Bug Summary

File:out/../deps/v8/src/base/ieee754.cc
Warning:line 492, column 52
The right operand of '*' is a garbage value

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-unknown-linux-gnu -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name ieee754.cc -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -mrelocation-model pic -pic-level 2 -pic-is-pie -mframe-pointer=all -relaxed-aliasing -fmath-errno -ffp-contract=on -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/home/maurizio/node-v18.6.0/out -resource-dir /usr/local/lib/clang/16.0.0 -D _GLIBCXX_USE_CXX11_ABI=1 -D NODE_OPENSSL_CONF_NAME=nodejs_conf -D NODE_OPENSSL_HAS_QUIC -D V8_GYP_BUILD -D V8_TYPED_ARRAY_MAX_SIZE_IN_HEAP=64 -D __STDC_FORMAT_MACROS -D OPENSSL_NO_PINSHARED -D OPENSSL_THREADS -D V8_TARGET_ARCH_X64 -D V8_HAVE_TARGET_OS -D V8_TARGET_OS_LINUX -D V8_EMBEDDER_STRING="-node.8" -D ENABLE_DISASSEMBLER -D V8_PROMISE_INTERNAL_FIELD_COUNT=1 -D V8_SHORT_BUILTIN_CALLS -D OBJECT_PRINT -D V8_INTL_SUPPORT -D V8_ATOMIC_OBJECT_FIELD_WRITES -D V8_ENABLE_LAZY_SOURCE_POSITIONS -D V8_USE_SIPHASH -D V8_SHARED_RO_HEAP -D V8_WIN64_UNWINDING_INFO -D V8_ENABLE_REGEXP_INTERPRETER_THREADED_DISPATCH -D V8_SNAPSHOT_COMPRESSION -D V8_ENABLE_WEBASSEMBLY -D V8_ENABLE_JAVASCRIPT_PROMISE_HOOKS -D V8_ALLOCATION_FOLDING -D V8_ALLOCATION_SITE_TRACKING -D V8_SCRIPTORMODULE_LEGACY_LIFETIME -D V8_ADVANCED_BIGINT_ALGORITHMS -D BUILDING_V8_BASE_SHARED -I ../deps/v8 -I ../deps/v8/include -internal-isystem /usr/lib/gcc/x86_64-redhat-linux/8/../../../../include/c++/8 -internal-isystem /usr/lib/gcc/x86_64-redhat-linux/8/../../../../include/c++/8/x86_64-redhat-linux -internal-isystem /usr/lib/gcc/x86_64-redhat-linux/8/../../../../include/c++/8/backward -internal-isystem /usr/local/lib/clang/16.0.0/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-redhat-linux/8/../../../../x86_64-redhat-linux/include -internal-externc-isystem /include -internal-externc-isystem /usr/include -O3 -Wno-unused-parameter -Wno-return-type -std=gnu++17 -fdeprecated-macro -fdebug-compilation-dir=/home/maurizio/node-v18.6.0/out -ferror-limit 19 -fno-rtti -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -analyzer-output=html -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2022-08-22-142216-507842-1 -x c++ ../deps/v8/src/base/ieee754.cc
1// The following is adapted from fdlibm (http://www.netlib.org/fdlibm).
2//
3// ====================================================
4// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5//
6// Developed at SunSoft, a Sun Microsystems, Inc. business.
7// Permission to use, copy, modify, and distribute this
8// software is freely granted, provided that this notice
9// is preserved.
10// ====================================================
11//
12// The original source code covered by the above license above has been
13// modified significantly by Google Inc.
14// Copyright 2016 the V8 project authors. All rights reserved.
15
16#include "src/base/ieee754.h"
17
18#include <cmath>
19#include <limits>
20
21#include "src/base/build_config.h"
22#include "src/base/macros.h"
23#include "src/base/overflowing-math.h"
24
25namespace v8 {
26namespace base {
27namespace ieee754 {
28
29namespace {
30
31/* Disable "potential divide by 0" warning in Visual Studio compiler. */
32
33#if V8_CC_MSVC
34
35#pragma warning(disable : 4723)
36
37#endif
38
39/*
40 * The original fdlibm code used statements like:
41 * n0 = ((*(int*)&one)>>29)^1; * index of high word *
42 * ix0 = *(n0+(int*)&x); * high word of x *
43 * ix1 = *((1-n0)+(int*)&x); * low word of x *
44 * to dig two 32 bit words out of the 64 bit IEEE floating point
45 * value. That is non-ANSI, and, moreover, the gcc instruction
46 * scheduler gets it wrong. We instead use the following macros.
47 * Unlike the original code, we determine the endianness at compile
48 * time, not at run time; I don't see much benefit to selecting
49 * endianness at run time.
50 */
51
52/* Get two 32 bit ints from a double. */
53
54#define EXTRACT_WORDS(ix0, ix1, d) \
55 do { \
56 uint64_t bits = bit_cast<uint64_t>(d); \
57 (ix0) = bits >> 32; \
58 (ix1) = bits & 0xFFFFFFFFu; \
59 } while (false)
60
61/* Get the more significant 32 bit int from a double. */
62
63#define GET_HIGH_WORD(i, d) \
64 do { \
65 uint64_t bits = bit_cast<uint64_t>(d); \
66 (i) = bits >> 32; \
67 } while (false)
68
69/* Get the less significant 32 bit int from a double. */
70
71#define GET_LOW_WORD(i, d) \
72 do { \
73 uint64_t bits = bit_cast<uint64_t>(d); \
74 (i) = bits & 0xFFFFFFFFu; \
75 } while (false)
76
77/* Set a double from two 32 bit ints. */
78
79#define INSERT_WORDS(d, ix0, ix1) \
80 do { \
81 uint64_t bits = 0; \
82 bits |= static_cast<uint64_t>(ix0) << 32; \
83 bits |= static_cast<uint32_t>(ix1); \
84 (d) = bit_cast<double>(bits); \
85 } while (false)
86
87/* Set the more significant 32 bits of a double from an int. */
88
89#define SET_HIGH_WORD(d, v) \
90 do { \
91 uint64_t bits = bit_cast<uint64_t>(d); \
92 bits &= 0x0000'0000'FFFF'FFFF; \
93 bits |= static_cast<uint64_t>(v) << 32; \
94 (d) = bit_cast<double>(bits); \
95 } while (false)
96
97/* Set the less significant 32 bits of a double from an int. */
98
99#define SET_LOW_WORD(d, v) \
100 do { \
101 uint64_t bits = bit_cast<uint64_t>(d); \
102 bits &= 0xFFFF'FFFF'0000'0000; \
103 bits |= static_cast<uint32_t>(v); \
104 (d) = bit_cast<double>(bits); \
105 } while (false)
106
107int32_t __ieee754_rem_pio2(double x, double* y) V8_WARN_UNUSED_RESULT__attribute__((warn_unused_result));
108double __kernel_cos(double x, double y) V8_WARN_UNUSED_RESULT__attribute__((warn_unused_result));
109int __kernel_rem_pio2(double* x, double* y, int e0, int nx, int prec,
110 const int32_t* ipio2) V8_WARN_UNUSED_RESULT__attribute__((warn_unused_result));
111double __kernel_sin(double x, double y, int iy) V8_WARN_UNUSED_RESULT__attribute__((warn_unused_result));
112
113/* __ieee754_rem_pio2(x,y)
114 *
115 * return the remainder of x rem pi/2 in y[0]+y[1]
116 * use __kernel_rem_pio2()
117 */
118int32_t __ieee754_rem_pio2(double x, double *y) {
119 /*
120 * Table of constants for 2/pi, 396 Hex digits (476 decimal) of 2/pi
121 */
122 static const int32_t two_over_pi[] = {
123 0xA2F983, 0x6E4E44, 0x1529FC, 0x2757D1, 0xF534DD, 0xC0DB62, 0x95993C,
124 0x439041, 0xFE5163, 0xABDEBB, 0xC561B7, 0x246E3A, 0x424DD2, 0xE00649,
125 0x2EEA09, 0xD1921C, 0xFE1DEB, 0x1CB129, 0xA73EE8, 0x8235F5, 0x2EBB44,
126 0x84E99C, 0x7026B4, 0x5F7E41, 0x3991D6, 0x398353, 0x39F49C, 0x845F8B,
127 0xBDF928, 0x3B1FF8, 0x97FFDE, 0x05980F, 0xEF2F11, 0x8B5A0A, 0x6D1F6D,
128 0x367ECF, 0x27CB09, 0xB74F46, 0x3F669E, 0x5FEA2D, 0x7527BA, 0xC7EBE5,
129 0xF17B3D, 0x0739F7, 0x8A5292, 0xEA6BFB, 0x5FB11F, 0x8D5D08, 0x560330,
130 0x46FC7B, 0x6BABF0, 0xCFBC20, 0x9AF436, 0x1DA9E3, 0x91615E, 0xE61B08,
131 0x659985, 0x5F14A0, 0x68408D, 0xFFD880, 0x4D7327, 0x310606, 0x1556CA,
132 0x73A8C9, 0x60E27B, 0xC08C6B,
133 };
134
135 static const int32_t npio2_hw[] = {
136 0x3FF921FB, 0x400921FB, 0x4012D97C, 0x401921FB, 0x401F6A7A, 0x4022D97C,
137 0x4025FDBB, 0x402921FB, 0x402C463A, 0x402F6A7A, 0x4031475C, 0x4032D97C,
138 0x40346B9C, 0x4035FDBB, 0x40378FDB, 0x403921FB, 0x403AB41B, 0x403C463A,
139 0x403DD85A, 0x403F6A7A, 0x40407E4C, 0x4041475C, 0x4042106C, 0x4042D97C,
140 0x4043A28C, 0x40446B9C, 0x404534AC, 0x4045FDBB, 0x4046C6CB, 0x40478FDB,
141 0x404858EB, 0x404921FB,
142 };
143
144 /*
145 * invpio2: 53 bits of 2/pi
146 * pio2_1: first 33 bit of pi/2
147 * pio2_1t: pi/2 - pio2_1
148 * pio2_2: second 33 bit of pi/2
149 * pio2_2t: pi/2 - (pio2_1+pio2_2)
150 * pio2_3: third 33 bit of pi/2
151 * pio2_3t: pi/2 - (pio2_1+pio2_2+pio2_3)
152 */
153
154 static const double
155 zero = 0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
156 half = 5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */
157 two24 = 1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */
158 invpio2 = 6.36619772367581382433e-01, /* 0x3FE45F30, 0x6DC9C883 */
159 pio2_1 = 1.57079632673412561417e+00, /* 0x3FF921FB, 0x54400000 */
160 pio2_1t = 6.07710050650619224932e-11, /* 0x3DD0B461, 0x1A626331 */
161 pio2_2 = 6.07710050630396597660e-11, /* 0x3DD0B461, 0x1A600000 */
162 pio2_2t = 2.02226624879595063154e-21, /* 0x3BA3198A, 0x2E037073 */
163 pio2_3 = 2.02226624871116645580e-21, /* 0x3BA3198A, 0x2E000000 */
164 pio2_3t = 8.47842766036889956997e-32; /* 0x397B839A, 0x252049C1 */
165
166 double z, w, t, r, fn;
167 double tx[3];
168 int32_t e0, i, j, nx, n, ix, hx;
169 uint32_t low;
170
171 z = 0;
172 GET_HIGH_WORD(hx, x); /* high word of x */
173 ix = hx & 0x7FFFFFFF;
174 if (ix <= 0x3FE921FB) { /* |x| ~<= pi/4 , no need for reduction */
175 y[0] = x;
176 y[1] = 0;
177 return 0;
178 }
179 if (ix < 0x4002D97C) { /* |x| < 3pi/4, special case with n=+-1 */
180 if (hx > 0) {
181 z = x - pio2_1;
182 if (ix != 0x3FF921FB) { /* 33+53 bit pi is good enough */
183 y[0] = z - pio2_1t;
184 y[1] = (z - y[0]) - pio2_1t;
185 } else { /* near pi/2, use 33+33+53 bit pi */
186 z -= pio2_2;
187 y[0] = z - pio2_2t;
188 y[1] = (z - y[0]) - pio2_2t;
189 }
190 return 1;
191 } else { /* negative x */
192 z = x + pio2_1;
193 if (ix != 0x3FF921FB) { /* 33+53 bit pi is good enough */
194 y[0] = z + pio2_1t;
195 y[1] = (z - y[0]) + pio2_1t;
196 } else { /* near pi/2, use 33+33+53 bit pi */
197 z += pio2_2;
198 y[0] = z + pio2_2t;
199 y[1] = (z - y[0]) + pio2_2t;
200 }
201 return -1;
202 }
203 }
204 if (ix <= 0x413921FB) { /* |x| ~<= 2^19*(pi/2), medium size */
205 t = fabs(x);
206 n = static_cast<int32_t>(t * invpio2 + half);
207 fn = static_cast<double>(n);
208 r = t - fn * pio2_1;
209 w = fn * pio2_1t; /* 1st round good to 85 bit */
210 if (n < 32 && ix != npio2_hw[n - 1]) {
211 y[0] = r - w; /* quick check no cancellation */
212 } else {
213 uint32_t high;
214 j = ix >> 20;
215 y[0] = r - w;
216 GET_HIGH_WORD(high, y[0]);
217 i = j - ((high >> 20) & 0x7FF);
218 if (i > 16) { /* 2nd iteration needed, good to 118 */
219 t = r;
220 w = fn * pio2_2;
221 r = t - w;
222 w = fn * pio2_2t - ((t - r) - w);
223 y[0] = r - w;
224 GET_HIGH_WORD(high, y[0]);
225 i = j - ((high >> 20) & 0x7FF);
226 if (i > 49) { /* 3rd iteration need, 151 bits acc */
227 t = r; /* will cover all possible cases */
228 w = fn * pio2_3;
229 r = t - w;
230 w = fn * pio2_3t - ((t - r) - w);
231 y[0] = r - w;
232 }
233 }
234 }
235 y[1] = (r - y[0]) - w;
236 if (hx < 0) {
237 y[0] = -y[0];
238 y[1] = -y[1];
239 return -n;
240 } else {
241 return n;
242 }
243 }
244 /*
245 * all other (large) arguments
246 */
247 if (ix >= 0x7FF00000) { /* x is inf or NaN */
248 y[0] = y[1] = x - x;
249 return 0;
250 }
251 /* set z = scalbn(|x|,ilogb(x)-23) */
252 GET_LOW_WORD(low, x);
253 SET_LOW_WORD(z, low);
254 e0 = (ix >> 20) - 1046; /* e0 = ilogb(z)-23; */
255 SET_HIGH_WORD(z, ix - static_cast<int32_t>(static_cast<uint32_t>(e0) << 20));
256 for (i = 0; i < 2; i++) {
257 tx[i] = static_cast<double>(static_cast<int32_t>(z));
258 z = (z - tx[i]) * two24;
259 }
260 tx[2] = z;
261 nx = 3;
262 while (tx[nx - 1] == zero) nx--; /* skip zero term */
263 n = __kernel_rem_pio2(tx, y, e0, nx, 2, two_over_pi);
264 if (hx < 0) {
265 y[0] = -y[0];
266 y[1] = -y[1];
267 return -n;
268 }
269 return n;
270}
271
272/* __kernel_cos( x, y )
273 * kernel cos function on [-pi/4, pi/4], pi/4 ~ 0.785398164
274 * Input x is assumed to be bounded by ~pi/4 in magnitude.
