offset>=0 && __offset<(int64_t)(fInputText )->nativeIndexingLimit && (fInputText)->chunkContents [__offset]<0xdc00) { (fInputText)->chunkOffset=(int32_t )__offset; } else { utext_setNativeIndex_71((fInputText), (ix )); } } while (false); |
4161 | for (;;) { |
4162 | if (ix >= fActiveLimit) { |
4163 | fHitEnd = TRUE1; |
4164 | break; |
4165 | } |
4166 | UChar32 c = UTEXT_NEXT32(fInputText)((fInputText)->chunkOffset < (fInputText)->chunkLength && ((fInputText)->chunkContents)[(fInputText)-> chunkOffset]<0xd800 ? ((fInputText)->chunkContents)[((fInputText )->chunkOffset)++] : utext_next32_71(fInputText)); |
4167 | if ((c & 0x7f) <= 0x29) { // Fast filter of non-new-line-s |
4168 | if ((c == 0x0a) || // 0x0a is newline in both modes. |
4169 | (((opValue & 2) == 0) && // IF not UNIX_LINES mode |
4170 | isLineTerminator(c))) { |
4171 | // char is a line ending. Exit the scanning loop. |
4172 | break; |
4173 | } |
4174 | } |
4175 | ix = UTEXT_GETNATIVEINDEX(fInputText)((fInputText)->chunkOffset <= (fInputText)->nativeIndexingLimit ? (fInputText)->chunkNativeStart+(fInputText)->chunkOffset : (fInputText)->pFuncs->mapOffsetToNative(fInputText)); |
4176 | } |
4177 | } |
4178 | |
4179 | // If there were no matching characters, skip over the loop altogether. |
4180 | // The loop doesn't run at all, a * op always succeeds. |
4181 | if (ix == fp->fInputIdx) { |
4182 | fp->fPatIdx++; // skip the URX_LOOP_C op. |
4183 | break; |
4184 | } |
4185 | |
4186 | // Peek ahead in the compiled pattern, to the URX_LOOP_C that |
4187 | // must follow. It's operand is the stack location |
4188 | // that holds the starting input index for the match of this .* |
4189 | int32_t loopcOp = (int32_t)pat[fp->fPatIdx]; |
4190 | U_ASSERT(URX_TYPE(loopcOp) == URX_LOOP_C)(void)0; |
4191 | int32_t stackLoc = URX_VAL(loopcOp)((loopcOp) & 0xffffff); |
4192 | U_ASSERT(stackLoc >= 0 && stackLoc < fFrameSize)(void)0; |
4193 | fp->fExtra[stackLoc] = fp->fInputIdx; |
4194 | fp->fInputIdx = ix; |
4195 | |
4196 | // Save State to the URX_LOOP_C op that follows this one, |
4197 | // so that match failures in the following code will return to there. |
4198 | // Then bump the pattern idx so the LOOP_C is skipped on the way out of here. |
4199 | fp = StateSave(fp, fp->fPatIdx, status); |
4200 | fp->fPatIdx++; |
4201 | } |
4202 | break; |
4203 | |
4204 | |
4205 | case URX_LOOP_C: |
4206 | { |
4207 | U_ASSERT(opValue>=0 && opValue<fFrameSize)(void)0; |
4208 | backSearchIndex = fp->fExtra[opValue]; |
4209 | U_ASSERT(backSearchIndex <= fp->fInputIdx)(void)0; |
4210 | if (backSearchIndex == fp->fInputIdx) { |
4211 | // We've backed up the input idx to the point that the loop started. |
4212 | // The loop is done. Leave here without saving state. |
4213 | // Subsequent failures won't come back here. |
4214 | break; |
4215 | } |
4216 | // Set up for the next iteration of the loop, with input index |
4217 | // backed up by one from the last time through, |
4218 | // and a state save to this instruction in case the following code fails again. |
4219 | // (We're going backwards because this loop emulates stack unwinding, not |
4220 | // the initial scan forward.) |
4221 | U_ASSERT(fp->fInputIdx > 0)(void)0; |
4222 | UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx)do { int64_t __offset = (fp->fInputIdx) - (fInputText)-> chunkNativeStart; if (__offset>=0 && __offset<( int64_t)(fInputText)->nativeIndexingLimit && (fInputText )->chunkContents[__offset]<0xdc00) { (fInputText)->chunkOffset =(int32_t)__offset; } else { utext_setNativeIndex_71((fInputText ), (fp->fInputIdx)); } } while (false); |
4223 | UChar32 prevC = UTEXT_PREVIOUS32(fInputText)((fInputText)->chunkOffset > 0 && (fInputText)-> chunkContents[(fInputText)->chunkOffset-1] < 0xd800 ? ( fInputText)->chunkContents[--((fInputText)->chunkOffset )] : utext_previous32_71(fInputText)); |
4224 | fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText)((fInputText)->chunkOffset <= (fInputText)->nativeIndexingLimit ? (fInputText)->chunkNativeStart+(fInputText)->chunkOffset : (fInputText)->pFuncs->mapOffsetToNative(fInputText)); |
4225 | |
4226 | UChar32 twoPrevC = UTEXT_PREVIOUS32(fInputText)((fInputText)->chunkOffset > 0 && (fInputText)-> chunkContents[(fInputText)->chunkOffset-1] < 0xd800 ? ( fInputText)->chunkContents[--((fInputText)->chunkOffset )] : utext_previous32_71(fInputText)); |
4227 | if (prevC == 0x0a && |
4228 | fp->fInputIdx > backSearchIndex && |
4229 | twoPrevC == 0x0d) { |
4230 | int32_t prevOp = (int32_t)pat[fp->fPatIdx-2]; |
4231 | if (URX_TYPE(prevOp)((uint32_t)(prevOp) >> 24) == URX_LOOP_DOT_I) { |
4232 | // .*, stepping back over CRLF pair. |
4233 | fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText)((fInputText)->chunkOffset <= (fInputText)->nativeIndexingLimit ? (fInputText)->chunkNativeStart+(fInputText)->chunkOffset : (fInputText)->pFuncs->mapOffsetToNative(fInputText)); |
4234 | } |
4235 | } |
4236 | |
4237 | |
4238 | fp = StateSave(fp, fp->fPatIdx-1, status); |
4239 | } |
4240 | break; |
4241 | |
4242 | |
4243 | |
4244 | default: |
4245 | // Trouble. The compiled pattern contains an entry with an |
4246 | // unrecognized type tag. |
4247 | UPRV_UNREACHABLE_ASSERT(void)0; |
4248 | // Unknown opcode type in opType = URX_TYPE(pat[fp->fPatIdx]). But we have |
4249 | // reports of this in production code, don't use UPRV_UNREACHABLE_EXIT. |
4250 | // See ICU-21669. |
4251 | status = U_INTERNAL_PROGRAM_ERROR; |
4252 | } |
4253 | |
4254 | if (U_FAILURE(status)) { |
4255 | isMatch = FALSE0; |
4256 | break; |
4257 | } |
4258 | } |
4259 | |
4260 | breakFromLoop: |
4261 | fMatch = isMatch; |
4262 | if (isMatch) { |
4263 | fLastMatchEnd = fMatchEnd; |
4264 | fMatchStart = startIdx; |
4265 | fMatchEnd = fp->fInputIdx; |
4266 | } |
4267 | |
4268 | #ifdef REGEX_RUN_DEBUG |
4269 | if (fTraceDebug) { |
4270 | if (isMatch) { |
4271 | printf("Match. start=%ld end=%ld\n\n", fMatchStart, fMatchEnd); |
4272 | } else { |
4273 | printf("No match\n\n"); |
4274 | } |
4275 | } |
4276 | #endif |
4277 | |
4278 | fFrame = fp; // The active stack frame when the engine stopped. |
4279 | // Contains the capture group results that we need to |
4280 | // access later. |
4281 | return; |
4282 | } |
4283 | |
4284 | |
4285 | //-------------------------------------------------------------------------------- |
4286 | // |
4287 | // MatchChunkAt This is the actual matching engine. Like MatchAt, but with the |
4288 | // assumption that the entire string is available in the UText's |
4289 | // chunk buffer. For now, that means we can use int32_t indexes, |
4290 | // except for anything that needs to be saved (like group starts |
4291 | // and ends). |
4292 | // |
4293 | // startIdx: begin matching a this index. |
4294 | // toEnd: if true, match must extend to end of the input region |
4295 | // |
4296 | //-------------------------------------------------------------------------------- |
4297 | void RegexMatcher::MatchChunkAt(int32_t startIdx, UBool toEnd, UErrorCode &status) { |
4298 | UBool isMatch = FALSE0; // True if the we have a match. |
4299 | |
4300 | int32_t backSearchIndex = INT32_MAX(2147483647); // used after greedy single-character matches for searching backwards |
4301 | |
4302 | int32_t op; // Operation from the compiled pattern, split into |
4303 | int32_t opType; // the opcode |
4304 | int32_t opValue; // and the operand value. |
4305 | |
4306 | #ifdef REGEX_RUN_DEBUG |
4307 | if (fTraceDebug) { |
4308 | printf("MatchAt(startIdx=%d)\n", startIdx); |
4309 | printf("Original Pattern: \"%s\"\n", CStr(StringFromUText(fPattern->fPattern))()); |
4310 | printf("Input String: \"%s\"\n\n", CStr(StringFromUText(fInputText))()); |
4311 | } |
4312 | #endif |
4313 | |
4314 | if (U_FAILURE(status)) { |
4315 | return; |
4316 | } |
4317 | |
4318 | // Cache frequently referenced items from the compiled pattern |
4319 | // |
4320 | int64_t *pat = fPattern->fCompiledPat->getBuffer(); |
4321 | |
4322 | const UChar *litText = fPattern->fLiteralText.getBuffer(); |
4323 | UVector *fSets = fPattern->fSets; |
4324 | |
4325 | const UChar *inputBuf = fInputText->chunkContents; |
4326 | |
4327 | fFrameSize = fPattern->fFrameSize; |
4328 | REStackFrame *fp = resetStack(); |
4329 | if (U_FAILURE(fDeferredStatus)) { |
4330 | status = fDeferredStatus; |
4331 | return; |
4332 | } |
4333 | |
4334 | fp->fPatIdx = 0; |
4335 | fp->fInputIdx = startIdx; |
4336 | |
4337 | // Zero out the pattern's static data |
4338 | int32_t i; |
4339 | for (i = 0; i<fPattern->fDataSize; i++) { |
4340 | fData[i] = 0; |
4341 | } |
4342 | |
4343 | // |
4344 | // Main loop for interpreting the compiled pattern. |
4345 | // One iteration of the loop per pattern operation performed. |
4346 | // |
4347 | for (;;) { |
4348 | op = (int32_t)pat[fp->fPatIdx]; |
4349 | opType = URX_TYPE(op)((uint32_t)(op) >> 24); |
4350 | opValue = URX_VAL(op)((op) & 0xffffff); |
4351 | #ifdef REGEX_RUN_DEBUG |
4352 | if (fTraceDebug) { |
4353 | UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx)do { int64_t __offset = (fp->fInputIdx) - (fInputText)-> chunkNativeStart; if (__offset>=0 && __offset<( int64_t)(fInputText)->nativeIndexingLimit && (fInputText )->chunkContents[__offset]<0xdc00) { (fInputText)->chunkOffset =(int32_t)__offset; } else { utext_setNativeIndex_71((fInputText ), (fp->fInputIdx)); } } while (false); |
4354 | printf("inputIdx=%ld inputChar=%x sp=%3ld activeLimit=%ld ", fp->fInputIdx, |
4355 | UTEXT_CURRENT32(fInputText)((fInputText)->chunkOffset < (fInputText)->chunkLength && ((fInputText)->chunkContents)[(fInputText)-> chunkOffset]<0xd800 ? ((fInputText)->chunkContents)[((fInputText )->chunkOffset)] : utext_current32_71(fInputText)), (int64_t *)fp-fStack->getBuffer(), fActiveLimit); |
4356 | fPattern->dumpOp(fp->fPatIdx); |
4357 | } |
4358 | #endif |
4359 | fp->fPatIdx++; |
4360 | |
4361 | switch (opType) { |
4362 | |
4363 | |
4364 | case URX_NOP: |
4365 | break; |
4366 | |
4367 | |
4368 | case URX_BACKTRACK: |
4369 | // Force a backtrack. In some circumstances, the pattern compiler |
4370 | // will notice that the pattern can't possibly match anything, and will |
4371 | // emit one of these at that point. |
4372 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
4373 | break; |
4374 | |
4375 | |
4376 | case URX_ONECHAR: |
4377 | if (fp->fInputIdx < fActiveLimit) { |
4378 | UChar32 c; |
4379 | U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c)do { (c)=(inputBuf)[(fp->fInputIdx)++]; if((((c)&0xfffffc00 )==0xd800)) { uint16_t __c2; if((fp->fInputIdx)!=(fActiveLimit ) && (((__c2=(inputBuf)[(fp->fInputIdx)])&0xfffffc00 )==0xdc00)) { ++(fp->fInputIdx); (c)=(((UChar32)((c))<< 10UL)+(UChar32)(__c2)-((0xd800<<10UL)+0xdc00-0x10000)); } } } while (false); |
4380 | if (c == opValue) { |
4381 | break; |
4382 | } |
4383 | } else { |
4384 | fHitEnd = TRUE1; |
4385 | } |
4386 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
4387 | break; |
4388 | |
4389 | |
4390 | case URX_STRING: |
4391 | { |
4392 | // Test input against a literal string. |
4393 | // Strings require two slots in the compiled pattern, one for the |
4394 | // offset to the string text, and one for the length. |
4395 | int32_t stringStartIdx = opValue; |
4396 | int32_t stringLen; |
4397 | |
4398 | op = (int32_t)pat[fp->fPatIdx]; // Fetch the second operand |
4399 | fp->fPatIdx++; |
4400 | opType = URX_TYPE(op)((uint32_t)(op) >> 24); |
Value stored to 'opType' is never read | |
4401 | stringLen = URX_VAL(op)((op) & 0xffffff); |
4402 | U_ASSERT(opType == URX_STRING_LEN)(void)0; |
4403 | U_ASSERT(stringLen >= 2)(void)0; |
4404 | |
4405 | const UChar * pInp = inputBuf + fp->fInputIdx; |
4406 | const UChar * pInpLimit = inputBuf + fActiveLimit; |
4407 | const UChar * pPat = litText+stringStartIdx; |
4408 | const UChar * pEnd = pInp + stringLen; |
4409 | UBool success = TRUE1; |
4410 | while (pInp < pEnd) { |
4411 | if (pInp >= pInpLimit) { |
4412 | fHitEnd = TRUE1; |
4413 | success = FALSE0; |
4414 | break; |
4415 | } |
4416 | if (*pInp++ != *pPat++) { |
4417 | success = FALSE0; |
4418 | break; |
4419 | } |
4420 | } |
4421 | |
4422 | if (success) { |
4423 | fp->fInputIdx += stringLen; |
4424 | } else { |
4425 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
4426 | } |
4427 | } |
4428 | break; |
4429 | |
4430 | |
4431 | case URX_STATE_SAVE: |
4432 | fp = StateSave(fp, opValue, status); |
4433 | break; |
4434 | |
4435 | |
4436 | case URX_END: |
4437 | // The match loop will exit via this path on a successful match, |
4438 | // when we reach the end of the pattern. |
4439 | if (toEnd && fp->fInputIdx != fActiveLimit) { |
4440 | // The pattern matched, but not to the end of input. Try some more. |
4441 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
4442 | break; |
4443 | } |
4444 | isMatch = TRUE1; |
4445 | goto breakFromLoop; |
4446 | |
4447 | // Start and End Capture stack frame variables are laid out out like this: |
4448 | // fp->fExtra[opValue] - The start of a completed capture group |
4449 | // opValue+1 - The end of a completed capture group |
4450 | // opValue+2 - the start of a capture group whose end |
4451 | // has not yet been reached (and might not ever be). |
4452 | case URX_START_CAPTURE: |
4453 | U_ASSERT(opValue >= 0 && opValue < fFrameSize-3)(void)0; |
4454 | fp->fExtra[opValue+2] = fp->fInputIdx; |
4455 | break; |
4456 | |
4457 | |
4458 | case URX_END_CAPTURE: |
4459 | U_ASSERT(opValue >= 0 && opValue < fFrameSize-3)(void)0; |
4460 | U_ASSERT(fp->fExtra[opValue+2] >= 0)(void)0; // Start pos for this group must be set. |
4461 | fp->fExtra[opValue] = fp->fExtra[opValue+2]; // Tentative start becomes real. |
4462 | fp->fExtra[opValue+1] = fp->fInputIdx; // End position |
4463 | U_ASSERT(fp->fExtra[opValue] <= fp->fExtra[opValue+1])(void)0; |
4464 | break; |
4465 | |
4466 | |
4467 | case URX_DOLLAR: // $, test for End of line |
4468 | // or for position before new line at end of input |
4469 | if (fp->fInputIdx < fAnchorLimit-2) { |
4470 | // We are no where near the end of input. Fail. |
4471 | // This is the common case. Keep it first. |
4472 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
4473 | break; |
4474 | } |
4475 | if (fp->fInputIdx >= fAnchorLimit) { |
4476 | // We really are at the end of input. Success. |
4477 | fHitEnd = TRUE1; |
4478 | fRequireEnd = TRUE1; |
4479 | break; |
4480 | } |
4481 | |
4482 | // If we are positioned just before a new-line that is located at the |
4483 | // end of input, succeed. |
4484 | if (fp->fInputIdx == fAnchorLimit-1) { |
4485 | UChar32 c; |
4486 | U16_GET(inputBuf, fAnchorStart, fp->fInputIdx, fAnchorLimit, c)do { (c)=(inputBuf)[fp->fInputIdx]; if((((c)&0xfffff800 )==0xd800)) { uint16_t __c2; if((((c)&0x400)==0)) { if((fp ->fInputIdx)+1!=(fAnchorLimit) && (((__c2=(inputBuf )[(fp->fInputIdx)+1])&0xfffffc00)==0xdc00)) { (c)=(((UChar32 )((c))<<10UL)+(UChar32)(__c2)-((0xd800<<10UL)+0xdc00 -0x10000)); } } else { if((fp->fInputIdx)>(fAnchorStart ) && (((__c2=(inputBuf)[(fp->fInputIdx)-1])&0xfffffc00 )==0xd800)) { (c)=(((UChar32)(__c2)<<10UL)+(UChar32)((c ))-((0xd800<<10UL)+0xdc00-0x10000)); } } } } while (false ); |
4487 | |
4488 | if (isLineTerminator(c)) { |
4489 | if ( !(c==0x0a && fp->fInputIdx>fAnchorStart && inputBuf[fp->fInputIdx-1]==0x0d)) { |
4490 | // At new-line at end of input. Success |
4491 | fHitEnd = TRUE1; |
4492 | fRequireEnd = TRUE1; |
4493 | break; |
4494 | } |
4495 | } |
4496 | } else if (fp->fInputIdx == fAnchorLimit-2 && |
4497 | inputBuf[fp->fInputIdx]==0x0d && inputBuf[fp->fInputIdx+1]==0x0a) { |
4498 | fHitEnd = TRUE1; |
4499 | fRequireEnd = TRUE1; |
4500 | break; // At CR/LF at end of input. Success |
4501 | } |
4502 | |
4503 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
4504 | |
4505 | break; |
4506 | |
4507 | |
4508 | case URX_DOLLAR_D: // $, test for End of Line, in UNIX_LINES mode. |
4509 | if (fp->fInputIdx >= fAnchorLimit-1) { |
4510 | // Either at the last character of input, or off the end. |
4511 | if (fp->fInputIdx == fAnchorLimit-1) { |
4512 | // At last char of input. Success if it's a new line. |
4513 | if (inputBuf[fp->fInputIdx] == 0x0a) { |
4514 | fHitEnd = TRUE1; |
4515 | fRequireEnd = TRUE1; |
4516 | break; |
4517 | } |
4518 | } else { |
4519 | // Off the end of input. Success. |
4520 | fHitEnd = TRUE1; |
4521 | fRequireEnd = TRUE1; |
4522 | break; |
4523 | } |
4524 | } |
4525 | |
4526 | // Not at end of input. Back-track out. |
4527 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
4528 | break; |
4529 | |
4530 | |
4531 | case URX_DOLLAR_M: // $, test for End of line in multi-line mode |
4532 | { |
4533 | if (fp->fInputIdx >= fAnchorLimit) { |
4534 | // We really are at the end of input. Success. |
4535 | fHitEnd = TRUE1; |
4536 | fRequireEnd = TRUE1; |
4537 | break; |
4538 | } |
4539 | // If we are positioned just before a new-line, succeed. |
4540 | // It makes no difference where the new-line is within the input. |
4541 | UChar32 c = inputBuf[fp->fInputIdx]; |
4542 | if (isLineTerminator(c)) { |
4543 | // At a line end, except for the odd chance of being in the middle of a CR/LF sequence |
4544 | // In multi-line mode, hitting a new-line just before the end of input does not |