275 * Input y is the tail of x.
276 *
277 * Algorithm
278 * 1. Since cos(-x) = cos(x), we need only to consider positive x.
279 * 2. if x < 2^-27 (hx<0x3E400000 0), return 1 with inexact if x!=0.
280 * 3. cos(x) is approximated by a polynomial of degree 14 on
281 * [0,pi/4]
282 * 4 14
283 * cos(x) ~ 1 - x*x/2 + C1*x + ... + C6*x
284 * where the remez error is
285 *
286 * | 2 4 6 8 10 12 14 | -58
287 * |cos(x)-(1-.5*x +C1*x +C2*x +C3*x +C4*x +C5*x +C6*x )| <= 2
288 * | |
289 *
290 * 4 6 8 10 12 14
291 * 4. let r = C1*x +C2*x +C3*x +C4*x +C5*x +C6*x , then
292 * cos(x) = 1 - x*x/2 + r
293 * since cos(x+y) ~ cos(x) - sin(x)*y
294 * ~ cos(x) - x*y,
295 * a correction term is necessary in cos(x) and hence
296 * cos(x+y) = 1 - (x*x/2 - (r - x*y))
297 * For better accuracy when x > 0.3, let qx = |x|/4 with
298 * the last 32 bits mask off, and if x > 0.78125, let qx = 0.28125.
299 * Then
300 * cos(x+y) = (1-qx) - ((x*x/2-qx) - (r-x*y)).
301 * Note that 1-qx and (x*x/2-qx) is EXACT here, and the
302 * magnitude of the latter is at least a quarter of x*x/2,
303 * thus, reducing the rounding error in the subtraction.
304 */
305V8_INLINEinline __attribute__((always_inline)) double __kernel_cos(double x, double y) {
306 static const double
307 one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
308 C1 = 4.16666666666666019037e-02, /* 0x3FA55555, 0x5555554C */
309 C2 = -1.38888888888741095749e-03, /* 0xBF56C16C, 0x16C15177 */
310 C3 = 2.48015872894767294178e-05, /* 0x3EFA01A0, 0x19CB1590 */
311 C4 = -2.75573143513906633035e-07, /* 0xBE927E4F, 0x809C52AD */
312 C5 = 2.08757232129817482790e-09, /* 0x3E21EE9E, 0xBDB4B1C4 */
313 C6 = -1.13596475577881948265e-11; /* 0xBDA8FAE9, 0xBE8838D4 */
314
315 double a, iz, z, r, qx;
316 int32_t ix;
317 GET_HIGH_WORD(ix, x);
318 ix &= 0x7FFFFFFF; /* ix = |x|'s high word*/
319 if (ix < 0x3E400000) { /* if x < 2**27 */
320 if (static_cast<int>(x) == 0) return one; /* generate inexact */
321 }
322 z = x * x;
323 r = z * (C1 + z * (C2 + z * (C3 + z * (C4 + z * (C5 + z * C6)))));
324 if (ix < 0x3FD33333) { /* if |x| < 0.3 */
325 return one - (0.5 * z - (z * r - x * y));
326 } else {
327 if (ix > 0x3FE90000) { /* x > 0.78125 */
328 qx = 0.28125;
329 } else {
330 INSERT_WORDS(qx, ix - 0x00200000, 0); /* x/4 */
331 }
332 iz = 0.5 * z - qx;
333 a = one - qx;
334 return a - (iz - (z * r - x * y));
335 }
336}
337
338/* __kernel_rem_pio2(x,y,e0,nx,prec,ipio2)
339 * double x[],y[]; int e0,nx,prec; int ipio2[];
340 *
341 * __kernel_rem_pio2 return the last three digits of N with
342 * y = x - N*pi/2
343 * so that |y| < pi/2.
344 *
345 * The method is to compute the integer (mod 8) and fraction parts of
346 * (2/pi)*x without doing the full multiplication. In general we
347 * skip the part of the product that are known to be a huge integer (
348 * more accurately, = 0 mod 8 ). Thus the number of operations are
349 * independent of the exponent of the input.
350 *
351 * (2/pi) is represented by an array of 24-bit integers in ipio2[].
352 *
353 * Input parameters:
354 * x[] The input value (must be positive) is broken into nx
355 * pieces of 24-bit integers in double precision format.
356 * x[i] will be the i-th 24 bit of x. The scaled exponent
357 * of x[0] is given in input parameter e0 (i.e., x[0]*2^e0
358 * match x's up to 24 bits.
359 *
360 * Example of breaking a double positive z into x[0]+x[1]+x[2]:
361 * e0 = ilogb(z)-23
362 * z = scalbn(z,-e0)
363 * for i = 0,1,2
364 * x[i] = floor(z)
365 * z = (z-x[i])*2**24
366 *
367 *
368 * y[] output result in an array of double precision numbers.
369 * The dimension of y[] is:
370 * 24-bit precision 1
371 * 53-bit precision 2
372 * 64-bit precision 2
373 * 113-bit precision 3
374 * The actual value is the sum of them. Thus for 113-bit
375 * precison, one may have to do something like:
376 *
377 * long double t,w,r_head, r_tail;
378 * t = (long double)y[2] + (long double)y[1];
379 * w = (long double)y[0];
380 * r_head = t+w;
381 * r_tail = w - (r_head - t);
382 *
383 * e0 The exponent of x[0]
384 *
385 * nx dimension of x[]
386 *
387 * prec an integer indicating the precision:
388 * 0 24 bits (single)
389 * 1 53 bits (double)
390 * 2 64 bits (extended)
391 * 3 113 bits (quad)
392 *
393 * ipio2[]
394 * integer array, contains the (24*i)-th to (24*i+23)-th
395 * bit of 2/pi after binary point. The corresponding
396 * floating value is
397 *
398 * ipio2[i] * 2^(-24(i+1)).
399 *
400 * External function:
401 * double scalbn(), floor();
402 *
403 *
404 * Here is the description of some local variables:
405 *
406 * jk jk+1 is the initial number of terms of ipio2[] needed
407 * in the computation. The recommended value is 2,3,4,
408 * 6 for single, double, extended,and quad.
409 *
410 * jz local integer variable indicating the number of
411 * terms of ipio2[] used.
412 *
413 * jx nx - 1
414 *
415 * jv index for pointing to the suitable ipio2[] for the
416 * computation. In general, we want
417 * ( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8
418 * is an integer. Thus
419 * e0-3-24*jv >= 0 or (e0-3)/24 >= jv
420 * Hence jv = max(0,(e0-3)/24).
421 *
422 * jp jp+1 is the number of terms in PIo2[] needed, jp = jk.
423 *
424 * q[] double array with integral value, representing the
425 * 24-bits chunk of the product of x and 2/pi.
426 *
427 * q0 the corresponding exponent of q[0]. Note that the
428 * exponent for q[i] would be q0-24*i.
429 *
430 * PIo2[] double precision array, obtained by cutting pi/2
431 * into 24 bits chunks.
432 *
433 * f[] ipio2[] in floating point
434 *
435 * iq[] integer array by breaking up q[] in 24-bits chunk.
436 *
437 * fq[] final product of x*(2/pi) in fq[0],..,fq[jk]
438 *
439 * ih integer. If >0 it indicates q[] is >= 0.5, hence
440 * it also indicates the *sign* of the result.
441 *
442 */
443int __kernel_rem_pio2(double *x, double *y, int e0, int nx, int prec,
444 const int32_t *ipio2) {
445 /* Constants:
446 * The hexadecimal values are the intended ones for the following
447 * constants. The decimal values may be used, provided that the
448 * compiler will convert from decimal to binary accurately enough
449 * to produce the hexadecimal values shown.