4545 | // set the hitEnd or requireEnd flags |
4546 | if ( !(c==0x0a && fp->fInputIdx>fAnchorStart && inputBuf[fp->fInputIdx-1]==0x0d)) { |
4547 | break; |
4548 | } |
4549 | } |
4550 | // not at a new line. Fail. |
4551 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
4552 | } |
4553 | break; |
4554 | |
4555 | |
4556 | case URX_DOLLAR_MD: // $, test for End of line in multi-line and UNIX_LINES mode |
4557 | { |
4558 | if (fp->fInputIdx >= fAnchorLimit) { |
4559 | // We really are at the end of input. Success. |
4560 | fHitEnd = TRUE1; |
4561 | fRequireEnd = TRUE1; // Java set requireEnd in this case, even though |
4562 | break; // adding a new-line would not lose the match. |
4563 | } |
4564 | // If we are not positioned just before a new-line, the test fails; backtrack out. |
4565 | // It makes no difference where the new-line is within the input. |
4566 | if (inputBuf[fp->fInputIdx] != 0x0a) { |
4567 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
4568 | } |
4569 | } |
4570 | break; |
4571 | |
4572 | |
4573 | case URX_CARET: // ^, test for start of line |
4574 | if (fp->fInputIdx != fAnchorStart) { |
4575 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
4576 | } |
4577 | break; |
4578 | |
4579 | |
4580 | case URX_CARET_M: // ^, test for start of line in mulit-line mode |
4581 | { |
4582 | if (fp->fInputIdx == fAnchorStart) { |
4583 | // We are at the start input. Success. |
4584 | break; |
4585 | } |
4586 | // Check whether character just before the current pos is a new-line |
4587 | // unless we are at the end of input |
4588 | UChar c = inputBuf[fp->fInputIdx - 1]; |
4589 | if ((fp->fInputIdx < fAnchorLimit) && |
4590 | isLineTerminator(c)) { |
4591 | // It's a new-line. ^ is true. Success. |
4592 | // TODO: what should be done with positions between a CR and LF? |
4593 | break; |
4594 | } |
4595 | // Not at the start of a line. Fail. |
4596 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
4597 | } |
4598 | break; |
4599 | |
4600 | |
4601 | case URX_CARET_M_UNIX: // ^, test for start of line in mulit-line + Unix-line mode |
4602 | { |
4603 | U_ASSERT(fp->fInputIdx >= fAnchorStart)(void)0; |
4604 | if (fp->fInputIdx <= fAnchorStart) { |
4605 | // We are at the start input. Success. |
4606 | break; |
4607 | } |
4608 | // Check whether character just before the current pos is a new-line |
4609 | U_ASSERT(fp->fInputIdx <= fAnchorLimit)(void)0; |
4610 | UChar c = inputBuf[fp->fInputIdx - 1]; |
4611 | if (c != 0x0a) { |
4612 | // Not at the start of a line. Back-track out. |
4613 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
4614 | } |
4615 | } |
4616 | break; |
4617 | |
4618 | case URX_BACKSLASH_B: // Test for word boundaries |
4619 | { |
4620 | UBool success = isChunkWordBoundary((int32_t)fp->fInputIdx); |
4621 | success ^= (UBool)(opValue != 0); // flip sense for \B |
4622 | if (!success) { |
4623 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
4624 | } |
4625 | } |
4626 | break; |
4627 | |
4628 | |
4629 | case URX_BACKSLASH_BU: // Test for word boundaries, Unicode-style |
4630 | { |
4631 | UBool success = isUWordBoundary(fp->fInputIdx, status); |
4632 | success ^= (UBool)(opValue != 0); // flip sense for \B |
4633 | if (!success) { |
4634 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
4635 | } |
4636 | } |
4637 | break; |
4638 | |
4639 | |
4640 | case URX_BACKSLASH_D: // Test for decimal digit |
4641 | { |
4642 | if (fp->fInputIdx >= fActiveLimit) { |
4643 | fHitEnd = TRUE1; |
4644 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
4645 | break; |
4646 | } |
4647 | |
4648 | UChar32 c; |
4649 | U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c)do { (c)=(inputBuf)[(fp->fInputIdx)++]; if((((c)&0xfffffc00 )==0xd800)) { uint16_t __c2; if((fp->fInputIdx)!=(fActiveLimit ) && (((__c2=(inputBuf)[(fp->fInputIdx)])&0xfffffc00 )==0xdc00)) { ++(fp->fInputIdx); (c)=(((UChar32)((c))<< 10UL)+(UChar32)(__c2)-((0xd800<<10UL)+0xdc00-0x10000)); } } } while (false); |
4650 | int8_t ctype = u_charTypeu_charType_71(c); // TODO: make a unicode set for this. Will be faster. |
4651 | UBool success = (ctype == U_DECIMAL_DIGIT_NUMBER); |
4652 | success ^= (UBool)(opValue != 0); // flip sense for \D |
4653 | if (!success) { |
4654 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
4655 | } |
4656 | } |
4657 | break; |
4658 | |
4659 | |
4660 | case URX_BACKSLASH_G: // Test for position at end of previous match |
4661 | if (!((fMatch && fp->fInputIdx==fMatchEnd) || (fMatch==FALSE0 && fp->fInputIdx==fActiveStart))) { |
4662 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
4663 | } |
4664 | break; |
4665 | |
4666 | |
4667 | case URX_BACKSLASH_H: // Test for \h, horizontal white space. |
4668 | { |
4669 | if (fp->fInputIdx >= fActiveLimit) { |
4670 | fHitEnd = TRUE1; |
4671 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
4672 | break; |
4673 | } |
4674 | UChar32 c; |
4675 | U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c)do { (c)=(inputBuf)[(fp->fInputIdx)++]; if((((c)&0xfffffc00 )==0xd800)) { uint16_t __c2; if((fp->fInputIdx)!=(fActiveLimit ) && (((__c2=(inputBuf)[(fp->fInputIdx)])&0xfffffc00 )==0xdc00)) { ++(fp->fInputIdx); (c)=(((UChar32)((c))<< 10UL)+(UChar32)(__c2)-((0xd800<<10UL)+0xdc00-0x10000)); } } } while (false); |
4676 | int8_t ctype = u_charTypeu_charType_71(c); |
4677 | UBool success = (ctype == U_SPACE_SEPARATOR || c == 9); // SPACE_SEPARATOR || TAB |
4678 | success ^= (UBool)(opValue != 0); // flip sense for \H |
4679 | if (!success) { |
4680 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
4681 | } |
4682 | } |
4683 | break; |
4684 | |
4685 | |
4686 | case URX_BACKSLASH_R: // Test for \R, any line break sequence. |
4687 | { |
4688 | if (fp->fInputIdx >= fActiveLimit) { |
4689 | fHitEnd = TRUE1; |
4690 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
4691 | break; |
4692 | } |
4693 | UChar32 c; |
4694 | U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c)do { (c)=(inputBuf)[(fp->fInputIdx)++]; if((((c)&0xfffffc00 )==0xd800)) { uint16_t __c2; if((fp->fInputIdx)!=(fActiveLimit ) && (((__c2=(inputBuf)[(fp->fInputIdx)])&0xfffffc00 )==0xdc00)) { ++(fp->fInputIdx); (c)=(((UChar32)((c))<< 10UL)+(UChar32)(__c2)-((0xd800<<10UL)+0xdc00-0x10000)); } } } while (false); |
4695 | if (isLineTerminator(c)) { |
4696 | if (c == 0x0d && fp->fInputIdx < fActiveLimit) { |
4697 | // Check for CR/LF sequence. Consume both together when found. |
4698 | UChar c2; |
4699 | U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c2)do { (c2)=(inputBuf)[(fp->fInputIdx)++]; if((((c2)&0xfffffc00 )==0xd800)) { uint16_t __c2; if((fp->fInputIdx)!=(fActiveLimit ) && (((__c2=(inputBuf)[(fp->fInputIdx)])&0xfffffc00 )==0xdc00)) { ++(fp->fInputIdx); (c2)=(((UChar32)((c2))<< 10UL)+(UChar32)(__c2)-((0xd800<<10UL)+0xdc00-0x10000)); } } } while (false); |
4700 | if (c2 != 0x0a) { |
4701 | U16_PREV(inputBuf, 0, fp->fInputIdx, c2)do { (c2)=(inputBuf)[--(fp->fInputIdx)]; if((((c2)&0xfffffc00 )==0xdc00)) { uint16_t __c2; if((fp->fInputIdx)>(0) && (((__c2=(inputBuf)[(fp->fInputIdx)-1])&0xfffffc00)==0xd800 )) { --(fp->fInputIdx); (c2)=(((UChar32)(__c2)<<10UL )+(UChar32)((c2))-((0xd800<<10UL)+0xdc00-0x10000)); } } } while (false); |
4702 | } |
4703 | } |
4704 | } else { |
4705 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
4706 | } |
4707 | } |
4708 | break; |
4709 | |
4710 | |
4711 | case URX_BACKSLASH_V: // Any single code point line ending. |
4712 | { |
4713 | if (fp->fInputIdx >= fActiveLimit) { |
4714 | fHitEnd = TRUE1; |
4715 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
4716 | break; |
4717 | } |
4718 | UChar32 c; |
4719 | U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c)do { (c)=(inputBuf)[(fp->fInputIdx)++]; if((((c)&0xfffffc00 )==0xd800)) { uint16_t __c2; if((fp->fInputIdx)!=(fActiveLimit ) && (((__c2=(inputBuf)[(fp->fInputIdx)])&0xfffffc00 )==0xdc00)) { ++(fp->fInputIdx); (c)=(((UChar32)((c))<< 10UL)+(UChar32)(__c2)-((0xd800<<10UL)+0xdc00-0x10000)); } } } while (false); |
4720 | UBool success = isLineTerminator(c); |
4721 | success ^= (UBool)(opValue != 0); // flip sense for \V |
4722 | if (!success) { |
4723 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
4724 | } |
4725 | } |
4726 | break; |
4727 | |
4728 | |
4729 | case URX_BACKSLASH_X: |
4730 | // Match a Grapheme, as defined by Unicode UAX 29. |
4731 | |
4732 | // Fail if at end of input |
4733 | if (fp->fInputIdx >= fActiveLimit) { |
4734 | fHitEnd = TRUE1; |
4735 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
4736 | break; |
4737 | } |
4738 | |