450 */
451 static const int init_jk[] = {2, 3, 4, 6}; /* initial value for jk */
452
453 static const double PIo2[] = {
454 1.57079625129699707031e+00, /* 0x3FF921FB, 0x40000000 */
455 7.54978941586159635335e-08, /* 0x3E74442D, 0x00000000 */
456 5.39030252995776476554e-15, /* 0x3CF84698, 0x80000000 */
457 3.28200341580791294123e-22, /* 0x3B78CC51, 0x60000000 */
458 1.27065575308067607349e-29, /* 0x39F01B83, 0x80000000 */
459 1.22933308981111328932e-36, /* 0x387A2520, 0x40000000 */
460 2.73370053816464559624e-44, /* 0x36E38222, 0x80000000 */
461 2.16741683877804819444e-51, /* 0x3569F31D, 0x00000000 */
462 };
463
464 static const double
465 zero = 0.0,
466 one = 1.0,
467 two24 = 1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */
468 twon24 = 5.96046447753906250000e-08; /* 0x3E700000, 0x00000000 */
469
470 int32_t jz, jx, jv, jp, jk, carry, n, iq[20], i, j, k, m, q0, ih;
471 double z, fw, f[20], fq[20], q[20];
472
473 /* initialize jk*/
474 jk = init_jk[prec];
475 jp = jk;
476
477 /* determine jx,jv,q0, note that 3>q0 */
478 jx = nx - 1;
479 jv = (e0 - 3) / 24;
480 if (jv < 0) jv = 0;
1
Assuming 'jv' is >= 0
2
Taking false branch
481 q0 = e0 - 24 * (jv + 1);
482
483 /* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */
484 j = jv - jx;
485 m = jx + jk;
486 for (i = 0; i <= m; i++, j++) {
3
Assuming 'i' is > 'm'
4
Loop condition is false. Execution continues on line 491
487 f[i] = (j < 0) ? zero : static_cast<double>(ipio2[j]);
488 }
489
490 /* compute q[0],q[1],...q[jk] */
491 for (i = 0; i <= jk; i++) {
5
Assuming 'i' is <= 'jk'
6
Loop condition is true. Entering loop body
13
Loop condition is true. Entering loop body
492 for (j = 0, fw = 0.0; j <= jx; j++) fw += x[j] * f[jx + i - j];
7
Assuming 'j' is <= 'jx'
8
Loop condition is true. Entering loop body
9
Assuming 'j' is <= 'jx'
10
Loop condition is true. Entering loop body
11
Assuming 'j' is > 'jx'
12
Loop condition is false. Execution continues on line 493
14
Loop condition is true. Entering loop body
15
The right operand of '*' is a garbage value
493 q[i] = fw;
494 }
495
496 jz = jk;
497recompute:
498 /* distill q[] into iq[] reversingly */
499 for (i = 0, j = jz, z = q[jz]; j > 0; i++, j--) {
500 fw = static_cast<double>(static_cast<int32_t>(twon24 * z));
501 iq[i] = static_cast<int32_t>(z - two24 * fw);
502 z = q[j - 1] + fw;
503 }
504
505 /* compute n */
506 z = scalbn(z, q0); /* actual value of z */
507 z -= 8.0 * floor(z * 0.125); /* trim off integer >= 8 */
508 n = static_cast<int32_t>(z);
509 z -= static_cast<double>(n);
510 ih = 0;
511 if (q0 > 0) { /* need iq[jz-1] to determine n */
512 i = (iq[jz - 1] >> (24 - q0));
513 n += i;
514 iq[jz - 1] -= i << (24 - q0);
515 ih = iq[jz - 1] >> (23 - q0);
516 } else if (q0 == 0) {
517 ih = iq[jz - 1] >> 23;
518 } else if (z >= 0.5) {
519 ih = 2;
520 }
521
522 if (ih > 0) { /* q > 0.5 */
523 n += 1;
524 carry = 0;
525 for (i = 0; i < jz; i++) { /* compute 1-q */
526 j = iq[i];
527 if (carry == 0) {
528 if (j != 0) {
529 carry = 1;
530 iq[i] = 0x1000000 - j;
531 }
532 } else {
533 iq[i] = 0xFFFFFF - j;
534 }
535 }
536 if (q0 > 0) { /* rare case: chance is 1 in 12 */
537 switch (q0) {
538 case 1:
539 iq[jz - 1] &= 0x7FFFFF;
540 break;
541 case 2:
542 iq[jz - 1] &= 0x3FFFFF;
543 break;
544 }
545 }
546 if (ih == 2) {
547 z = one - z;
548 if (carry != 0) z -= scalbn(one, q0);
549 }
550 }
551
552 /* check if recomputation is needed */
553 if (z == zero) {
554 j = 0;
555 for (i = jz - 1; i >= jk; i--) j |= iq[i];
556 if (j == 0) { /* need recomputation */
557 for (k = 1; jk >= k && iq[jk - k] == 0; k++) {
558 /* k = no. of terms needed */
559 }
560
561 for (i = jz + 1; i <= jz + k; i++) { /* add q[jz+1] to q[jz+k] */
562 f[jx + i] = ipio2[jv + i];
563 for (j = 0, fw = 0.0; j <= jx; j++) fw += x[j] * f[jx + i - j];
564 q[i] = fw;
565 }
566 jz += k;
567 goto recompute;
568 }
569 }
570
571 /* chop off zero terms */
572 if (z == 0.0) {
573 jz -= 1;
574 q0 -= 24;
575 while (iq[jz] == 0) {
576 jz--;
577 q0 -= 24;
578 }
579 } else { /* break z into 24-bit if necessary */
580 z = scalbn(z, -q0);
581 if (z >= two24) {
582 fw = static_cast<double>(static_cast<int32_t>(twon24 * z));
583 iq[jz] = z - two24 * fw;
584 jz += 1;
585 q0 += 24;
586 iq[jz] = fw;
587 } else {
588 iq[jz] = z;
589 }
590 }
591
592 /* convert integer "bit" chunk to floating-point value */
593 fw = scalbn(one, q0);
594 for (i = jz; i >= 0; i--) {
595 q[i] = fw * iq[i];
596 fw *= twon24;
597 }
598
599 /* compute PIo2[0,...,jp]*q[jz,...,0] */
600 for (i = jz; i >= 0; i--) {
601 for (fw = 0.0, k = 0; k <= jp && k <= jz - i; k++) fw += PIo2[k] * q[i + k];
602 fq[jz - i] = fw;
603 }
604
605 /* compress fq[] into y[] */
606 switch (prec) {
607 case 0:
608 fw = 0.0;
609 for (i = jz; i >= 0; i--) fw += fq[i];
610 y[0] = (ih == 0) ? fw : -fw;
611 break;
612 case 1:
613 case 2:
614 fw = 0.0;
615 for (i = jz; i >= 0; i--) fw += fq[i];
616 y[0] = (ih == 0) ? fw : -fw;
617 fw = fq[0] - fw;
618 for (i = 1; i <= jz; i++) fw += fq[i];
619 y[1] = (ih == 0) ? fw : -fw;
620 break;
621 case 3: /* painful */
622 for (i = jz; i > 0; i--) {
623 fw = fq[i - 1] + fq[i];
624 fq[i] += fq[i - 1] - fw;
625 fq[i - 1] = fw;
626 }
627 for (i = jz; i > 1; i--) {
628 fw = fq[i - 1] + fq[i];
629 fq[i] += fq[i - 1] - fw;
630 fq[i - 1] = fw;
631 }
632 for (fw = 0.0, i = jz; i >= 2; i--) fw += fq[i];
633 if (ih == 0) {
634 y[0] = fq[0];
635 y[1] = fq[1];
636 y[2] = fw;
637 } else {
638 y[0] = -fq[0];
639 y[1] = -fq[1];
640 y[2] = -fw;
641 }
642 }
643 return n & 7;
644}
645
646/* __kernel_sin( x, y, iy)
647 * kernel sin function on [-pi/4, pi/4], pi/4 ~ 0.7854
648 * Input x is assumed to be bounded by ~pi/4 in magnitude.
649 * Input y is the tail of x.
650 * Input iy indicates whether y is 0. (if iy=0, y assume to be 0).
651 *
652 * Algorithm
653 * 1. Since sin(-x) = -sin(x), we need only to consider positive x.
654 * 2. if x < 2^-27 (hx<0x3E400000 0), return x with inexact if x!=0.
655 * 3. sin(x) is approximated by a polynomial of degree 13 on
656 * [0,pi/4]
657 * 3 13
658 * sin(x) ~ x + S1*x + ... + S6*x
659 * where
660 *
661 * |sin(x) 2 4 6 8 10 12 | -58
662 * |----- - (1+S1*x +S2*x +S3*x +S4*x +S5*x +S6*x )| <= 2
663 * | x |
664 *
665 * 4. sin(x+y) = sin(x) + sin'(x')*y
666 * ~ sin(x) + (1-x*x/2)*y
667 * For better accuracy, let
668 * 3 2 2 2 2
669 * r = x *(S2+x *(S3+x *(S4+x *(S5+x *S6))))
670 * then 3 2
671 * sin(x) = x + (S1*x + (x *(r-y/2)+y))
672 */
673V8_INLINEinline __attribute__((always_inline)) double __kernel_sin(double x, double y, int iy) {
674 static const double
675 half = 5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */
676 S1 = -1.66666666666666324348e-01, /* 0xBFC55555, 0x55555549 */
677 S2 = 8.33333333332248946124e-03, /* 0x3F811111, 0x1110F8A6 */
678 S3 = -1.98412698298579493134e-04, /* 0xBF2A01A0, 0x19C161D5 */
679 S4 = 2.75573137070700676789e-06, /* 0x3EC71DE3, 0x57B1FE7D */
680 S5 = -2.50507602534068634195e-08, /* 0xBE5AE5E6, 0x8A2B9CEB */
681 S6 = 1.58969099521155010221e-10; /* 0x3DE5D93A, 0x5ACFD57C */
682
683 double z, r, v;
684 int32_t ix;
685 GET_HIGH_WORD(ix, x);
686 ix &= 0x7FFFFFFF; /* high word of x */
687 if (ix < 0x3E400000) { /* |x| < 2**-27 */
688 if (static_cast<int>(x) == 0) return x;
689 } /* generate inexact */
690 z = x * x;
691 v = z * x;
692 r = S2 + z * (S3 + z * (S4 + z * (S5 + z * S6)));
693 if (iy == 0) {
694 return x + v * (S1 + z * r);
695 } else {
696 return x - ((z * (half * y - v * r) - y) - v * S1);
697 }
698}
699
700/* __kernel_tan( x, y, k )
701 * kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854
702 * Input x is assumed to be bounded by ~pi/4 in magnitude.
703 * Input y is the tail of x.
704 * Input k indicates whether tan (if k=1) or
705 * -1/tan (if k= -1) is returned.
706 *
707 * Algorithm
708 * 1. Since tan(-x) = -tan(x), we need only to consider positive x.
709 * 2. if x < 2^-28 (hx<0x3E300000 0), return x with inexact if x!=0.
710 * 3. tan(x) is approximated by a odd polynomial of degree 27 on
711 * [0,0.67434]
712 * 3 27
713 * tan(x) ~ x + T1*x + ... + T13*x
714 * where
715 *
716 * |tan(x) 2 4 26 | -59.2
717 * |----- - (1+T1*x +T2*x +.... +T13*x )| <= 2
718 * | x |
719 *
720 * Note: tan(x+y) = tan(x) + tan'(x)*y
721 * ~ tan(x) + (1+x*x)*y
722 * Therefore, for better accuracy in computing tan(x+y), let
723 * 3 2 2 2 2
724 * r = x *(T2+x *(T3+x *(...+x *(T12+x *T13))))
725 * then
726 * 3 2
727 * tan(x+y) = x + (T1*x + (x *(r+y)+y))
728 *
729 * 4. For x in [0.67434,pi/4], let y = pi/4 - x, then
730 * tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y))
731 * = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y)))
732 */
733double __kernel_tan(double x, double y, int iy) {
734 static const double xxx[] = {
735 3.33333333333334091986e-01, /* 3FD55555, 55555563 */
736 1.33333333333201242699e-01, /* 3FC11111, 1110FE7A */
737 5.39682539762260521377e-02, /* 3FABA1BA, 1BB341FE */
738 2.18694882948595424599e-02, /* 3F9664F4, 8406D637 */
739 8.86323982359930005737e-03, /* 3F8226E3, E96E8493 */
740 3.59207910759131235356e-03, /* 3F6D6D22, C9560328 */
741 1.45620945432529025516e-03, /* 3F57DBC8, FEE08315 */
742 5.88041240820264096874e-04, /* 3F4344D8, F2F26501 */
743 2.46463134818469906812e-04, /* 3F3026F7, 1A8D1068 */
744 7.81794442939557092300e-05, /* 3F147E88, A03792A6 */
745 7.14072491382608190305e-05, /* 3F12B80F, 32F0A7E9 */
746 -1.85586374855275456654e-05, /* BEF375CB, DB605373 */
747 2.59073051863633712884e-05, /* 3EFB2A70, 74BF7AD4 */
748 /* one */ 1.00000000000000000000e+00, /* 3FF00000, 00000000 */
749 /* pio4 */ 7.85398163397448278999e-01, /* 3FE921FB, 54442D18 */
750 /* pio4lo */ 3.06161699786838301793e-17 /* 3C81A626, 33145C07 */
751 };
752#define one xxx[13]
753#define pio4 xxx[14]
754#define pio4lo xxx[15]
755#define T xxx
756
757 double z, r, v, w, s;
758 int32_t ix, hx;
759
760 GET_HIGH_WORD(hx, x); /* high word of x */
761 ix = hx & 0x7FFFFFFF; /* high word of |x| */
762 if (ix < 0x3E300000) { /* x < 2**-28 */
763 if (static_cast<int>(x) == 0) { /* generate inexact */
764 uint32_t low;
765 GET_LOW_WORD(low, x);
766 if (((ix | low) | (iy + 1)) == 0) {
767 return one / fabs(x);
768 } else {
769 if (iy == 1) {
770 return x;
771 } else { /* compute -1 / (x+y) carefully */
772 double a, t;
773
774 z = w = x + y;
775 SET_LOW_WORD(z, 0);
776 v = y - (z - x);
777 t = a = -one / w;
778 SET_LOW_WORD(t, 0);
779 s = one + t * z;
780 return t + a * (s + t * v);
781 }
782 }
783 }
784 }
785 if (ix >= 0x3FE59428) { /* |x| >= 0.6744 */
786 if (hx < 0) {
787 x = -x;
788 y = -y;
789 }
790 z = pio4 - x;
791 w = pio4lo - y;
792 x = z + w;
793 y = 0.0;
794 }
795 z = x * x;
796 w = z * z;
797 /*
798 * Break x^5*(T[1]+x^2*T[2]+...) into
799 * x^5(T[1]+x^4*T[3]+...+x^20*T[11]) +
800 * x^5(x^2*(T[2]+x^4*T[4]+...+x^22*[T12]))
801 */
802 r = T[1] + w * (T[3] + w * (T[5] + w * (T[7] + w * (T[9] + w * T[11]))));
803 v = z *
804 (T[2] + w * (T[4] + w * (T[6] + w * (T[8] + w * (T[10] + w * T[12])))));
805 s = z * x;
806 r = y + z * (s * (r + v) + y);
807 r += T[0] * s;
808 w = x + r;
809 if (ix >= 0x3FE59428) {
810 v = iy;
811 return (1 - ((hx >> 30) & 2)) * (v - 2.0 * (x - (w * w / (w + v) - r)));
812 }
813 if (iy == 1) {
814 return w;
815 } else {
816 /*
817 * if allow error up to 2 ulp, simply return
818 * -1.0 / (x+r) here
819 */
820 /* compute -1.0 / (x+r) accurately */
821 double a, t;
822 z = w;
823 SET_LOW_WORD(z, 0);
824 v = r - (z - x); /* z+v = r+x */
825 t = a = -1.0 / w; /* a = -1.0/w */
826 SET_LOW_WORD(t, 0);
827 s = 1.0 + t * z;
828 return t + a * (s + t * v);
829 }
830
831#undef one
832#undef pio4
833#undef pio4lo
834#undef T
835}
836
837} // namespace
838
839/* acos(x)
840 * Method :
841 * acos(x) = pi/2 - asin(x)
842 * acos(-x) = pi/2 + asin(x)
843 * For |x|<=0.5
844 * acos(x) = pi/2 - (x + x*x^2*R(x^2)) (see asin.c)
845 * For x>0.5
846 * acos(x) = pi/2 - (pi/2 - 2asin(sqrt((1-x)/2)))
847 * = 2asin(sqrt((1-x)/2))
848 * = 2s + 2s*z*R(z) ...z=(1-x)/2, s=sqrt(z)
849 * = 2f + (2c + 2s*z*R(z))
850 * where f=hi part of s, and c = (z-f*f)/(s+f) is the correction term
851 * for f so that f+c ~ sqrt(z).