4739 | fp->fInputIdx = followingGCBoundary(fp->fInputIdx, status); |
4740 | if (fp->fInputIdx >= fActiveLimit) { |
4741 | fHitEnd = TRUE1; |
4742 | fp->fInputIdx = fActiveLimit; |
4743 | } |
4744 | break; |
4745 | |
4746 | |
4747 | case URX_BACKSLASH_Z: // Test for end of Input |
4748 | if (fp->fInputIdx < fAnchorLimit) { |
4749 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
4750 | } else { |
4751 | fHitEnd = TRUE1; |
4752 | fRequireEnd = TRUE1; |
4753 | } |
4754 | break; |
4755 | |
4756 | |
4757 | |
4758 | case URX_STATIC_SETREF: |
4759 | { |
4760 | // Test input character against one of the predefined sets |
4761 | // (Word Characters, for example) |
4762 | // The high bit of the op value is a flag for the match polarity. |
4763 | // 0: success if input char is in set. |
4764 | // 1: success if input char is not in set. |
4765 | if (fp->fInputIdx >= fActiveLimit) { |
4766 | fHitEnd = TRUE1; |
4767 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
4768 | break; |
4769 | } |
4770 | |
4771 | UBool success = ((opValue & URX_NEG_SET) == URX_NEG_SET); |
4772 | opValue &= ~URX_NEG_SET; |
4773 | U_ASSERT(opValue > 0 && opValue < URX_LAST_SET)(void)0; |
4774 | |
4775 | UChar32 c; |
4776 | U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c)do { (c)=(inputBuf)[(fp->fInputIdx)++]; if((((c)&0xfffffc00 )==0xd800)) { uint16_t __c2; if((fp->fInputIdx)!=(fActiveLimit ) && (((__c2=(inputBuf)[(fp->fInputIdx)])&0xfffffc00 )==0xdc00)) { ++(fp->fInputIdx); (c)=(((UChar32)((c))<< 10UL)+(UChar32)(__c2)-((0xd800<<10UL)+0xdc00-0x10000)); } } } while (false); |
4777 | if (c < 256) { |
4778 | Regex8BitSet &s8 = RegexStaticSets::gStaticSets->fPropSets8[opValue]; |
4779 | if (s8.contains(c)) { |
4780 | success = !success; |
4781 | } |
4782 | } else { |
4783 | const UnicodeSet &s = RegexStaticSets::gStaticSets->fPropSets[opValue]; |
4784 | if (s.contains(c)) { |
4785 | success = !success; |
4786 | } |
4787 | } |
4788 | if (!success) { |
4789 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
4790 | } |
4791 | } |
4792 | break; |
4793 | |
4794 | |
4795 | case URX_STAT_SETREF_N: |
4796 | { |
4797 | // Test input character for NOT being a member of one of |
4798 | // the predefined sets (Word Characters, for example) |
4799 | if (fp->fInputIdx >= fActiveLimit) { |
4800 | fHitEnd = TRUE1; |
4801 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
4802 | break; |
4803 | } |
4804 | |
4805 | U_ASSERT(opValue > 0 && opValue < URX_LAST_SET)(void)0; |
4806 | |
4807 | UChar32 c; |
4808 | U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c)do { (c)=(inputBuf)[(fp->fInputIdx)++]; if((((c)&0xfffffc00 )==0xd800)) { uint16_t __c2; if((fp->fInputIdx)!=(fActiveLimit ) && (((__c2=(inputBuf)[(fp->fInputIdx)])&0xfffffc00 )==0xdc00)) { ++(fp->fInputIdx); (c)=(((UChar32)((c))<< 10UL)+(UChar32)(__c2)-((0xd800<<10UL)+0xdc00-0x10000)); } } } while (false); |
4809 | if (c < 256) { |
4810 | Regex8BitSet &s8 = RegexStaticSets::gStaticSets->fPropSets8[opValue]; |
4811 | if (s8.contains(c) == FALSE0) { |
4812 | break; |
4813 | } |
4814 | } else { |
4815 | const UnicodeSet &s = RegexStaticSets::gStaticSets->fPropSets[opValue]; |
4816 | if (s.contains(c) == FALSE0) { |
4817 | break; |
4818 | } |
4819 | } |
4820 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
4821 | } |
4822 | break; |
4823 | |
4824 | |
4825 | case URX_SETREF: |
4826 | { |
4827 | if (fp->fInputIdx >= fActiveLimit) { |
4828 | fHitEnd = TRUE1; |
4829 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
4830 | break; |
4831 | } |
4832 | |
4833 | U_ASSERT(opValue > 0 && opValue < fSets->size())(void)0; |
4834 | |
4835 | // There is input left. Pick up one char and test it for set membership. |
4836 | UChar32 c; |
4837 | U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c)do { (c)=(inputBuf)[(fp->fInputIdx)++]; if((((c)&0xfffffc00 )==0xd800)) { uint16_t __c2; if((fp->fInputIdx)!=(fActiveLimit ) && (((__c2=(inputBuf)[(fp->fInputIdx)])&0xfffffc00 )==0xdc00)) { ++(fp->fInputIdx); (c)=(((UChar32)((c))<< 10UL)+(UChar32)(__c2)-((0xd800<<10UL)+0xdc00-0x10000)); } } } while (false); |
4838 | if (c<256) { |
4839 | Regex8BitSet *s8 = &fPattern->fSets8[opValue]; |
4840 | if (s8->contains(c)) { |
4841 | // The character is in the set. A Match. |
4842 | break; |
4843 | } |
4844 | } else { |
4845 | UnicodeSet *s = (UnicodeSet *)fSets->elementAt(opValue); |
4846 | if (s->contains(c)) { |
4847 | // The character is in the set. A Match. |
4848 | break; |
4849 | } |
4850 | } |
4851 | |
4852 | // the character wasn't in the set. |
4853 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
4854 | } |
4855 | break; |
4856 | |
4857 | |
4858 | case URX_DOTANY: |
4859 | { |
4860 | // . matches anything, but stops at end-of-line. |
4861 | if (fp->fInputIdx >= fActiveLimit) { |
4862 | // At end of input. Match failed. Backtrack out. |
4863 | fHitEnd = TRUE1; |
4864 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
4865 | break; |
4866 | } |
4867 | |
4868 | // There is input left. Advance over one char, unless we've hit end-of-line |
4869 | UChar32 c; |
4870 | U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c)do { (c)=(inputBuf)[(fp->fInputIdx)++]; if((((c)&0xfffffc00 )==0xd800)) { uint16_t __c2; if((fp->fInputIdx)!=(fActiveLimit ) && (((__c2=(inputBuf)[(fp->fInputIdx)])&0xfffffc00 )==0xdc00)) { ++(fp->fInputIdx); (c)=(((UChar32)((c))<< 10UL)+(UChar32)(__c2)-((0xd800<<10UL)+0xdc00-0x10000)); } } } while (false); |
4871 | if (isLineTerminator(c)) { |
4872 | // End of line in normal mode. . does not match. |
4873 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
4874 | break; |
4875 | } |
4876 | } |
4877 | break; |
4878 | |
4879 | |
4880 | case URX_DOTANY_ALL: |
4881 | { |
4882 | // . in dot-matches-all (including new lines) mode |
4883 | if (fp->fInputIdx >= fActiveLimit) { |
4884 | // At end of input. Match failed. Backtrack out. |
4885 | fHitEnd = TRUE1; |
4886 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
4887 | break; |
4888 | } |
4889 | |
4890 | // There is input left. Advance over one char, except if we are |
4891 | // at a cr/lf, advance over both of them. |
4892 | UChar32 c; |
4893 | U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c)do { (c)=(inputBuf)[(fp->fInputIdx)++]; if((((c)&0xfffffc00 )==0xd800)) { uint16_t __c2; if((fp->fInputIdx)!=(fActiveLimit ) && (((__c2=(inputBuf)[(fp->fInputIdx)])&0xfffffc00 )==0xdc00)) { ++(fp->fInputIdx); (c)=(((UChar32)((c))<< 10UL)+(UChar32)(__c2)-((0xd800<<10UL)+0xdc00-0x10000)); } } } while (false); |
4894 | if (c==0x0d && fp->fInputIdx < fActiveLimit) { |
4895 | // In the case of a CR/LF, we need to advance over both. |
4896 | if (inputBuf[fp->fInputIdx] == 0x0a) { |
4897 | U16_FWD_1(inputBuf, fp->fInputIdx, fActiveLimit)do { if(((((inputBuf)[(fp->fInputIdx)++])&0xfffffc00)== 0xd800) && (fp->fInputIdx)!=(fActiveLimit) && ((((inputBuf)[fp->fInputIdx])&0xfffffc00)==0xdc00)) { ++(fp->fInputIdx); } } while (false); |
4898 | } |
4899 | } |
4900 | } |
4901 | break; |
4902 | |
4903 | |
4904 | case URX_DOTANY_UNIX: |
4905 | { |
4906 | // '.' operator, matches all, but stops at end-of-line. |
4907 | // UNIX_LINES mode, so 0x0a is the only recognized line ending. |
4908 | if (fp->fInputIdx >= fActiveLimit) { |
4909 | // At end of input. Match failed. Backtrack out. |
4910 | fHitEnd = TRUE1; |
4911 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
4912 | break; |
4913 | } |
4914 | |
4915 | // There is input left. Advance over one char, unless we've hit end-of-line |
4916 | UChar32 c; |
4917 | U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c)do { (c)=(inputBuf)[(fp->fInputIdx)++]; if((((c)&0xfffffc00 )==0xd800)) { uint16_t __c2; if((fp->fInputIdx)!=(fActiveLimit ) && (((__c2=(inputBuf)[(fp->fInputIdx)])&0xfffffc00 )==0xdc00)) { ++(fp->fInputIdx); (c)=(((UChar32)((c))<< 10UL)+(UChar32)(__c2)-((0xd800<<10UL)+0xdc00-0x10000)); } } } while (false); |
4918 | if (c == 0x0a) { |
4919 | // End of line in normal mode. '.' does not match the \n |
4920 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
4921 | } |
4922 | } |
4923 | break; |
4924 | |
4925 | |
4926 | case URX_JMP: |
4927 | fp->fPatIdx = opValue; |
4928 | break; |
4929 | |
4930 | case URX_FAIL: |
4931 | isMatch = FALSE0; |
4932 | goto breakFromLoop; |
4933 | |
4934 | case URX_JMP_SAV: |
4935 | U_ASSERT(opValue < fPattern->fCompiledPat->size())(void)0; |
4936 | fp = StateSave(fp, fp->fPatIdx, status); // State save to loc following current |
4937 | fp->fPatIdx = opValue; // Then JMP. |
4938 | break; |
4939 | |
4940 | case URX_JMP_SAV_X: |
4941 | // This opcode is used with (x)+, when x can match a zero length string. |
4942 | // Same as JMP_SAV, except conditional on the match having made forward progress. |
4943 | // Destination of the JMP must be a URX_STO_INP_LOC, from which we get the |
4944 | // data address of the input position at the start of the loop. |
4945 | { |
4946 | U_ASSERT(opValue > 0 && opValue < fPattern->fCompiledPat->size())(void)0; |
4947 | int32_t stoOp = (int32_t)pat[opValue-1]; |
4948 | U_ASSERT(URX_TYPE(stoOp) == URX_STO_INP_LOC)(void)0; |
4949 | int32_t frameLoc = URX_VAL(stoOp)((stoOp) & 0xffffff); |
4950 | U_ASSERT(frameLoc >= 0 && frameLoc < fFrameSize)(void)0; |
4951 | int32_t prevInputIdx = (int32_t)fp->fExtra[frameLoc]; |
4952 | U_ASSERT(prevInputIdx <= fp->fInputIdx)(void)0; |
4953 | if (prevInputIdx < fp->fInputIdx) { |
4954 | // The match did make progress. Repeat the loop. |
4955 | fp = StateSave(fp, fp->fPatIdx, status); // State save to loc following current |
4956 | fp->fPatIdx = opValue; |
4957 | fp->fExtra[frameLoc] = fp->fInputIdx; |
4958 | } |
4959 | // If the input position did not advance, we do nothing here, |
4960 | // execution will fall out of the loop. |
4961 | } |
4962 | break; |
4963 | |
4964 | case URX_CTR_INIT: |
4965 | { |
4966 | U_ASSERT(opValue >= 0 && opValue < fFrameSize-2)(void)0; |
4967 | fp->fExtra[opValue] = 0; // Set the loop counter variable to zero |
4968 | |
4969 | // Pick up the three extra operands that CTR_INIT has, and |
4970 | // skip the pattern location counter past |
4971 | int32_t instrOperandLoc = (int32_t)fp->fPatIdx; |
4972 | fp->fPatIdx += 3; |
4973 | int32_t loopLoc = URX_VAL(pat[instrOperandLoc])((pat[instrOperandLoc]) & 0xffffff); |
4974 | int32_t minCount = (int32_t)pat[instrOperandLoc+1]; |
4975 | int32_t maxCount = (int32_t)pat[instrOperandLoc+2]; |
4976 | U_ASSERT(minCount>=0)(void)0; |
4977 | U_ASSERT(maxCount>=minCount || maxCount==-1)(void)0; |
4978 | U_ASSERT(loopLoc>=fp->fPatIdx)(void)0; |
4979 | |
4980 | if (minCount == 0) { |
4981 | fp = StateSave(fp, loopLoc+1, status); |
4982 | } |
4983 | if (maxCount == -1) { |
4984 | fp->fExtra[opValue+1] = fp->fInputIdx; // For loop breaking. |
4985 | } else if (maxCount == 0) { |
4986 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
4987 | } |
4988 | } |
4989 | break; |
4990 | |
4991 | case URX_CTR_LOOP: |
4992 | { |
4993 | U_ASSERT(opValue>0 && opValue < fp->fPatIdx-2)(void)0; |
4994 | int32_t initOp = (int32_t)pat[opValue]; |
4995 | U_ASSERT(URX_TYPE(initOp) == URX_CTR_INIT)(void)0; |
4996 | int64_t *pCounter = &fp->fExtra[URX_VAL(initOp)((initOp) & 0xffffff)]; |
4997 | int32_t minCount = (int32_t)pat[opValue+2]; |
4998 | int32_t maxCount = (int32_t)pat[opValue+3]; |
4999 | (*pCounter)++; |
5000 | if ((uint64_t)*pCounter >= (uint32_t)maxCount && maxCount != -1) { |
5001 | U_ASSERT(*pCounter == maxCount)(void)0; |
5002 | break; |
5003 | } |
5004 | if (*pCounter >= minCount) { |
5005 | if (maxCount == -1) { |
5006 | // Loop has no hard upper bound. |
5007 | // Check that it is progressing through the input, break if it is not. |
5008 | int64_t *pLastInputIdx = &fp->fExtra[URX_VAL(initOp)((initOp) & 0xffffff) + 1]; |
5009 | if (fp->fInputIdx == *pLastInputIdx) { |
5010 | break; |
5011 | } else { |
5012 | *pLastInputIdx = fp->fInputIdx; |
5013 | } |
5014 | } |
5015 | fp = StateSave(fp, fp->fPatIdx, status); |
5016 | } else { |
5017 | // Increment time-out counter. (StateSave() does it if count >= minCount) |
5018 | fTickCounter--; |
5019 | if (fTickCounter <= 0) { |
5020 | IncrementTime(status); // Re-initializes fTickCounter |
5021 | } |
5022 | } |
5023 | fp->fPatIdx = opValue + 4; // Loop back. |
5024 | } |
5025 | break; |
5026 | |
5027 | case URX_CTR_INIT_NG: |
5028 | { |
5029 | // Initialize a non-greedy loop |
5030 | U_ASSERT(opValue >= 0 && opValue < fFrameSize-2)(void)0; |
5031 | fp->fExtra[opValue] = 0; // Set the loop counter variable to zero |
5032 | |
5033 | // Pick up the three extra operands that CTR_INIT_NG has, and |
5034 | // skip the pattern location counter past |
5035 | int32_t instrOperandLoc = (int32_t)fp->fPatIdx; |
5036 | fp->fPatIdx += 3; |
5037 | int32_t loopLoc = URX_VAL(pat[instrOperandLoc])((pat[instrOperandLoc]) & 0xffffff); |
5038 | int32_t minCount = (int32_t)pat[instrOperandLoc+1]; |
5039 | int32_t maxCount = (int32_t)pat[instrOperandLoc+2]; |
5040 | U_ASSERT(minCount>=0)(void)0; |
5041 | U_ASSERT(maxCount>=minCount || maxCount==-1)(void)0; |
5042 | U_ASSERT(loopLoc>fp->fPatIdx)(void)0; |
5043 | if (maxCount == -1) { |
5044 | fp->fExtra[opValue+1] = fp->fInputIdx; // Save initial input index for loop breaking. |
5045 | } |
5046 | |
5047 | if (minCount == 0) { |
5048 | if (maxCount != 0) { |
5049 | fp = StateSave(fp, fp->fPatIdx, status); |
5050 | } |
5051 | fp->fPatIdx = loopLoc+1; // Continue with stuff after repeated block |
5052 | } |
5053 | } |
5054 | break; |
5055 | |
5056 | case URX_CTR_LOOP_NG: |
5057 | { |
5058 | // Non-greedy {min, max} loops |
5059 | U_ASSERT(opValue>0 && opValue < fp->fPatIdx-2)(void)0; |
5060 | int32_t initOp = (int32_t)pat[opValue]; |
5061 | U_ASSERT(URX_TYPE(initOp) == URX_CTR_INIT_NG)(void)0; |
5062 | int64_t *pCounter = &fp->fExtra[URX_VAL(initOp)((initOp) & 0xffffff)]; |
5063 | int32_t minCount = (int32_t)pat[opValue+2]; |
5064 | int32_t maxCount = (int32_t)pat[opValue+3]; |
5065 | |
5066 | (*pCounter)++; |
5067 | if ((uint64_t)*pCounter >= (uint32_t)maxCount && maxCount != -1) { |
5068 | // The loop has matched the maximum permitted number of times. |
5069 | // Break out of here with no action. Matching will |
5070 | // continue with the following pattern. |
5071 | U_ASSERT(*pCounter == maxCount)(void)0; |
5072 | break; |
5073 | } |
5074 | |
5075 | if (*pCounter < minCount) { |
5076 | // We haven't met the minimum number of matches yet. |
5077 | // Loop back for another one. |
5078 | fp->fPatIdx = opValue + 4; // Loop back. |
5079 | fTickCounter--; |
5080 | if (fTickCounter <= 0) { |
5081 | IncrementTime(status); // Re-initializes fTickCounter |
5082 | } |
5083 | } else { |
5084 | // We do have the minimum number of matches. |
5085 | |
5086 | // If there is no upper bound on the loop iterations, check that the input index |
5087 | // is progressing, and stop the loop if it is not. |
5088 | if (maxCount == -1) { |
5089 | int64_t *pLastInputIdx = &fp->fExtra[URX_VAL(initOp)((initOp) & 0xffffff) + 1]; |
5090 | if (fp->fInputIdx == *pLastInputIdx) { |
5091 | break; |
5092 | } |
5093 | *pLastInputIdx = fp->fInputIdx; |
5094 | } |
5095 | |
5096 | // Loop Continuation: we will fall into the pattern following the loop |
5097 | // (non-greedy, don't execute loop body first), but first do |
5098 | // a state save to the top of the loop, so that a match failure |
5099 | // in the following pattern will try another iteration of the loop. |
5100 | fp = StateSave(fp, opValue + 4, status); |
5101 | } |
5102 | } |
5103 | break; |
5104 | |
5105 | case URX_STO_SP: |
5106 | U_ASSERT(opValue >= 0 && opValue < fPattern->fDataSize)(void)0; |
5107 | fData[opValue] = fStack->size(); |
5108 | break; |
5109 | |
5110 | case URX_LD_SP: |
5111 | { |
5112 | U_ASSERT(opValue >= 0 && opValue < fPattern->fDataSize)(void)0; |
5113 | int32_t newStackSize = (int32_t)fData[opValue]; |
5114 | U_ASSERT(newStackSize <= fStack->size())(void)0; |
5115 | int64_t *newFP = fStack->getBuffer() + newStackSize - fFrameSize; |
5116 | if (newFP == (int64_t *)fp) { |
5117 | break; |
5118 | } |
5119 | int32_t j; |
5120 | for (j=0; j<fFrameSize; j++) { |
5121 | newFP[j] = ((int64_t *)fp)[j]; |
5122 | } |
5123 | fp = (REStackFrame *)newFP; |
5124 | fStack->setSize(newStackSize); |
5125 | } |
5126 | break; |
5127 | |
5128 | case URX_BACKREF: |
5129 | { |
5130 | U_ASSERT(opValue < fFrameSize)(void)0; |
5131 | int64_t groupStartIdx = fp->fExtra[opValue]; |
5132 | int64_t groupEndIdx = fp->fExtra[opValue+1]; |
5133 | U_ASSERT(groupStartIdx <= groupEndIdx)(void)0; |
5134 | int64_t inputIndex = fp->fInputIdx; |
5135 | if (groupStartIdx < 0) { |
5136 | // This capture group has not participated in the match thus far, |
5137 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); // FAIL, no match. |
5138 | break; |
5139 | } |
5140 | UBool success = TRUE1; |
5141 | for (int64_t groupIndex = groupStartIdx; groupIndex < groupEndIdx; ++groupIndex,++inputIndex) { |
5142 | if (inputIndex >= fActiveLimit) { |
5143 | success = FALSE0; |
5144 | fHitEnd = TRUE1; |
5145 | break; |
5146 | } |
5147 | if (inputBuf[groupIndex] != inputBuf[inputIndex]) { |
5148 | success = FALSE0; |
5149 | break; |
5150 | } |
5151 | } |