852 * For x<-0.5
853 * acos(x) = pi - 2asin(sqrt((1-|x|)/2))
854 * = pi - 0.5*(s+s*z*R(z)), where z=(1-|x|)/2,s=sqrt(z)
855 *
856 * Special cases:
857 * if x is NaN, return x itself;
858 * if |x|>1, return NaN with invalid signal.
859 *
860 * Function needed: sqrt
861 */
862double acos(double x) {
863 static const double
864 one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
865 pi = 3.14159265358979311600e+00, /* 0x400921FB, 0x54442D18 */
866 pio2_hi = 1.57079632679489655800e+00, /* 0x3FF921FB, 0x54442D18 */
867 pio2_lo = 6.12323399573676603587e-17, /* 0x3C91A626, 0x33145C07 */
868 pS0 = 1.66666666666666657415e-01, /* 0x3FC55555, 0x55555555 */
869 pS1 = -3.25565818622400915405e-01, /* 0xBFD4D612, 0x03EB6F7D */
870 pS2 = 2.01212532134862925881e-01, /* 0x3FC9C155, 0x0E884455 */
871 pS3 = -4.00555345006794114027e-02, /* 0xBFA48228, 0xB5688F3B */
872 pS4 = 7.91534994289814532176e-04, /* 0x3F49EFE0, 0x7501B288 */
873 pS5 = 3.47933107596021167570e-05, /* 0x3F023DE1, 0x0DFDF709 */
874 qS1 = -2.40339491173441421878e+00, /* 0xC0033A27, 0x1C8A2D4B */
875 qS2 = 2.02094576023350569471e+00, /* 0x40002AE5, 0x9C598AC8 */
876 qS3 = -6.88283971605453293030e-01, /* 0xBFE6066C, 0x1B8D0159 */
877 qS4 = 7.70381505559019352791e-02; /* 0x3FB3B8C5, 0xB12E9282 */
878
879 double z, p, q, r, w, s, c, df;
880 int32_t hx, ix;
881 GET_HIGH_WORD(hx, x);
882 ix = hx & 0x7FFFFFFF;
883 if (ix >= 0x3FF00000) { /* |x| >= 1 */
884 uint32_t lx;
885 GET_LOW_WORD(lx, x);
886 if (((ix - 0x3FF00000) | lx) == 0) { /* |x|==1 */
887 if (hx > 0)
888 return 0.0; /* acos(1) = 0 */
889 else
890 return pi + 2.0 * pio2_lo; /* acos(-1)= pi */
891 }
892 return std::numeric_limits<double>::signaling_NaN(); // acos(|x|>1) is NaN
893 }
894 if (ix < 0x3FE00000) { /* |x| < 0.5 */
895 if (ix <= 0x3C600000) return pio2_hi + pio2_lo; /*if|x|<2**-57*/
896 z = x * x;
897 p = z * (pS0 + z * (pS1 + z * (pS2 + z * (pS3 + z * (pS4 + z * pS5)))));
898 q = one + z * (qS1 + z * (qS2 + z * (qS3 + z * qS4)));
899 r = p / q;
900 return pio2_hi - (x - (pio2_lo - x * r));
901 } else if (hx < 0) { /* x < -0.5 */
902 z = (one + x) * 0.5;
903 p = z * (pS0 + z * (pS1 + z * (pS2 + z * (pS3 + z * (pS4 + z * pS5)))));
904 q = one + z * (qS1 + z * (qS2 + z * (qS3 + z * qS4)));
905 s = sqrt(z);
906 r = p / q;
907 w = r * s - pio2_lo;
908 return pi - 2.0 * (s + w);
909 } else { /* x > 0.5 */
910 z = (one - x) * 0.5;
911 s = sqrt(z);
912 df = s;
913 SET_LOW_WORD(df, 0);
914 c = (z - df * df) / (s + df);
915 p = z * (pS0 + z * (pS1 + z * (pS2 + z * (pS3 + z * (pS4 + z * pS5)))));
916 q = one + z * (qS1 + z * (qS2 + z * (qS3 + z * qS4)));
917 r = p / q;
918 w = r * s + c;
919 return 2.0 * (df + w);
920 }
921}
922
923/* acosh(x)
924 * Method :
925 * Based on
926 * acosh(x) = log [ x + sqrt(x*x-1) ]
927 * we have
928 * acosh(x) := log(x)+ln2, if x is large; else
929 * acosh(x) := log(2x-1/(sqrt(x*x-1)+x)) if x>2; else
930 * acosh(x) := log1p(t+sqrt(2.0*t+t*t)); where t=x-1.
931 *
932 * Special cases:
933 * acosh(x) is NaN with signal if x<1.
934 * acosh(NaN) is NaN without signal.
935 */
936double acosh(double x) {
937 static const double
938 one = 1.0,
939 ln2 = 6.93147180559945286227e-01; /* 0x3FE62E42, 0xFEFA39EF */
940 double t;
941 int32_t hx;
942 uint32_t lx;
943 EXTRACT_WORDS(hx, lx, x);
944 if (hx < 0x3FF00000) { /* x < 1 */
945 return std::numeric_limits<double>::signaling_NaN();
946 } else if (hx >= 0x41B00000) { /* x > 2**28 */
947 if (hx >= 0x7FF00000) { /* x is inf of NaN */
948 return x + x;
949 } else {
950 return log(x) + ln2; /* acosh(huge)=log(2x) */
951 }
952 } else if (((hx - 0x3FF00000) | lx) == 0) {
953 return 0.0; /* acosh(1) = 0 */
954 } else if (hx > 0x40000000) { /* 2**28 > x > 2 */
955 t = x * x;
956 return log(2.0 * x - one / (x + sqrt(t - one)));
957 } else { /* 1<x<2 */
958 t = x - one;
959 return log1p(t + sqrt(2.0 * t + t * t));
960 }
961}
962
963/* asin(x)
964 * Method :
965 * Since asin(x) = x + x^3/6 + x^5*3/40 + x^7*15/336 + ...
966 * we approximate asin(x) on [0,0.5] by
967 * asin(x) = x + x*x^2*R(x^2)
968 * where
969 * R(x^2) is a rational approximation of (asin(x)-x)/x^3
970 * and its remez error is bounded by
971 * |(asin(x)-x)/x^3 - R(x^2)| < 2^(-58.75)
972 *
973 * For x in [0.5,1]
974 * asin(x) = pi/2-2*asin(sqrt((1-x)/2))
975 * Let y = (1-x), z = y/2, s := sqrt(z), and pio2_hi+pio2_lo=pi/2;
976 * then for x>0.98
977 * asin(x) = pi/2 - 2*(s+s*z*R(z))
978 * = pio2_hi - (2*(s+s*z*R(z)) - pio2_lo)
979 * For x<=0.98, let pio4_hi = pio2_hi/2, then
980 * f = hi part of s;
981 * c = sqrt(z) - f = (z-f*f)/(s+f) ...f+c=sqrt(z)
982 * and
983 * asin(x) = pi/2 - 2*(s+s*z*R(z))
984 * = pio4_hi+(pio4-2s)-(2s*z*R(z)-pio2_lo)
985 * = pio4_hi+(pio4-2f)-(2s*z*R(z)-(pio2_lo+2c))
986 *
987 * Special cases:
988 * if x is NaN, return x itself;
989 * if |x|>1, return NaN with invalid signal.
990 */
991double asin(double x) {
992 static const double
993 one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
994 huge = 1.000e+300,
995 pio2_hi = 1.57079632679489655800e+00, /* 0x3FF921FB, 0x54442D18 */
996 pio2_lo = 6.12323399573676603587e-17, /* 0x3C91A626, 0x33145C07 */
997 pio4_hi = 7.85398163397448278999e-01, /* 0x3FE921FB, 0x54442D18 */
998 /* coefficient for R(x^2) */
999 pS0 = 1.66666666666666657415e-01, /* 0x3FC55555, 0x55555555 */
1000 pS1 = -3.25565818622400915405e-01, /* 0xBFD4D612, 0x03EB6F7D */
1001 pS2 = 2.01212532134862925881e-01, /* 0x3FC9C155, 0x0E884455 */
1002 pS3 = -4.00555345006794114027e-02, /* 0xBFA48228, 0xB5688F3B */
1003 pS4 = 7.91534994289814532176e-04, /* 0x3F49EFE0, 0x7501B288 */
1004 pS5 = 3.47933107596021167570e-05, /* 0x3F023DE1, 0x0DFDF709 */
1005 qS1 = -2.40339491173441421878e+00, /* 0xC0033A27, 0x1C8A2D4B */
1006 qS2 = 2.02094576023350569471e+00, /* 0x40002AE5, 0x9C598AC8 */
1007 qS3 = -6.88283971605453293030e-01, /* 0xBFE6066C, 0x1B8D0159 */
1008 qS4 = 7.70381505559019352791e-02; /* 0x3FB3B8C5, 0xB12E9282 */
1009
1010 double t, w, p, q, c, r, s;
1011 int32_t hx, ix;
1012
1013 t = 0;
1014 GET_HIGH_WORD(hx, x);
1015 ix = hx & 0x7FFFFFFF;
1016 if (ix >= 0x3FF00000) { /* |x|>= 1 */
1017 uint32_t lx;
1018 GET_LOW_WORD(lx, x);
1019 if (((ix - 0x3FF00000) | lx) == 0) { /* asin(1)=+-pi/2 with inexact */
1020 return x * pio2_hi + x * pio2_lo;
1021 }
1022 return std::numeric_limits<double>::signaling_NaN(); // asin(|x|>1) is NaN
1023 } else if (ix < 0x3FE00000) { /* |x|<0.5 */
1024 if (ix < 0x3E400000) { /* if |x| < 2**-27 */
1025 if (huge + x > one) return x; /* return x with inexact if x!=0*/
1026 } else {
1027 t = x * x;
1028 }
1029 p = t * (pS0 + t * (pS1 + t * (pS2 + t * (pS3 + t * (pS4 + t * pS5)))));
1030 q = one + t * (qS1 + t * (qS2 + t * (qS3 + t * qS4)));
1031 w = p / q;
1032 return x + x * w;
1033 }
1034 /* 1> |x|>= 0.5 */
1035 w = one - fabs(x);
1036 t = w * 0.5;
1037 p = t * (pS0 + t * (pS1 + t * (pS2 + t * (pS3 + t * (pS4 + t * pS5)))));
1038 q = one + t * (qS1 + t * (qS2 + t * (qS3 + t * qS4)));
1039 s = sqrt(t);
1040 if (ix >= 0x3FEF3333) { /* if |x| > 0.975 */
1041 w = p / q;
1042 t = pio2_hi - (2.0 * (s + s * w) - pio2_lo);
1043 } else {
1044 w = s;
1045 SET_LOW_WORD(w, 0);
1046 c = (t - w * w) / (s + w);
1047 r = p / q;
1048 p = 2.0 * s * r - (pio2_lo - 2.0 * c);
1049 q = pio4_hi - 2.0 * w;
1050 t = pio4_hi - (p - q);
1051 }
1052 if (hx > 0)
1053 return t;
1054 else
1055 return -t;
1056}
1057/* asinh(x)
1058 * Method :
1059 * Based on
1060 * asinh(x) = sign(x) * log [ |x| + sqrt(x*x+1) ]
1061 * we have
1062 * asinh(x) := x if 1+x*x=1,
1063 * := sign(x)*(log(x)+ln2)) for large |x|, else
1064 * := sign(x)*log(2|x|+1/(|x|+sqrt(x*x+1))) if|x|>2, else
1065 * := sign(x)*log1p(|x| + x^2/(1 + sqrt(1+x^2)))
1066 */
1067double asinh(double x) {
1068 static const double
1069 one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
1070 ln2 = 6.93147180559945286227e-01, /* 0x3FE62E42, 0xFEFA39EF */
1071 huge = 1.00000000000000000000e+300;
1072
1073 double t, w;
1074 int32_t hx, ix;
1075 GET_HIGH_WORD(hx, x);
1076 ix = hx & 0x7FFFFFFF;
1077 if (ix >= 0x7FF00000) return x + x; /* x is inf or NaN */
1078 if (ix < 0x3E300000) { /* |x|<2**-28 */
1079 if (huge + x > one) return x; /* return x inexact except 0 */
1080 }
1081 if (ix > 0x41B00000) { /* |x| > 2**28 */
1082 w = log(fabs(x)) + ln2;
1083 } else if (ix > 0x40000000) { /* 2**28 > |x| > 2.0 */
1084 t = fabs(x);
1085 w = log(2.0 * t + one / (sqrt(x * x + one) + t));
1086 } else { /* 2.0 > |x| > 2**-28 */
1087 t = x * x;
1088 w = log1p(fabs(x) + t / (one + sqrt(one + t)));
1089 }
1090 if (hx > 0) {
1091 return w;
1092 } else {
1093 return -w;
1094 }
1095}
1096
1097/* atan(x)
1098 * Method
1099 * 1. Reduce x to positive by atan(x) = -atan(-x).