5152 | if (success && groupStartIdx < groupEndIdx && U16_IS_LEAD(inputBuf[groupEndIdx-1])(((inputBuf[groupEndIdx-1])&0xfffffc00)==0xd800) && |
5153 | inputIndex < fActiveLimit && U16_IS_TRAIL(inputBuf[inputIndex])(((inputBuf[inputIndex])&0xfffffc00)==0xdc00)) { |
5154 | // Capture group ended with an unpaired lead surrogate. |
5155 | // Back reference is not permitted to match lead only of a surrogatge pair. |
5156 | success = FALSE0; |
5157 | } |
5158 | if (success) { |
5159 | fp->fInputIdx = inputIndex; |
5160 | } else { |
5161 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
5162 | } |
5163 | } |
5164 | break; |
5165 | |
5166 | case URX_BACKREF_I: |
5167 | { |
5168 | U_ASSERT(opValue < fFrameSize)(void)0; |
5169 | int64_t groupStartIdx = fp->fExtra[opValue]; |
5170 | int64_t groupEndIdx = fp->fExtra[opValue+1]; |
5171 | U_ASSERT(groupStartIdx <= groupEndIdx)(void)0; |
5172 | if (groupStartIdx < 0) { |
5173 | // This capture group has not participated in the match thus far, |
5174 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); // FAIL, no match. |
5175 | break; |
5176 | } |
5177 | CaseFoldingUCharIterator captureGroupItr(inputBuf, groupStartIdx, groupEndIdx); |
5178 | CaseFoldingUCharIterator inputItr(inputBuf, fp->fInputIdx, fActiveLimit); |
5179 | |
5180 | // Note: if the capture group match was of an empty string the backref |
5181 | // match succeeds. Verified by testing: Perl matches succeed |
5182 | // in this case, so we do too. |
5183 | |
5184 | UBool success = TRUE1; |
5185 | for (;;) { |
5186 | UChar32 captureGroupChar = captureGroupItr.next(); |
5187 | if (captureGroupChar == U_SENTINEL(-1)) { |
5188 | success = TRUE1; |
5189 | break; |
5190 | } |
5191 | UChar32 inputChar = inputItr.next(); |
5192 | if (inputChar == U_SENTINEL(-1)) { |
5193 | success = FALSE0; |
5194 | fHitEnd = TRUE1; |
5195 | break; |
5196 | } |
5197 | if (inputChar != captureGroupChar) { |
5198 | success = FALSE0; |
5199 | break; |
5200 | } |
5201 | } |
5202 | |
5203 | if (success && inputItr.inExpansion()) { |
5204 | // We obtained a match by consuming part of a string obtained from |
5205 | // case-folding a single code point of the input text. |
5206 | // This does not count as an overall match. |
5207 | success = FALSE0; |
5208 | } |
5209 | |
5210 | if (success) { |
5211 | fp->fInputIdx = inputItr.getIndex(); |
5212 | } else { |
5213 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
5214 | } |
5215 | } |
5216 | break; |
5217 | |
5218 | case URX_STO_INP_LOC: |
5219 | { |
5220 | U_ASSERT(opValue >= 0 && opValue < fFrameSize)(void)0; |
5221 | fp->fExtra[opValue] = fp->fInputIdx; |
5222 | } |
5223 | break; |
5224 | |
5225 | case URX_JMPX: |
5226 | { |
5227 | int32_t instrOperandLoc = (int32_t)fp->fPatIdx; |
5228 | fp->fPatIdx += 1; |
5229 | int32_t dataLoc = URX_VAL(pat[instrOperandLoc])((pat[instrOperandLoc]) & 0xffffff); |
5230 | U_ASSERT(dataLoc >= 0 && dataLoc < fFrameSize)(void)0; |
5231 | int32_t savedInputIdx = (int32_t)fp->fExtra[dataLoc]; |
5232 | U_ASSERT(savedInputIdx <= fp->fInputIdx)(void)0; |
5233 | if (savedInputIdx < fp->fInputIdx) { |
5234 | fp->fPatIdx = opValue; // JMP |
5235 | } else { |
5236 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); // FAIL, no progress in loop. |
5237 | } |
5238 | } |
5239 | break; |
5240 | |
5241 | case URX_LA_START: |
5242 | { |
5243 | // Entering a look around block. |
5244 | // Save Stack Ptr, Input Pos. |
5245 | U_ASSERT(opValue>=0 && opValue+3<fPattern->fDataSize)(void)0; |
5246 | fData[opValue] = fStack->size(); |
5247 | fData[opValue+1] = fp->fInputIdx; |
5248 | fData[opValue+2] = fActiveStart; |
5249 | fData[opValue+3] = fActiveLimit; |
5250 | fActiveStart = fLookStart; // Set the match region change for |
5251 | fActiveLimit = fLookLimit; // transparent bounds. |
5252 | } |
5253 | break; |
5254 | |
5255 | case URX_LA_END: |
5256 | { |
5257 | // Leaving a look around block. |
5258 | // restore Stack Ptr, Input Pos to positions they had on entry to block. |
5259 | U_ASSERT(opValue>=0 && opValue+3<fPattern->fDataSize)(void)0; |
5260 | int32_t stackSize = fStack->size(); |
5261 | int32_t newStackSize = (int32_t)fData[opValue]; |
5262 | U_ASSERT(stackSize >= newStackSize)(void)0; |
5263 | if (stackSize > newStackSize) { |
5264 | // Copy the current top frame back to the new (cut back) top frame. |
5265 | // This makes the capture groups from within the look-ahead |
5266 | // expression available. |
5267 | int64_t *newFP = fStack->getBuffer() + newStackSize - fFrameSize; |
5268 | int32_t j; |
5269 | for (j=0; j<fFrameSize; j++) { |
5270 | newFP[j] = ((int64_t *)fp)[j]; |
5271 | } |
5272 | fp = (REStackFrame *)newFP; |
5273 | fStack->setSize(newStackSize); |
5274 | } |
5275 | fp->fInputIdx = fData[opValue+1]; |
5276 | |
5277 | // Restore the active region bounds in the input string; they may have |
5278 | // been changed because of transparent bounds on a Region. |
5279 | fActiveStart = fData[opValue+2]; |
5280 | fActiveLimit = fData[opValue+3]; |
5281 | U_ASSERT(fActiveStart >= 0)(void)0; |
5282 | U_ASSERT(fActiveLimit <= fInputLength)(void)0; |
5283 | } |
5284 | break; |
5285 | |
5286 | case URX_ONECHAR_I: |
5287 | if (fp->fInputIdx < fActiveLimit) { |
5288 | UChar32 c; |
5289 | U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c)do { (c)=(inputBuf)[(fp->fInputIdx)++]; if((((c)&0xfffffc00 )==0xd800)) { uint16_t __c2; if((fp->fInputIdx)!=(fActiveLimit ) && (((__c2=(inputBuf)[(fp->fInputIdx)])&0xfffffc00 )==0xdc00)) { ++(fp->fInputIdx); (c)=(((UChar32)((c))<< 10UL)+(UChar32)(__c2)-((0xd800<<10UL)+0xdc00-0x10000)); } } } while (false); |
5290 | if (u_foldCaseu_foldCase_71(c, U_FOLD_CASE_DEFAULT0) == opValue) { |
5291 | break; |
5292 | } |
5293 | } else { |
5294 | fHitEnd = TRUE1; |
5295 | } |
5296 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
5297 | break; |
5298 | |
5299 | case URX_STRING_I: |
5300 | // Case-insensitive test input against a literal string. |
5301 | // Strings require two slots in the compiled pattern, one for the |
5302 | // offset to the string text, and one for the length. |
5303 | // The compiled string has already been case folded. |
5304 | { |
5305 | const UChar *patternString = litText + opValue; |
5306 | |
5307 | op = (int32_t)pat[fp->fPatIdx]; |
5308 | fp->fPatIdx++; |
5309 | opType = URX_TYPE(op)((uint32_t)(op) >> 24); |
5310 | opValue = URX_VAL(op)((op) & 0xffffff); |
5311 | U_ASSERT(opType == URX_STRING_LEN)(void)0; |
5312 | int32_t patternStringLen = opValue; // Length of the string from the pattern. |
5313 | |
5314 | UChar32 cText; |
5315 | UChar32 cPattern; |
5316 | UBool success = TRUE1; |
5317 | int32_t patternStringIdx = 0; |
5318 | CaseFoldingUCharIterator inputIterator(inputBuf, fp->fInputIdx, fActiveLimit); |
5319 | while (patternStringIdx < patternStringLen) { |
5320 | U16_NEXT(patternString, patternStringIdx, patternStringLen, cPattern)do { (cPattern)=(patternString)[(patternStringIdx)++]; if(((( cPattern)&0xfffffc00)==0xd800)) { uint16_t __c2; if((patternStringIdx )!=(patternStringLen) && (((__c2=(patternString)[(patternStringIdx )])&0xfffffc00)==0xdc00)) { ++(patternStringIdx); (cPattern )=(((UChar32)((cPattern))<<10UL)+(UChar32)(__c2)-((0xd800 <<10UL)+0xdc00-0x10000)); } } } while (false); |
5321 | cText = inputIterator.next(); |
5322 | if (cText != cPattern) { |
5323 | success = FALSE0; |
5324 | if (cText == U_SENTINEL(-1)) { |
5325 | fHitEnd = TRUE1; |
5326 | } |
5327 | break; |
5328 | } |
5329 | } |
5330 | if (inputIterator.inExpansion()) { |
5331 | success = FALSE0; |
5332 | } |
5333 | |
5334 | if (success) { |
5335 | fp->fInputIdx = inputIterator.getIndex(); |
5336 | } else { |
5337 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
5338 | } |
5339 | } |
5340 | break; |
5341 | |
5342 | case URX_LB_START: |
5343 | { |
5344 | // Entering a look-behind block. |
5345 | // Save Stack Ptr, Input Pos and active input region. |
5346 | // TODO: implement transparent bounds. Ticket #6067 |
5347 | U_ASSERT(opValue>=0 && opValue+4<fPattern->fDataSize)(void)0; |
5348 | fData[opValue] = fStack->size(); |
5349 | fData[opValue+1] = fp->fInputIdx; |
5350 | // Save input string length, then reset to pin any matches to end at |
5351 | // the current position. |
5352 | fData[opValue+2] = fActiveStart; |
5353 | fData[opValue+3] = fActiveLimit; |
5354 | fActiveStart = fRegionStart; |
5355 | fActiveLimit = fp->fInputIdx; |
5356 | // Init the variable containing the start index for attempted matches. |
5357 | fData[opValue+4] = -1; |
5358 | } |
5359 | break; |
5360 | |
5361 | |
5362 | case URX_LB_CONT: |
5363 | { |
5364 | // Positive Look-Behind, at top of loop checking for matches of LB expression |
5365 | // at all possible input starting positions. |
5366 | |
5367 | // Fetch the min and max possible match lengths. They are the operands |
5368 | // of this op in the pattern. |
5369 | int32_t minML = (int32_t)pat[fp->fPatIdx++]; |
5370 | int32_t maxML = (int32_t)pat[fp->fPatIdx++]; |
5371 | U_ASSERT(minML <= maxML)(void)0; |
5372 | U_ASSERT(minML >= 0)(void)0; |
5373 | |
5374 | // Fetch (from data) the last input index where a match was attempted. |
5375 | U_ASSERT(opValue>=0 && opValue+4<fPattern->fDataSize)(void)0; |
5376 | int64_t &lbStartIdx = fData[opValue+4]; |
5377 | if (lbStartIdx < 0) { |
5378 | // First time through loop. |
5379 | lbStartIdx = fp->fInputIdx - minML; |
5380 | if (lbStartIdx > 0 && lbStartIdx < fInputLength) { |
5381 | U16_SET_CP_START(inputBuf, 0, lbStartIdx)do { if(((((inputBuf)[lbStartIdx])&0xfffffc00)==0xdc00) && (lbStartIdx)>(0) && ((((inputBuf)[(lbStartIdx)-1] )&0xfffffc00)==0xd800)) { --(lbStartIdx); } } while (false ); |
5382 | } |
5383 | } else { |
5384 | // 2nd through nth time through the loop. |
5385 | // Back up start position for match by one. |
5386 | if (lbStartIdx == 0) { |
5387 | lbStartIdx--; |
5388 | } else { |
5389 | U16_BACK_1(inputBuf, 0, lbStartIdx)do { if(((((inputBuf)[--(lbStartIdx)])&0xfffffc00)==0xdc00 ) && (lbStartIdx)>(0) && ((((inputBuf)[(lbStartIdx )-1])&0xfffffc00)==0xd800)) { --(lbStartIdx); } } while ( false); |
5390 | } |
5391 | } |
5392 | |
5393 | if (lbStartIdx < 0 || lbStartIdx < fp->fInputIdx - maxML) { |
5394 | // We have tried all potential match starting points without |
5395 | // getting a match. Backtrack out, and out of the |
5396 | // Look Behind altogether. |
5397 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
5398 | fActiveStart = fData[opValue+2]; |
5399 | fActiveLimit = fData[opValue+3]; |
5400 | U_ASSERT(fActiveStart >= 0)(void)0; |
5401 | U_ASSERT(fActiveLimit <= fInputLength)(void)0; |
5402 | break; |
5403 | } |
5404 | |
5405 | // Save state to this URX_LB_CONT op, so failure to match will repeat the loop. |
5406 | // (successful match will fall off the end of the loop.) |
5407 | fp = StateSave(fp, fp->fPatIdx-3, status); |
5408 | fp->fInputIdx = lbStartIdx; |
5409 | } |
5410 | break; |
5411 | |
5412 | case URX_LB_END: |
5413 | // End of a look-behind block, after a successful match. |
5414 | { |
5415 | U_ASSERT(opValue>=0 && opValue+4<fPattern->fDataSize)(void)0; |
5416 | if (fp->fInputIdx != fActiveLimit) { |
5417 | // The look-behind expression matched, but the match did not |
5418 | // extend all the way to the point that we are looking behind from. |
5419 | // FAIL out of here, which will take us back to the LB_CONT, which |
5420 | // will retry the match starting at another position or fail |
5421 | // the look-behind altogether, whichever is appropriate. |
5422 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
5423 | break; |
5424 | } |
5425 | |
5426 | // Look-behind match is good. Restore the original input string region, |
5427 | // which had been truncated to pin the end of the lookbehind match to the |
5428 | // position being looked-behind. |
5429 | fActiveStart = fData[opValue+2]; |
5430 | fActiveLimit = fData[opValue+3]; |
5431 | U_ASSERT(fActiveStart >= 0)(void)0; |
5432 | U_ASSERT(fActiveLimit <= fInputLength)(void)0; |
5433 | } |
5434 | break; |
5435 | |
5436 | |
5437 | case URX_LBN_CONT: |
5438 | { |
5439 | // Negative Look-Behind, at top of loop checking for matches of LB expression |
5440 | // at all possible input starting positions. |
5441 | |
5442 | // Fetch the extra parameters of this op. |
5443 | int32_t minML = (int32_t)pat[fp->fPatIdx++]; |
5444 | int32_t maxML = (int32_t)pat[fp->fPatIdx++]; |
5445 | int32_t continueLoc = (int32_t)pat[fp->fPatIdx++]; |
5446 | continueLoc = URX_VAL(continueLoc)((continueLoc) & 0xffffff); |
5447 | U_ASSERT(minML <= maxML)(void)0; |
5448 | U_ASSERT(minML >= 0)(void)0; |
5449 | U_ASSERT(continueLoc > fp->fPatIdx)(void)0; |
5450 | |
5451 | // Fetch (from data) the last input index where a match was attempted. |
5452 | U_ASSERT(opValue>=0 && opValue+4<fPattern->fDataSize)(void)0; |
5453 | int64_t &lbStartIdx = fData[opValue+4]; |
5454 | if (lbStartIdx < 0) { |
5455 | // First time through loop. |
5456 | lbStartIdx = fp->fInputIdx - minML; |
5457 | if (lbStartIdx > 0 && lbStartIdx < fInputLength) { |
5458 | U16_SET_CP_START(inputBuf, 0, lbStartIdx)do { if(((((inputBuf)[lbStartIdx])&0xfffffc00)==0xdc00) && (lbStartIdx)>(0) && ((((inputBuf)[(lbStartIdx)-1] )&0xfffffc00)==0xd800)) { --(lbStartIdx); } } while (false ); |
5459 | } |
5460 | } else { |
5461 | // 2nd through nth time through the loop. |
5462 | // Back up start position for match by one. |
5463 | if (lbStartIdx == 0) { |
5464 | lbStartIdx--; // Because U16_BACK is unsafe starting at 0. |
5465 | } else { |
5466 | U16_BACK_1(inputBuf, 0, lbStartIdx)do { if(((((inputBuf)[--(lbStartIdx)])&0xfffffc00)==0xdc00 ) && (lbStartIdx)>(0) && ((((inputBuf)[(lbStartIdx )-1])&0xfffffc00)==0xd800)) { --(lbStartIdx); } } while ( false); |
5467 | } |
5468 | } |
5469 | |
5470 | if (lbStartIdx < 0 || lbStartIdx < fp->fInputIdx - maxML) { |
5471 | // We have tried all potential match starting points without |
5472 | // getting a match, which means that the negative lookbehind as |
5473 | // a whole has succeeded. Jump forward to the continue location |
5474 | fActiveStart = fData[opValue+2]; |
5475 | fActiveLimit = fData[opValue+3]; |
5476 | U_ASSERT(fActiveStart >= 0)(void)0; |
5477 | U_ASSERT(fActiveLimit <= fInputLength)(void)0; |
5478 | fp->fPatIdx = continueLoc; |
5479 | break; |
5480 | } |
5481 | |
5482 | // Save state to this URX_LB_CONT op, so failure to match will repeat the loop. |
5483 | // (successful match will cause a FAIL out of the loop altogether.) |
5484 | fp = StateSave(fp, fp->fPatIdx-4, status); |
5485 | fp->fInputIdx = lbStartIdx; |
5486 | } |
5487 | break; |
5488 | |
5489 | case URX_LBN_END: |
5490 | // End of a negative look-behind block, after a successful match. |
5491 | { |
5492 | U_ASSERT(opValue>=0 && opValue+4<fPattern->fDataSize)(void)0; |
5493 | if (fp->fInputIdx != fActiveLimit) { |
5494 | // The look-behind expression matched, but the match did not |
5495 | // extend all the way to the point that we are looking behind from. |
5496 | // FAIL out of here, which will take us back to the LB_CONT, which |
5497 | // will retry the match starting at another position or succeed |
5498 | // the look-behind altogether, whichever is appropriate. |
5499 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
5500 | break; |
5501 | } |
5502 | |
5503 | // Look-behind expression matched, which means look-behind test as |
5504 | // a whole Fails |
5505 | |
5506 | // Restore the original input string length, which had been truncated |
5507 | // inorder to pin the end of the lookbehind match |
5508 | // to the position being looked-behind. |
5509 | fActiveStart = fData[opValue+2]; |
5510 | fActiveLimit = fData[opValue+3]; |
5511 | U_ASSERT(fActiveStart >= 0)(void)0; |
5512 | U_ASSERT(fActiveLimit <= fInputLength)(void)0; |
5513 | |
5514 | // Restore original stack position, discarding any state saved |
5515 | // by the successful pattern match. |
5516 | U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize)(void)0; |
5517 | int32_t newStackSize = (int32_t)fData[opValue]; |
5518 | U_ASSERT(fStack->size() > newStackSize)(void)0; |
5519 | fStack->setSize(newStackSize); |
5520 | |
5521 | // FAIL, which will take control back to someplace |
5522 | // prior to entering the look-behind test. |
5523 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
5524 | } |
5525 | break; |
5526 | |
5527 | |
5528 | case URX_LOOP_SR_I: |
5529 | // Loop Initialization for the optimized implementation of |
5530 | // [some character set]* |
5531 | // This op scans through all matching input. |
5532 | // The following LOOP_C op emulates stack unwinding if the following pattern fails. |
5533 | { |
5534 | U_ASSERT(opValue > 0 && opValue < fSets->size())(void)0; |
5535 | Regex8BitSet *s8 = &fPattern->fSets8[opValue]; |
5536 | UnicodeSet *s = (UnicodeSet *)fSets->elementAt(opValue); |
5537 | |
5538 | // Loop through input, until either the input is exhausted or |
5539 | // we reach a character that is not a member of the set. |
5540 | int32_t ix = (int32_t)fp->fInputIdx; |
5541 | for (;;) { |
5542 | if (ix >= fActiveLimit) { |
5543 | fHitEnd = TRUE1; |
5544 | break; |
5545 | } |
5546 | UChar32 c; |