1100 * 2. According to the integer k=4t+0.25 chopped, t=x, the argument
1101 * is further reduced to one of the following intervals and the
1102 * arctangent of t is evaluated by the corresponding formula:
1103 *
1104 * [0,7/16] atan(x) = t-t^3*(a1+t^2*(a2+...(a10+t^2*a11)...)
1105 * [7/16,11/16] atan(x) = atan(1/2) + atan( (t-0.5)/(1+t/2) )
1106 * [11/16.19/16] atan(x) = atan( 1 ) + atan( (t-1)/(1+t) )
1107 * [19/16,39/16] atan(x) = atan(3/2) + atan( (t-1.5)/(1+1.5t) )
1108 * [39/16,INF] atan(x) = atan(INF) + atan( -1/t )
1109 *
1110 * Constants:
1111 * The hexadecimal values are the intended ones for the following
1112 * constants. The decimal values may be used, provided that the
1113 * compiler will convert from decimal to binary accurately enough
1114 * to produce the hexadecimal values shown.
1115 */
1116double atan(double x) {
1117 static const double atanhi[] = {
1118 4.63647609000806093515e-01, /* atan(0.5)hi 0x3FDDAC67, 0x0561BB4F */
1119 7.85398163397448278999e-01, /* atan(1.0)hi 0x3FE921FB, 0x54442D18 */
1120 9.82793723247329054082e-01, /* atan(1.5)hi 0x3FEF730B, 0xD281F69B */
1121 1.57079632679489655800e+00, /* atan(inf)hi 0x3FF921FB, 0x54442D18 */
1122 };
1123
1124 static const double atanlo[] = {
1125 2.26987774529616870924e-17, /* atan(0.5)lo 0x3C7A2B7F, 0x222F65E2 */
1126 3.06161699786838301793e-17, /* atan(1.0)lo 0x3C81A626, 0x33145C07 */
1127 1.39033110312309984516e-17, /* atan(1.5)lo 0x3C700788, 0x7AF0CBBD */
1128 6.12323399573676603587e-17, /* atan(inf)lo 0x3C91A626, 0x33145C07 */
1129 };
1130
1131 static const double aT[] = {
1132 3.33333333333329318027e-01, /* 0x3FD55555, 0x5555550D */
1133 -1.99999999998764832476e-01, /* 0xBFC99999, 0x9998EBC4 */
1134 1.42857142725034663711e-01, /* 0x3FC24924, 0x920083FF */
1135 -1.11111104054623557880e-01, /* 0xBFBC71C6, 0xFE231671 */
1136 9.09088713343650656196e-02, /* 0x3FB745CD, 0xC54C206E */
1137 -7.69187620504482999495e-02, /* 0xBFB3B0F2, 0xAF749A6D */
1138 6.66107313738753120669e-02, /* 0x3FB10D66, 0xA0D03D51 */
1139 -5.83357013379057348645e-02, /* 0xBFADDE2D, 0x52DEFD9A */
1140 4.97687799461593236017e-02, /* 0x3FA97B4B, 0x24760DEB */
1141 -3.65315727442169155270e-02, /* 0xBFA2B444, 0x2C6A6C2F */
1142 1.62858201153657823623e-02, /* 0x3F90AD3A, 0xE322DA11 */
1143 };
1144
1145 static const double one = 1.0, huge = 1.0e300;
1146
1147 double w, s1, s2, z;
1148 int32_t ix, hx, id;
1149
1150 GET_HIGH_WORD(hx, x);
1151 ix = hx & 0x7FFFFFFF;
1152 if (ix >= 0x44100000) { /* if |x| >= 2^66 */
1153 uint32_t low;
1154 GET_LOW_WORD(low, x);
1155 if (ix > 0x7FF00000 || (ix == 0x7FF00000 && (low != 0)))
1156 return x + x; /* NaN */
1157 if (hx > 0)
1158 return atanhi[3] + *const_cast<volatile double*>(&atanlo[3]);
1159 else
1160 return -atanhi[3] - *const_cast<volatile double*>(&atanlo[3]);
1161 }
1162 if (ix < 0x3FDC0000) { /* |x| < 0.4375 */
1163 if (ix < 0x3E400000) { /* |x| < 2^-27 */
1164 if (huge + x > one) return x; /* raise inexact */
1165 }
1166 id = -1;
1167 } else {
1168 x = fabs(x);
1169 if (ix < 0x3FF30000) { /* |x| < 1.1875 */
1170 if (ix < 0x3FE60000) { /* 7/16 <=|x|<11/16 */
1171 id = 0;
1172 x = (2.0 * x - one) / (2.0 + x);
1173 } else { /* 11/16<=|x|< 19/16 */
1174 id = 1;
1175 x = (x - one) / (x + one);
1176 }
1177 } else {
1178 if (ix < 0x40038000) { /* |x| < 2.4375 */
1179 id = 2;
1180 x = (x - 1.5) / (one + 1.5 * x);
1181 } else { /* 2.4375 <= |x| < 2^66 */
1182 id = 3;
1183 x = -1.0 / x;
1184 }
1185 }
1186 }
1187 /* end of argument reduction */
1188 z = x * x;
1189 w = z * z;
1190 /* break sum from i=0 to 10 aT[i]z**(i+1) into odd and even poly */
1191 s1 = z * (aT[0] +
1192 w * (aT[2] + w * (aT[4] + w * (aT[6] + w * (aT[8] + w * aT[10])))));
1193 s2 = w * (aT[1] + w * (aT[3] + w * (aT[5] + w * (aT[7] + w * aT[9]))));
1194 if (id < 0) {
1195 return x - x * (s1 + s2);
1196 } else {
1197 z = atanhi[id] - ((x * (s1 + s2) - atanlo[id]) - x);
1198 return (hx < 0) ? -z : z;
1199 }
1200}
1201
1202/* atan2(y,x)
1203 * Method :
1204 * 1. Reduce y to positive by atan2(y,x)=-atan2(-y,x).
1205 * 2. Reduce x to positive by (if x and y are unexceptional):
1206 * ARG (x+iy) = arctan(y/x) ... if x > 0,
1207 * ARG (x+iy) = pi - arctan[y/(-x)] ... if x < 0,
1208 *
1209 * Special cases:
1210 *
1211 * ATAN2((anything), NaN ) is NaN;
1212 * ATAN2(NAN , (anything) ) is NaN;
1213 * ATAN2(+-0, +(anything but NaN)) is +-0 ;
1214 * ATAN2(+-0, -(anything but NaN)) is +-pi ;
1215 * ATAN2(+-(anything but 0 and NaN), 0) is +-pi/2;
1216 * ATAN2(+-(anything but INF and NaN), +INF) is +-0 ;
1217 * ATAN2(+-(anything but INF and NaN), -INF) is +-pi;
1218 * ATAN2(+-INF,+INF ) is +-pi/4 ;
1219 * ATAN2(+-INF,-INF ) is +-3pi/4;
1220 * ATAN2(+-INF, (anything but,0,NaN, and INF)) is +-pi/2;
1221 *
1222 * Constants:
1223 * The hexadecimal values are the intended ones for the following
1224 * constants. The decimal values may be used, provided that the
1225 * compiler will convert from decimal to binary accurately enough
1226 * to produce the hexadecimal values shown.
1227 */
1228double atan2(double y, double x) {
1229 static volatile double tiny = 1.0e-300;
1230 static const double
1231 zero = 0.0,
1232 pi_o_4 = 7.8539816339744827900E-01, /* 0x3FE921FB, 0x54442D18 */
1233 pi_o_2 = 1.5707963267948965580E+00, /* 0x3FF921FB, 0x54442D18 */
1234 pi = 3.1415926535897931160E+00; /* 0x400921FB, 0x54442D18 */
1235 static volatile double pi_lo =
1236 1.2246467991473531772E-16; /* 0x3CA1A626, 0x33145C07 */
1237
1238 double z;
1239 int32_t k, m, hx, hy, ix, iy;
1240 uint32_t lx, ly;
1241
1242 EXTRACT_WORDS(hx, lx, x);
1243 ix = hx & 0x7FFFFFFF;
1244 EXTRACT_WORDS(hy, ly, y);
1245 iy = hy & 0x7FFFFFFF;
1246 if (((ix | ((lx | NegateWithWraparound<int32_t>(lx)) >> 31)) > 0x7FF00000) ||
1247 ((iy | ((ly | NegateWithWraparound<int32_t>(ly)) >> 31)) > 0x7FF00000)) {
1248 return x + y; /* x or y is NaN */
1249 }
1250 if ((SubWithWraparound(hx, 0x3FF00000) | lx) == 0) {
1251 return atan(y); /* x=1.0 */
1252 }
1253 m = ((hy >> 31) & 1) | ((hx >> 30) & 2); /* 2*sign(x)+sign(y) */
1254
1255 /* when y = 0 */
1256 if ((iy | ly) == 0) {
1257 switch (m) {
1258 case 0:
1259 case 1:
1260 return y; /* atan(+-0,+anything)=+-0 */
1261 case 2:
1262 return pi + tiny; /* atan(+0,-anything) = pi */
1263 case 3:
1264 return -pi - tiny; /* atan(-0,-anything) =-pi */
1265 }
1266 }
1267 /* when x = 0 */
1268 if ((ix | lx) == 0) return (hy < 0) ? -pi_o_2 - tiny : pi_o_2 + tiny;
1269
1270 /* when x is INF */
1271 if (ix == 0x7FF00000) {
1272 if (iy == 0x7FF00000) {
1273 switch (m) {
1274 case 0:
1275 return pi_o_4 + tiny; /* atan(+INF,+INF) */
1276 case 1:
1277 return -pi_o_4 - tiny; /* atan(-INF,+INF) */
1278 case 2:
1279 return 3.0 * pi_o_4 + tiny; /*atan(+INF,-INF)*/
1280 case 3:
1281 return -3.0 * pi_o_4 - tiny; /*atan(-INF,-INF)*/
1282 }
1283 } else {
1284 switch (m) {
1285 case 0:
1286 return zero; /* atan(+...,+INF) */
1287 case 1:
1288 return -zero; /* atan(-...,+INF) */
1289 case 2:
1290 return pi + tiny; /* atan(+...,-INF) */
1291 case 3:
1292 return -pi - tiny; /* atan(-...,-INF) */
1293 }
1294 }
1295 }
1296 /* when y is INF */
1297 if (iy == 0x7FF00000) return (hy < 0) ? -pi_o_2 - tiny : pi_o_2 + tiny;
1298
1299 /* compute y/x */
1300 k = (iy - ix) >> 20;
1301 if (k > 60) { /* |y/x| > 2**60 */
1302 z = pi_o_2 + 0.5 * pi_lo;
1303 m &= 1;
1304 } else if (hx < 0 && k < -60) {
1305 z = 0.0; /* 0 > |y|/x > -2**-60 */
1306 } else {
1307 z = atan(fabs(y / x)); /* safe to do y/x */
1308 }
1309 switch (m) {
1310 case 0:
1311 return z; /* atan(+,+) */
1312 case 1:
1313 return -z; /* atan(-,+) */
1314 case 2:
1315 return pi - (z - pi_lo); /* atan(+,-) */
1316 default: /* case 3 */
1317 return (z - pi_lo) - pi; /* atan(-,-) */
1318 }
1319}
1320
1321/* cos(x)
1322 * Return cosine function of x.
1323 *
1324 * kernel function:
1325 * __kernel_sin ... sine function on [-pi/4,pi/4]
1326 * __kernel_cos ... cosine function on [-pi/4,pi/4]
1327 * __ieee754_rem_pio2 ... argument reduction routine
1328 *
1329 * Method.
1330 * Let S,C and T denote the sin, cos and tan respectively on
1331 * [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
1332 * in [-pi/4 , +pi/4], and let n = k mod 4.
1333 * We have
1334 *
1335 * n sin(x) cos(x) tan(x)
1336 * ----------------------------------------------------------
1337 * 0 S C T
1338 * 1 C -S -1/T
1339 * 2 -S -C T
1340 * 3 -C S -1/T
1341 * ----------------------------------------------------------
1342 *
1343 * Special cases:
1344 * Let trig be any of sin, cos, or tan.