5547 | U16_NEXT(inputBuf, ix, fActiveLimit, c)do { (c)=(inputBuf)[(ix)++]; if((((c)&0xfffffc00)==0xd800 )) { uint16_t __c2; if((ix)!=(fActiveLimit) && (((__c2 =(inputBuf)[(ix)])&0xfffffc00)==0xdc00)) { ++(ix); (c)=(( (UChar32)((c))<<10UL)+(UChar32)(__c2)-((0xd800<<10UL )+0xdc00-0x10000)); } } } while (false); |
5548 | if (c<256) { |
5549 | if (s8->contains(c) == FALSE0) { |
5550 | U16_BACK_1(inputBuf, 0, ix)do { if(((((inputBuf)[--(ix)])&0xfffffc00)==0xdc00) && (ix)>(0) && ((((inputBuf)[(ix)-1])&0xfffffc00 )==0xd800)) { --(ix); } } while (false); |
5551 | break; |
5552 | } |
5553 | } else { |
5554 | if (s->contains(c) == FALSE0) { |
5555 | U16_BACK_1(inputBuf, 0, ix)do { if(((((inputBuf)[--(ix)])&0xfffffc00)==0xdc00) && (ix)>(0) && ((((inputBuf)[(ix)-1])&0xfffffc00 )==0xd800)) { --(ix); } } while (false); |
5556 | break; |
5557 | } |
5558 | } |
5559 | } |
5560 | |
5561 | // If there were no matching characters, skip over the loop altogether. |
5562 | // The loop doesn't run at all, a * op always succeeds. |
5563 | if (ix == fp->fInputIdx) { |
5564 | fp->fPatIdx++; // skip the URX_LOOP_C op. |
5565 | break; |
5566 | } |
5567 | |
5568 | // Peek ahead in the compiled pattern, to the URX_LOOP_C that |
5569 | // must follow. It's operand is the stack location |
5570 | // that holds the starting input index for the match of this [set]* |
5571 | int32_t loopcOp = (int32_t)pat[fp->fPatIdx]; |
5572 | U_ASSERT(URX_TYPE(loopcOp) == URX_LOOP_C)(void)0; |
5573 | int32_t stackLoc = URX_VAL(loopcOp)((loopcOp) & 0xffffff); |
5574 | U_ASSERT(stackLoc >= 0 && stackLoc < fFrameSize)(void)0; |
5575 | fp->fExtra[stackLoc] = fp->fInputIdx; |
5576 | fp->fInputIdx = ix; |
5577 | |
5578 | // Save State to the URX_LOOP_C op that follows this one, |
5579 | // so that match failures in the following code will return to there. |
5580 | // Then bump the pattern idx so the LOOP_C is skipped on the way out of here. |
5581 | fp = StateSave(fp, fp->fPatIdx, status); |
5582 | fp->fPatIdx++; |
5583 | } |
5584 | break; |
5585 | |
5586 | |
5587 | case URX_LOOP_DOT_I: |
5588 | // Loop Initialization for the optimized implementation of .* |
5589 | // This op scans through all remaining input. |
5590 | // The following LOOP_C op emulates stack unwinding if the following pattern fails. |
5591 | { |
5592 | // Loop through input until the input is exhausted (we reach an end-of-line) |
5593 | // In DOTALL mode, we can just go straight to the end of the input. |
5594 | int32_t ix; |
5595 | if ((opValue & 1) == 1) { |
5596 | // Dot-matches-All mode. Jump straight to the end of the string. |
5597 | ix = (int32_t)fActiveLimit; |
5598 | fHitEnd = TRUE1; |
5599 | } else { |
5600 | // NOT DOT ALL mode. Line endings do not match '.' |
5601 | // Scan forward until a line ending or end of input. |
5602 | ix = (int32_t)fp->fInputIdx; |
5603 | for (;;) { |
5604 | if (ix >= fActiveLimit) { |
5605 | fHitEnd = TRUE1; |
5606 | break; |
5607 | } |
5608 | UChar32 c; |
5609 | U16_NEXT(inputBuf, ix, fActiveLimit, c)do { (c)=(inputBuf)[(ix)++]; if((((c)&0xfffffc00)==0xd800 )) { uint16_t __c2; if((ix)!=(fActiveLimit) && (((__c2 =(inputBuf)[(ix)])&0xfffffc00)==0xdc00)) { ++(ix); (c)=(( (UChar32)((c))<<10UL)+(UChar32)(__c2)-((0xd800<<10UL )+0xdc00-0x10000)); } } } while (false); // c = inputBuf[ix++] |
5610 | if ((c & 0x7f) <= 0x29) { // Fast filter of non-new-line-s |
5611 | if ((c == 0x0a) || // 0x0a is newline in both modes. |
5612 | (((opValue & 2) == 0) && // IF not UNIX_LINES mode |
5613 | isLineTerminator(c))) { |
5614 | // char is a line ending. Put the input pos back to the |
5615 | // line ending char, and exit the scanning loop. |
5616 | U16_BACK_1(inputBuf, 0, ix)do { if(((((inputBuf)[--(ix)])&0xfffffc00)==0xdc00) && (ix)>(0) && ((((inputBuf)[(ix)-1])&0xfffffc00 )==0xd800)) { --(ix); } } while (false); |
5617 | break; |
5618 | } |
5619 | } |
5620 | } |
5621 | } |
5622 | |
5623 | // If there were no matching characters, skip over the loop altogether. |
5624 | // The loop doesn't run at all, a * op always succeeds. |
5625 | if (ix == fp->fInputIdx) { |
5626 | fp->fPatIdx++; // skip the URX_LOOP_C op. |
5627 | break; |
5628 | } |
5629 | |
5630 | // Peek ahead in the compiled pattern, to the URX_LOOP_C that |
5631 | // must follow. It's operand is the stack location |
5632 | // that holds the starting input index for the match of this .* |
5633 | int32_t loopcOp = (int32_t)pat[fp->fPatIdx]; |
5634 | U_ASSERT(URX_TYPE(loopcOp) == URX_LOOP_C)(void)0; |
5635 | int32_t stackLoc = URX_VAL(loopcOp)((loopcOp) & 0xffffff); |
5636 | U_ASSERT(stackLoc >= 0 && stackLoc < fFrameSize)(void)0; |
5637 | fp->fExtra[stackLoc] = fp->fInputIdx; |
5638 | fp->fInputIdx = ix; |
5639 | |
5640 | // Save State to the URX_LOOP_C op that follows this one, |
5641 | // so that match failures in the following code will return to there. |
5642 | // Then bump the pattern idx so the LOOP_C is skipped on the way out of here. |
5643 | fp = StateSave(fp, fp->fPatIdx, status); |
5644 | fp->fPatIdx++; |
5645 | } |
5646 | break; |
5647 | |
5648 | |
5649 | case URX_LOOP_C: |
5650 | { |
5651 | U_ASSERT(opValue>=0 && opValue<fFrameSize)(void)0; |
5652 | backSearchIndex = (int32_t)fp->fExtra[opValue]; |
5653 | U_ASSERT(backSearchIndex <= fp->fInputIdx)(void)0; |
5654 | if (backSearchIndex == fp->fInputIdx) { |
5655 | // We've backed up the input idx to the point that the loop started. |
5656 | // The loop is done. Leave here without saving state. |
5657 | // Subsequent failures won't come back here. |
5658 | break; |
5659 | } |
5660 | // Set up for the next iteration of the loop, with input index |
5661 | // backed up by one from the last time through, |
5662 | // and a state save to this instruction in case the following code fails again. |
5663 | // (We're going backwards because this loop emulates stack unwinding, not |
5664 | // the initial scan forward.) |
5665 | U_ASSERT(fp->fInputIdx > 0)(void)0; |
5666 | UChar32 prevC; |
5667 | U16_PREV(inputBuf, 0, fp->fInputIdx, prevC)do { (prevC)=(inputBuf)[--(fp->fInputIdx)]; if((((prevC)& 0xfffffc00)==0xdc00)) { uint16_t __c2; if((fp->fInputIdx)> (0) && (((__c2=(inputBuf)[(fp->fInputIdx)-1])& 0xfffffc00)==0xd800)) { --(fp->fInputIdx); (prevC)=(((UChar32 )(__c2)<<10UL)+(UChar32)((prevC))-((0xd800<<10UL) +0xdc00-0x10000)); } } } while (false); // !!!: should this 0 be one of f*Limit? |
5668 | |
5669 | if (prevC == 0x0a && |
5670 | fp->fInputIdx > backSearchIndex && |
5671 | inputBuf[fp->fInputIdx-1] == 0x0d) { |
5672 | int32_t prevOp = (int32_t)pat[fp->fPatIdx-2]; |
5673 | if (URX_TYPE(prevOp)((uint32_t)(prevOp) >> 24) == URX_LOOP_DOT_I) { |
5674 | // .*, stepping back over CRLF pair. |
5675 | U16_BACK_1(inputBuf, 0, fp->fInputIdx)do { if(((((inputBuf)[--(fp->fInputIdx)])&0xfffffc00)== 0xdc00) && (fp->fInputIdx)>(0) && ((((inputBuf )[(fp->fInputIdx)-1])&0xfffffc00)==0xd800)) { --(fp-> fInputIdx); } } while (false); |
5676 | } |
5677 | } |
5678 | |
5679 | |
5680 | fp = StateSave(fp, fp->fPatIdx-1, status); |
5681 | } |
5682 | break; |
5683 | |
5684 | |
5685 | |
5686 | default: |
5687 | // Trouble. The compiled pattern contains an entry with an |
5688 | // unrecognized type tag. |
5689 | UPRV_UNREACHABLE_ASSERT(void)0; |
5690 | // Unknown opcode type in opType = URX_TYPE(pat[fp->fPatIdx]). But we have |
5691 | // reports of this in production code, don't use UPRV_UNREACHABLE_EXIT. |
5692 | // See ICU-21669. |
5693 | status = U_INTERNAL_PROGRAM_ERROR; |
5694 | } |
5695 | |
5696 | if (U_FAILURE(status)) { |
5697 | isMatch = FALSE0; |
5698 | break; |
5699 | } |
5700 | } |
5701 | |
5702 | breakFromLoop: |
5703 | fMatch = isMatch; |
5704 | if (isMatch) { |
5705 | fLastMatchEnd = fMatchEnd; |
5706 | fMatchStart = startIdx; |
5707 | fMatchEnd = fp->fInputIdx; |
5708 | } |
5709 | |
5710 | #ifdef REGEX_RUN_DEBUG |
5711 | if (fTraceDebug) { |
5712 | if (isMatch) { |
5713 | printf("Match. start=%ld end=%ld\n\n", fMatchStart, fMatchEnd); |
5714 | } else { |
5715 | printf("No match\n\n"); |
5716 | } |
5717 | } |
5718 | #endif |
5719 | |
5720 | fFrame = fp; // The active stack frame when the engine stopped. |
5721 | // Contains the capture group results that we need to |
5722 | // access later. |
5723 | |
5724 | return; |
5725 | } |
5726 | |
5727 | |
5728 | UOBJECT_DEFINE_RTTI_IMPLEMENTATION(RegexMatcher)UClassID RegexMatcher::getStaticClassID() { static char classID = 0; return (UClassID)&classID; } UClassID RegexMatcher:: getDynamicClassID() const { return RegexMatcher::getStaticClassID (); } |
5729 | |
5730 | U_NAMESPACE_END} |
5731 | |
5732 | #endif // !UCONFIG_NO_REGULAR_EXPRESSIONS |
5733 |