1345 * trig(+-INF) is NaN, with signals;
1346 * trig(NaN) is that NaN;
1347 *
1348 * Accuracy:
1349 * TRIG(x) returns trig(x) nearly rounded
1350 */
1351double cos(double x) {
1352 double y[2], z = 0.0;
1353 int32_t n, ix;
1354
1355 /* High word of x. */
1356 GET_HIGH_WORD(ix, x);
1357
1358 /* |x| ~< pi/4 */
1359 ix &= 0x7FFFFFFF;
1360 if (ix <= 0x3FE921FB) {
1361 return __kernel_cos(x, z);
1362 } else if (ix >= 0x7FF00000) {
1363 /* cos(Inf or NaN) is NaN */
1364 return x - x;
1365 } else {
1366 /* argument reduction needed */
1367 n = __ieee754_rem_pio2(x, y);
1368 switch (n & 3) {
1369 case 0:
1370 return __kernel_cos(y[0], y[1]);
1371 case 1:
1372 return -__kernel_sin(y[0], y[1], 1);
1373 case 2:
1374 return -__kernel_cos(y[0], y[1]);
1375 default:
1376 return __kernel_sin(y[0], y[1], 1);
1377 }
1378 }
1379}
1380
1381/* exp(x)
1382 * Returns the exponential of x.
1383 *
1384 * Method
1385 * 1. Argument reduction:
1386 * Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658.
1387 * Given x, find r and integer k such that
1388 *
1389 * x = k*ln2 + r, |r| <= 0.5*ln2.
1390 *
1391 * Here r will be represented as r = hi-lo for better
1392 * accuracy.
1393 *
1394 * 2. Approximation of exp(r) by a special rational function on
1395 * the interval [0,0.34658]:
1396 * Write
1397 * R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ...
1398 * We use a special Remes algorithm on [0,0.34658] to generate
1399 * a polynomial of degree 5 to approximate R. The maximum error
1400 * of this polynomial approximation is bounded by 2**-59. In
1401 * other words,
1402 * R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5
1403 * (where z=r*r, and the values of P1 to P5 are listed below)
1404 * and
1405 * | 5 | -59
1406 * | 2.0+P1*z+...+P5*z - R(z) | <= 2
1407 * | |
1408 * The computation of exp(r) thus becomes
1409 * 2*r
1410 * exp(r) = 1 + -------
1411 * R - r
1412 * r*R1(r)
1413 * = 1 + r + ----------- (for better accuracy)
1414 * 2 - R1(r)
1415 * where
1416 * 2 4 10
1417 * R1(r) = r - (P1*r + P2*r + ... + P5*r ).
1418 *
1419 * 3. Scale back to obtain exp(x):
1420 * From step 1, we have
1421 * exp(x) = 2^k * exp(r)
1422 *
1423 * Special cases:
1424 * exp(INF) is INF, exp(NaN) is NaN;
1425 * exp(-INF) is 0, and
1426 * for finite argument, only exp(0)=1 is exact.
1427 *
1428 * Accuracy:
1429 * according to an error analysis, the error is always less than
1430 * 1 ulp (unit in the last place).
1431 *
1432 * Misc. info.
1433 * For IEEE double
1434 * if x > 7.09782712893383973096e+02 then exp(x) overflow
1435 * if x < -7.45133219101941108420e+02 then exp(x) underflow
1436 *
1437 * Constants:
1438 * The hexadecimal values are the intended ones for the following
1439 * constants. The decimal values may be used, provided that the
1440 * compiler will convert from decimal to binary accurately enough
1441 * to produce the hexadecimal values shown.
1442 */
1443double exp(double x) {
1444 static const double
1445 one = 1.0,
1446 halF[2] = {0.5, -0.5},
1447 o_threshold = 7.09782712893383973096e+02, /* 0x40862E42, 0xFEFA39EF */
1448 u_threshold = -7.45133219101941108420e+02, /* 0xC0874910, 0xD52D3051 */
1449 ln2HI[2] = {6.93147180369123816490e-01, /* 0x3FE62E42, 0xFEE00000 */
1450 -6.93147180369123816490e-01}, /* 0xBFE62E42, 0xFEE00000 */
1451 ln2LO[2] = {1.90821492927058770002e-10, /* 0x3DEA39EF, 0x35793C76 */
1452 -1.90821492927058770002e-10}, /* 0xBDEA39EF, 0x35793C76 */
1453 invln2 = 1.44269504088896338700e+00, /* 0x3FF71547, 0x652B82FE */
1454 P1 = 1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */
1455 P2 = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */
1456 P3 = 6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */
1457 P4 = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */
1458 P5 = 4.13813679705723846039e-08, /* 0x3E663769, 0x72BEA4D0 */
1459 E = 2.718281828459045; /* 0x4005BF0A, 0x8B145769 */
1460
1461 static volatile double
1462 huge = 1.0e+300,
1463 twom1000 = 9.33263618503218878990e-302, /* 2**-1000=0x01700000,0*/
1464 two1023 = 8.988465674311579539e307; /* 0x1p1023 */
1465
1466 double y, hi = 0.0, lo = 0.0, c, t, twopk;
1467 int32_t k = 0, xsb;
1468 uint32_t hx;
1469
1470 GET_HIGH_WORD(hx, x);
1471 xsb = (hx >> 31) & 1; /* sign bit of x */
1472 hx &= 0x7FFFFFFF; /* high word of |x| */
1473
1474 /* filter out non-finite argument */
1475 if (hx >= 0x40862E42) { /* if |x|>=709.78... */
1476 if (hx >= 0x7FF00000) {
1477 uint32_t lx;
1478 GET_LOW_WORD(lx, x);
1479 if (((hx & 0xFFFFF) | lx) != 0)
1480 return x + x; /* NaN */
1481 else
1482 return (xsb == 0) ? x : 0.0; /* exp(+-inf)={inf,0} */
1483 }
1484 if (x > o_threshold) return huge * huge; /* overflow */
1485 if (x < u_threshold) return twom1000 * twom1000; /* underflow */
1486 }
1487
1488 /* argument reduction */
1489 if (hx > 0x3FD62E42) { /* if |x| > 0.5 ln2 */
1490 if (hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */
1491 /* TODO(rtoy): We special case exp(1) here to return the correct
1492 * value of E, as the computation below would get the last bit
1493 * wrong. We should probably fix the algorithm instead.
1494 */
1495 if (x == 1.0) return E;
1496 hi = x - ln2HI[xsb];
1497 lo = ln2LO[xsb];
1498 k = 1 - xsb - xsb;
1499 } else {
1500 k = static_cast<int>(invln2 * x + halF[xsb]);
1501 t = k;
1502 hi = x - t * ln2HI[0]; /* t*ln2HI is exact here */
1503 lo = t * ln2LO[0];
1504 }
1505 x = hi - lo;
1506 } else if (hx < 0x3E300000) { /* when |x|<2**-28 */
1507 if (huge + x > one) return one + x; /* trigger inexact */
1508 } else {
1509 k = 0;
1510 }
1511
1512 /* x is now in primary range */
1513 t = x * x;
1514 if (k >= -1021) {
1515 INSERT_WORDS(
1516 twopk,
1517 0x3FF00000 + static_cast<int32_t>(static_cast<uint32_t>(k) << 20), 0);
1518 } else {
1519 INSERT_WORDS(twopk, 0x3FF00000 + (static_cast<uint32_t>(k + 1000) << 20),
1520 0);
1521 }
1522 c = x - t * (P1 + t * (P2 + t * (P3 + t * (P4 + t * P5))));
1523 if (k == 0) {
1524 return one - ((x * c) / (c - 2.0) - x);
1525 } else {
1526 y = one - ((lo - (x * c) / (2.0 - c)) - hi);
1527 }
1528 if (k >= -1021) {
1529 if (k == 1024) return y * 2.0 * two1023;
1530 return y * twopk;
1531 } else {
1532 return y * twopk * twom1000;
1533 }
1534}
1535
1536/*
1537 * Method :
1538 * 1.Reduced x to positive by atanh(-x) = -atanh(x)
1539 * 2.For x>=0.5
1540 * 1 2x x
1541 * atanh(x) = --- * log(1 + -------) = 0.5 * log1p(2 * --------)
1542 * 2 1 - x 1 - x
1543 *
1544 * For x<0.5
1545 * atanh(x) = 0.5*log1p(2x+2x*x/(1-x))
1546 *
1547 * Special cases:
1548 * atanh(x) is NaN if |x| > 1 with signal;
1549 * atanh(NaN) is that NaN with no signal;
1550 * atanh(+-1) is +-INF with signal.
1551 *
1552 */
1553double atanh(double x) {
1554 static const double one = 1.0, huge = 1e300;
1555 static const double zero = 0.0;
1556
1557 double t;
1558 int32_t hx, ix;
1559 uint32_t lx;
1560 EXTRACT_WORDS(hx, lx, x);
1561 ix = hx & 0x7FFFFFFF;
1562 if ((ix | ((lx | NegateWithWraparound<int32_t>(lx)) >> 31)) > 0x3FF00000) {
1563 /* |x|>1 */
1564 return std::numeric_limits<double>::signaling_NaN();
1565 }
1566 if (ix == 0x3FF00000) {
1567 return x > 0 ? std::numeric_limits<double>::infinity()
1568 : -std::numeric_limits<double>::infinity();
1569 }
1570 if (ix < 0x3E300000 && (huge + x) > zero) return x; /* x<2**-28 */
1571 SET_HIGH_WORD(x, ix);
1572 if (ix < 0x3FE00000) { /* x < 0.5 */
1573 t = x + x;
1574 t = 0.5 * log1p(t + t * x / (one - x));
1575 } else {
1576 t = 0.5 * log1p((x + x) / (one - x));
1577 }
1578 if (hx >= 0)
1579 return t;
1580 else
1581 return -t;
1582}
1583
1584/* log(x)
1585 * Return the logrithm of x
1586 *
1587 * Method :
1588 * 1. Argument Reduction: find k and f such that
1589 * x = 2^k * (1+f),
1590 * where sqrt(2)/2 < 1+f < sqrt(2) .
1591 *
1592 * 2. Approximation of log(1+f).
1593 * Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
1594 * = 2s + 2/3 s**3 + 2/5 s**5 + .....,
1595 * = 2s + s*R
1596 * We use a special Reme algorithm on [0,0.1716] to generate
1597 * a polynomial of degree 14 to approximate R The maximum error
1598 * of this polynomial approximation is bounded by 2**-58.45. In
1599 * other words,
1600 * 2 4 6 8 10 12 14
1601 * R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s +Lg6*s +Lg7*s
1602 * (the values of Lg1 to Lg7 are listed in the program)
1603 * and
1604 * | 2 14 | -58.45
1605 * | Lg1*s +...+Lg7*s - R(z) | <= 2
1606 * | |
1607 * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
1608 * In order to guarantee error in log below 1ulp, we compute log
1609 * by
1610 * log(1+f) = f - s*(f - R) (if f is not too large)
1611 * log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy)
1612 *
1613 * 3. Finally, log(x) = k*ln2 + log(1+f).
1614 * = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
1615 * Here ln2 is split into two floating point number:
1616 * ln2_hi + ln2_lo,
1617 * where n*ln2_hi is always exact for |n| < 2000.
1618 *
1619 * Special cases:
1620 * log(x) is NaN with signal if x < 0 (including -INF) ;
1621 * log(+INF) is +INF; log(0) is -INF with signal;
1622 * log(NaN) is that NaN with no signal.
1623 *
1624 * Accuracy:
1625 * according to an error analysis, the error is always less than
1626 * 1 ulp (unit in the last place).
1627 *
1628 * Constants:
1629 * The hexadecimal values are the intended ones for the following
1630 * constants. The decimal values may be used, provided that the
1631 * compiler will convert from decimal to binary accurately enough
1632 * to produce the hexadecimal values shown.
1633 */
1634double log(double x) {
1635 static const double /* -- */
1636 ln2_hi = 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */
1637 ln2_lo = 1.90821492927058770002e-10, /* 3dea39ef 35793c76 */
1638 two54 = 1.80143985094819840000e+16, /* 43500000 00000000 */
1639 Lg1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */
1640 Lg2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */
1641 Lg3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */
1642 Lg4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */
1643 Lg5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */
1644 Lg6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */
1645 Lg7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */
1646
1647 static const double zero = 0.0;
1648
1649 double hfsq, f, s, z, R, w, t1, t2, dk;
1650 int32_t k, hx, i, j;
1651 uint32_t lx;
1652
1653 EXTRACT_WORDS(hx, lx, x);
1654
1655 k = 0;
1656 if (hx < 0x00100000) { /* x < 2**-1022 */
1657 if (((hx & 0x7FFFFFFF) | lx) == 0) {
1658 return -std::numeric_limits<double>::infinity(); /* log(+-0)=-inf */
1659 }
1660 if (hx < 0) {
1661 return std::numeric_limits<double>::signaling_NaN(); /* log(-#) = NaN */
1662 }
1663 k -= 54;
1664 x *= two54; /* subnormal number, scale up x */
1665 GET_HIGH_WORD(hx, x);
1666 }
1667 if (hx >= 0x7FF00000) return x + x;
1668 k += (hx >> 20) - 1023;
1669 hx &= 0x000FFFFF;
1670 i = (hx + 0x95F64) & 0x100000;
1671 SET_HIGH_WORD(x, hx | (i ^ 0x3FF00000)); /* normalize x or x/2 */
1672 k += (i >> 20);
1673 f = x - 1.0;
1674 if ((0x000FFFFF & (2 + hx)) < 3) { /* -2**-20 <= f < 2**-20 */
1675 if (f == zero) {
1676 if (k == 0) {
1677 return zero;
1678 } else {
1679 dk = static_cast<double>(k);
1680 return dk * ln2_hi + dk * ln2_lo;
1681 }
1682 }
1683 R = f * f * (0.5 - 0.33333333333333333 * f);
1684 if (k == 0) {
1685 return f - R;
1686 } else {
1687 dk = static_cast<double>(k);
1688 return dk * ln2_hi - ((R - dk * ln2_lo) - f);
1689 }
1690 }
1691 s = f / (2.0 + f);
1692 dk = static_cast<double>(k);
1693 z = s * s;
1694 i = hx - 0x6147A;
1695 w = z * z;
1696 j = 0x6B851 - hx;
1697 t1 = w * (Lg2 + w * (Lg4 + w * Lg6));
1698 t2 = z * (Lg1 + w * (Lg3 + w * (Lg5 + w * Lg7)));
1699 i |= j;
1700 R = t2 + t1;
1701 if (i > 0) {
1702 hfsq = 0.5 * f * f;
1703 if (k == 0)
1704 return f - (hfsq - s * (hfsq + R));
1705 else
1706 return dk * ln2_hi - ((hfsq - (s * (hfsq + R) + dk * ln2_lo)) - f);
1707 } else {
1708 if (k == 0)
1709 return f - s * (f - R);
1710 else
1711 return dk * ln2_hi - ((s * (f - R) - dk * ln2_lo) - f);
1712 }
1713}
1714
1715/* double log1p(double x)
1716 *
1717 * Method :
1718 * 1. Argument Reduction: find k and f such that
1719 * 1+x = 2^k * (1+f),
1720 * where sqrt(2)/2 < 1+f < sqrt(2) .
1721 *
1722 * Note. If k=0, then f=x is exact. However, if k!=0, then f
1723 * may not be representable exactly. In that case, a correction
1724 * term is need. Let u=1+x rounded. Let c = (1+x)-u, then
1725 * log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u),
1726 * and add back the correction term c/u.
1727 * (Note: when x > 2**53, one can simply return log(x))
1728 *
1729 * 2. Approximation of log1p(f).
1730 * Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
1731 * = 2s + 2/3 s**3 + 2/5 s**5 + .....,
1732 * = 2s + s*R
1733 * We use a special Reme algorithm on [0,0.1716] to generate
1734 * a polynomial of degree 14 to approximate R The maximum error
1735 * of this polynomial approximation is bounded by 2**-58.45. In
1736 * other words,
1737 * 2 4 6 8 10 12 14
1738 * R(z) ~ Lp1*s +Lp2*s +Lp3*s +Lp4*s +Lp5*s +Lp6*s +Lp7*s
1739 * (the values of Lp1 to Lp7 are listed in the program)
1740 * and
1741 * | 2 14 | -58.45
1742 * | Lp1*s +...+Lp7*s - R(z) | <= 2
1743 * | |
1744 * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
1745 * In order to guarantee error in log below 1ulp, we compute log
1746 * by
1747 * log1p(f) = f - (hfsq - s*(hfsq+R)).
1748 *
1749 * 3. Finally, log1p(x) = k*ln2 + log1p(f).
1750 * = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
1751 * Here ln2 is split into two floating point number:
1752 * ln2_hi + ln2_lo,
1753 * where n*ln2_hi is always exact for |n| < 2000.
1754 *
1755 * Special cases:
1756 * log1p(x) is NaN with signal if x < -1 (including -INF) ;
1757 * log1p(+INF) is +INF; log1p(-1) is -INF with signal;
1758 * log1p(NaN) is that NaN with no signal.
1759 *
1760 * Accuracy:
1761 * according to an error analysis, the error is always less than
1762 * 1 ulp (unit in the last place).
1763 *
1764 * Constants:
1765 * The hexadecimal values are the intended ones for the following
1766 * constants. The decimal values may be used, provided that the
1767 * compiler will convert from decimal to binary accurately enough
1768 * to produce the hexadecimal values shown.
1769 *
1770 * Note: Assuming log() return accurate answer, the following
1771 * algorithm can be used to compute log1p(x) to within a few ULP:
1772 *
1773 * u = 1+x;
1774 * if(u==1.0) return x ; else
1775 * return log(u)*(x/(u-1.0));
1776 *
1777 * See HP-15C Advanced Functions Handbook, p.193.
1778 */
1779double log1p(double x) {
1780 static const double /* -- */
1781 ln2_hi = 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */
1782 ln2_lo = 1.90821492927058770002e-10, /* 3dea39ef 35793c76 */
1783 two54 = 1.80143985094819840000e+16, /* 43500000 00000000 */
1784 Lp1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */
1785 Lp2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */
1786 Lp3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */
1787 Lp4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */
1788 Lp5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */
1789 Lp6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */
1790 Lp7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */
1791
1792 static const double zero = 0.0;
1793
1794 double hfsq, f, c, s, z, R, u;
1795 int32_t k, hx, hu, ax;
1796
1797 GET_HIGH_WORD(hx, x);
1798 ax = hx & 0x7FFFFFFF;
1799
1800 k = 1;
1801 if (hx < 0x3FDA827A) { /* 1+x < sqrt(2)+ */
1802 if (ax >= 0x3FF00000) { /* x <= -1.0 */
1803 if (x == -1.0)
1804 return -std::numeric_limits<double>::infinity(); /* log1p(-1)=+inf */
1805 else
1806 return std::numeric_limits<double>::signaling_NaN(); // log1p(x<-1)=NaN
1807 }
1808 if (ax < 0x3E200000) { /* |x| < 2**-29 */
1809 if (two54 + x > zero /* raise inexact */
1810 && ax < 0x3C900000) /* |x| < 2**-54 */
1811 return x;
1812 else
1813 return x - x * x * 0.5;
1814 }
1815 if (hx > 0 || hx <= static_cast<int32_t>(0xBFD2BEC4)) {
1816 k = 0;
1817 f = x;
1818 hu = 1;
1819 } /* sqrt(2)/2- <= 1+x < sqrt(2)+ */
1820 }
1821 if (hx >= 0x7FF00000) return x + x;
1822 if (k != 0) {
1823 if (hx < 0x43400000) {
1824 u = 1.0 + x;
1825 GET_HIGH_WORD(hu, u);
1826 k = (hu >> 20) - 1023;
1827 c = (k > 0) ? 1.0 - (u - x) : x - (u - 1.0); /* correction term */
1828 c /= u;
1829 } else {
1830 u = x;
1831 GET_HIGH_WORD(hu, u);
1832 k = (hu >> 20) - 1023;
1833 c = 0;
1834 }
1835 hu &= 0x000FFFFF;
1836 /*
1837 * The approximation to sqrt(2) used in thresholds is not
1838 * critical. However, the ones used above must give less
1839 * strict bounds than the one here so that the k==0 case is
1840 * never reached from here, since here we have committed to
1841 * using the correction term but don't use it if k==0.
1842 */
1843 if (hu < 0x6A09E) { /* u ~< sqrt(2) */
1844 SET_HIGH_WORD(u, hu | 0x3FF00000); /* normalize u */
1845 } else {
1846 k += 1;
1847 SET_HIGH_WORD(u, hu | 0x3FE00000); /* normalize u/2 */
1848 hu = (0x00100000 - hu) >> 2;
1849 }
1850 f = u - 1.0;
1851 }
1852 hfsq = 0.5 * f * f;
1853 if (hu == 0) { /* |f| < 2**-20 */
1854 if (f == zero) {
1855 if (k == 0) {
1856 return zero;
1857 } else {
1858 c += k * ln2_lo;
1859 return k * ln2_hi + c;
1860 }
1861 }
1862 R = hfsq * (1.0 - 0.66666666666666666 * f);
1863 if (k == 0)
1864 return f - R;
1865 else
1866 return k * ln2_hi - ((R - (k * ln2_lo + c)) - f);
1867 }
1868 s = f / (2.0 + f);
1869 z = s * s;
1870 R = z * (Lp1 +
1871 z * (Lp2 + z * (Lp3 + z * (Lp4 + z * (Lp5 + z * (Lp6 + z * Lp7))))));
1872 if (k == 0)
1873 return f - (hfsq - s * (hfsq + R));
1874 else
1875 return k * ln2_hi - ((hfsq - (s * (hfsq + R) + (k * ln2_lo + c))) - f);
1876}
1877
1878/*
1879 * k_log1p(f):
1880 * Return log(1+f) - f for 1+f in ~[sqrt(2)/2, sqrt(2)].
1881 *
1882 * The following describes the overall strategy for computing
1883 * logarithms in base e. The argument reduction and adding the final
1884 * term of the polynomial are done by the caller for increased accuracy
1885 * when different bases are used.
1886 *
1887 * Method :
1888 * 1. Argument Reduction: find k and f such that
1889 * x = 2^k * (1+f),
1890 * where sqrt(2)/2 < 1+f < sqrt(2) .
1891 *
1892 * 2. Approximation of log(1+f).
1893 * Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
1894 * = 2s + 2/3 s**3 + 2/5 s**5 + .....,
1895 * = 2s + s*R
1896 * We use a special Reme algorithm on [0,0.1716] to generate
1897 * a polynomial of degree 14 to approximate R The maximum error
1898 * of this polynomial approximation is bounded by 2**-58.45. In
1899 * other words,
1900 * 2 4 6 8 10 12 14
1901 * R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s +Lg6*s +Lg7*s
1902 * (the values of Lg1 to Lg7 are listed in the program)
1903 * and
1904 * | 2 14 | -58.45
1905 * | Lg1*s +...+Lg7*s - R(z) | <= 2
1906 * | |
1907 * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
1908 * In order to guarantee error in log below 1ulp, we compute log
1909 * by
1910 * log(1+f) = f - s*(f - R) (if f is not too large)
1911 * log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy)
1912 *
1913 * 3. Finally, log(x) = k*ln2 + log(1+f).
1914 * = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
1915 * Here ln2 is split into two floating point number:
1916 * ln2_hi + ln2_lo,
1917 * where n*ln2_hi is always exact for |n| < 2000.
1918 *
1919 * Special cases:
1920 * log(x) is NaN with signal if x < 0 (including -INF) ;
1921 * log(+INF) is +INF; log(0) is -INF with signal;
1922 * log(NaN) is that NaN with no signal.
1923 *
1924 * Accuracy:
1925 * according to an error analysis, the error is always less than
1926 * 1 ulp (unit in the last place).
1927 *
1928 * Constants:
1929 * The hexadecimal values are the intended ones for the following
1930 * constants. The decimal values may be used, provided that the
1931 * compiler will convert from decimal to binary accurately enough
1932 * to produce the hexadecimal values shown.
1933 */
1934
1935static const double Lg1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */
1936 Lg2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */
1937 Lg3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */
1938 Lg4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */
1939 Lg5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */
1940 Lg6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */
1941 Lg7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */
1942
1943/*
1944 * We always inline k_log1p(), since doing so produces a
1945 * substantial performance improvement (~40% on amd64).
1946 */
1947static inline double k_log1p(double f) {
1948 double hfsq, s, z, R, w, t1, t2;
1949
1950 s = f / (2.0 + f);
1951 z = s * s;
1952 w = z * z;
1953 t1 = w * (Lg2 + w * (Lg4 + w * Lg6));
1954 t2 = z * (Lg1 + w * (Lg3 + w * (Lg5 + w * Lg7)));
1955 R = t2 + t1;
1956 hfsq = 0.5 * f * f;
1957 return s * (hfsq + R);
1958}
1959
1960/*
1961 * Return the base 2 logarithm of x. See e_log.c and k_log.h for most
1962 * comments.
1963 *
1964 * This reduces x to {k, 1+f} exactly as in e_log.c, then calls the kernel,
1965 * then does the combining and scaling steps
1966 * log2(x) = (f - 0.5*f*f + k_log1p(f)) / ln2 + k
1967 * in not-quite-routine extra precision.
1968 */
1969double log2(double x) {
1970 static const double
1971 two54 = 1.80143985094819840000e+16, /* 0x43500000, 0x00000000 */
1972 ivln2hi = 1.44269504072144627571e+00, /* 0x3FF71547, 0x65200000 */
1973 ivln2lo = 1.67517131648865118353e-10; /* 0x3DE705FC, 0x2EEFA200 */
1974
1975 double f, hfsq, hi, lo, r, val_hi, val_lo, w, y;
1976 int32_t i, k, hx;
1977 uint32_t lx;
1978
1979 EXTRACT_WORDS(hx, lx, x);
1980
1981 k = 0;
1982 if (hx < 0x00100000) { /* x < 2**-1022 */
1983 if (((hx & 0x7FFFFFFF) | lx) == 0) {
1984 return -std::numeric_limits<double>::infinity(); /* log(+-0)=-inf */
1985 }
1986 if (hx < 0) {
1987 return std::numeric_limits<double>::signaling_NaN(); /* log(-#) = NaN */
1988 }
1989 k -= 54;
1990 x *= two54; /* subnormal number, scale up x */
1991 GET_HIGH_WORD(hx, x);
1992 }
1993 if (hx >= 0x7FF00000) return x + x;
1994 if (hx == 0x3FF00000 && lx == 0) return 0.0; /* log(1) = +0 */
1995 k += (hx >> 20) - 1023;
1996 hx &= 0x000FFFFF;
1997 i = (hx + 0x95F64) & 0x100000;
1998 SET_HIGH_WORD(x, hx | (i ^ 0x3FF00000)); /* normalize x or x/2 */
1999 k += (i >> 20);
2000 y = static_cast<double>(k);
2001 f = x - 1.0;
2002 hfsq = 0.5 * f * f;
2003 r = k_log1p(f);
2004
2005 /*
2006 * f-hfsq must (for args near 1) be evaluated in extra precision
2007 * to avoid a large cancellation when x is near sqrt(2) or 1/sqrt(2).
2008 * This is fairly efficient since f-hfsq only depends on f, so can
2009 * be evaluated in parallel with R. Not combining hfsq with R also
2010 * keeps R small (though not as small as a true `lo' term would be),
2011 * so that extra precision is not needed for terms involving R.
2012 *
2013 * Compiler bugs involving extra precision used to break Dekker's
2014 * theorem for spitting f-hfsq as hi+lo, unless double_t was used
2015 * or the multi-precision calculations were avoided when double_t
2016 * has extra precision. These problems are now automatically
2017 * avoided as a side effect of the optimization of combining the
2018 * Dekker splitting step with the clear-low-bits step.
2019 *
2020 * y must (for args near sqrt(2) and 1/sqrt(2)) be added in extra
2021 * precision to avoid a very large cancellation when x is very near
2022 * these values. Unlike the above cancellations, this problem is
2023 * specific to base 2. It is strange that adding +-1 is so much
2024 * harder than adding +-ln2 or +-log10_2.
2025 *
2026 * This uses Dekker's theorem to normalize y+val_hi, so the
2027 * compiler bugs are back in some configurations, sigh. And I
2028 * don't want to used double_t to avoid them, since that gives a
2029 * pessimization and the support for avoiding the pessimization
2030 * is not yet available.
2031 *
2032 * The multi-precision calculations for the multiplications are
2033 * routine.
2034 */
2035 hi = f - hfsq;
2036 SET_LOW_WORD(hi, 0);
2037 lo = (f - hi) - hfsq + r;
2038 val_hi = hi * ivln2hi;
2039 val_lo = (lo + hi) * ivln2lo + lo * ivln2hi;
2040
2041 /* spadd(val_hi, val_lo, y), except for not using double_t: */
2042 w = y + val_hi;
2043 val_lo += (y - w) + val_hi;
2044 val_hi = w;
2045
2046 return val_lo + val_hi;
2047}
2048
2049/*
2050 * Return the base 10 logarithm of x
2051 *
2052 * Method :
2053 * Let log10_2hi = leading 40 bits of log10(2) and
2054 * log10_2lo = log10(2) - log10_2hi,
2055 * ivln10 = 1/log(10) rounded.
2056 * Then
2057 * n = ilogb(x),
2058 * if(n<0) n = n+1;
2059 * x = scalbn(x,-n);
2060 * log10(x) := n*log10_2hi + (n*log10_2lo + ivln10*log(x))
2061 *
2062 * Note 1:
2063 * To guarantee log10(10**n)=n, where 10**n is normal, the rounding
2064 * mode must set to Round-to-Nearest.
2065 * Note 2:
2066 * [1/log(10)] rounded to 53 bits has error .198 ulps;
2067 * log10 is monotonic at all binary break points.
2068 *
2069 * Special cases:
2070 * log10(x) is NaN if x < 0;
2071 * log10(+INF) is +INF; log10(0) is -INF;
2072 * log10(NaN) is that NaN;
2073 * log10(10**N) = N for N=0,1,...,22.
2074 */
2075double log10(double x) {
2076 static const double
2077 two54 = 1.80143985094819840000e+16, /* 0x43500000, 0x00000000 */
2078 ivln10 = 4.34294481903251816668e-01,
2079 log10_2hi = 3.01029995663611771306e-01, /* 0x3FD34413, 0x509F6000 */
2080 log10_2lo = 3.69423907715893078616e-13; /* 0x3D59FEF3, 0x11F12B36 */
2081
2082 double y;
2083 int32_t i, k, hx;
2084 uint32_t lx;
2085
2086 EXTRACT_WORDS(hx, lx, x);
2087
2088 k = 0;
2089 if (hx < 0x00100000) { /* x < 2**-1022 */
2090 if (((hx & 0x7FFFFFFF) | lx) == 0) {
2091 return -std::numeric_limits<double>::infinity(); /* log(+-0)=-inf */
2092 }
2093 if (hx < 0) {
2094 return std::numeric_limits<double>::quiet_NaN(); /* log(-#) = NaN */
2095 }
2096 k -= 54;
2097 x *= two54; /* subnormal number, scale up x */
2098 GET_HIGH_WORD(hx, x);
2099 GET_LOW_WORD(lx, x);
2100 }
2101 if (hx >= 0x7FF00000) return x + x;
2102 if (hx == 0x3FF00000 && lx == 0) return 0.0; /* log(1) = +0 */
2103 k += (hx >> 20) - 1023;
2104
2105 i = (k & 0x80000000) >> 31;
2106 hx = (hx & 0x000FFFFF) | ((0x3FF - i) << 20);
2107 y = k + i;
2108 SET_HIGH_WORD(x, hx);
2109 SET_LOW_WORD(x, lx);
2110
2111 double z = y * log10_2lo + ivln10 * log(x);
2112 return z + y * log10_2hi;
2113}
2114
2115/* expm1(x)
2116 * Returns exp(x)-1, the exponential of x minus 1.
2117 *
2118 * Method
2119 * 1. Argument reduction:
2120 * Given x, find r and integer k such that
2121 *
2122 * x = k*ln2 + r, |r| <= 0.5*ln2 ~ 0.34658
2123 *
2124 * Here a correction term c will be computed to compensate
2125 * the error in r when rounded to a floating-point number.
2126 *
2127 * 2. Approximating expm1(r) by a special rational function on
2128 * the interval [0,0.34658]:
2129 * Since
2130 * r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 - r^4/360 + ...
2131 * we define R1(r*r) by
2132 * r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 * R1(r*r)
2133 * That is,
2134 * R1(r**2) = 6/r *((exp(r)+1)/(exp(r)-1) - 2/r)
2135 * = 6/r * ( 1 + 2.0*(1/(exp(r)-1) - 1/r))
2136 * = 1 - r^2/60 + r^4/2520 - r^6/100800 + ...
2137 * We use a special Reme algorithm on [0,0.347] to generate
2138 * a polynomial of degree 5 in r*r to approximate R1. The
2139 * maximum error of this polynomial approximation is bounded
2140 * by 2**-61. In other words,
2141 * R1(z) ~ 1.0 + Q1*z + Q2*z**2 + Q3*z**3 + Q4*z**4 + Q5*z**5
2142 * where Q1 = -1.6666666666666567384E-2,
2143 * Q2 = 3.9682539681370365873E-4,
2144 * Q3 = -9.9206344733435987357E-6,
2145 * Q4 = 2.5051361420808517002E-7,
2146 * Q5 = -6.2843505682382617102E-9;
2147 * z = r*r,
2148 * with error bounded by
2149 * | 5 | -61
2150 * | 1.0+Q1*z+...+Q5*z - R1(z) | <= 2
2151 * | |
2152 *
2153 * expm1(r) = exp(r)-1 is then computed by the following
2154 * specific way which minimize the accumulation rounding error:
2155 * 2 3
2156 * r r [ 3 - (R1 + R1*r/2) ]
2157 * expm1(r) = r + --- + --- * [--------------------]
2158 * 2 2 [ 6 - r*(3 - R1*r/2) ]
2159 *
2160 * To compensate the error in the argument reduction, we use
2161 * expm1(r+c) = expm1(r) + c + expm1(r)*c
2162 * ~ expm1(r) + c + r*c
2163 * Thus c+r*c will be added in as the correction terms for
2164 * expm1(r+c). Now rearrange the term to avoid optimization
2165 * screw up:
2166 * ( 2 2 )
2167 * ({ ( r [ R1 - (3 - R1*r/2) ] ) } r )
2168 * expm1(r+c)~r - ({r*(--- * [--------------------]-c)-c} - --- )
2169 * ({ ( 2 [ 6 - r*(3 - R1*r/2) ] ) } 2 )
2170 * ( )
2171 *
2172 * = r - E
2173 * 3. Scale back to obtain expm1(x):
2174 * From step 1, we have
2175 * expm1(x) = either 2^k*[expm1(r)+1] - 1
2176 * = or 2^k*[expm1(r) + (1-2^-k)]
2177 * 4. Implementation notes:
2178 * (A). To save one multiplication, we scale the coefficient Qi
2179 * to Qi*2^i, and replace z by (x^2)/2.
2180 * (B). To achieve maximum accuracy, we compute expm1(x) by
2181 * (i) if x < -56*ln2, return -1.0, (raise inexact if x!=inf)
2182 * (ii) if k=0, return r-E
2183 * (iii) if k=-1, return 0.5*(r-E)-0.5
2184 * (iv) if k=1 if r < -0.25, return 2*((r+0.5)- E)
2185 * else return 1.0+2.0*(r-E);
2186 * (v) if (k<-2||k>56) return 2^k(1-(E-r)) - 1 (or exp(x)-1)
2187 * (vi) if k <= 20, return 2^k((1-2^-k)-(E-r)), else
2188 * (vii) return 2^k(1-((E+2^-k)-r))
2189 *
2190 * Special cases:
2191 * expm1(INF) is INF, expm1(NaN) is NaN;
2192 * expm1(-INF) is -1, and
2193 * for finite argument, only expm1(0)=0 is exact.
2194 *
2195 * Accuracy:
2196 * according to an error analysis, the error is always less than
2197 * 1 ulp (unit in the last place).
2198 *
2199 * Misc. info.
2200 * For IEEE double
2201 * if x > 7.09782712893383973096e+02 then expm1(x) overflow
2202 *
2203 * Constants:
2204 * The hexadecimal values are the intended ones for the following
2205 * constants. The decimal values may be used, provided that the
2206 * compiler will convert from decimal to binary accurately enough
2207 * to produce the hexadecimal values shown.
2208 */
2209double expm1(double x) {
2210 static const double
2211 one = 1.0,
2212 tiny = 1.0e-300,
2213 o_threshold = 7.09782712893383973096e+02, /* 0x40862E42, 0xFEFA39EF */
2214 ln2_hi = 6.93147180369123816490e-01, /* 0x3FE62E42, 0xFEE00000 */
2215 ln2_lo = 1.90821492927058770002e-10, /* 0x3DEA39EF, 0x35793C76 */
2216 invln2 = 1.44269504088896338700e+00, /* 0x3FF71547, 0x652B82FE */
2217 /* Scaled Q's: Qn_here = 2**n * Qn_above, for R(2*z) where z = hxs =
2218 x*x/2: */
2219 Q1 = -3.33333333333331316428e-02, /* BFA11111 111110F4 */
2220 Q2 = 1.58730158725481460165e-03, /* 3F5A01A0 19FE5585 */
2221 Q3 = -7.93650757867487942473e-05, /* BF14CE19 9EAADBB7 */
2222 Q4 = 4.00821782732936239552e-06, /* 3ED0CFCA 86E65239 */
2223 Q5 = -2.01099218183624371326e-07; /* BE8AFDB7 6E09C32D */
2224
2225 static volatile double huge = 1.0e+300;
2226
2227 double y, hi, lo, c, t, e, hxs, hfx, r1, twopk;
2228 int32_t k, xsb;
2229 uint32_t hx;
2230
2231 GET_HIGH_WORD(hx, x);
2232 xsb = hx & 0x80000000; /* sign bit of x */
2233 hx &= 0x7FFFFFFF; /* high word of |x| */
2234
2235 /* filter out huge and non-finite argument */
2236 if (hx >= 0x4043687A) { /* if |x|>=56*ln2 */
2237 if (hx >= 0x40862E42) { /* if |x|>=709.78... */
2238 if (hx >= 0x7FF00000) {
2239 uint32_t low;
2240 GET_LOW_WORD(low, x);
2241 if (((hx & 0xFFFFF) | low) != 0)
2242 return x + x; /* NaN */
2243 else
2244 return (xsb == 0) ? x : -1.0; /* exp(+-inf)={inf,-1} */
2245 }
2246 if (x > o_threshold) return huge * huge; /* overflow */
2247 }
2248 if (xsb != 0) { /* x < -56*ln2, return -1.0 with inexact */
2249 if (x + tiny < 0.0) /* raise inexact */
2250 return tiny - one; /* return -1 */
2251 }
2252 }
2253
2254 /* argument reduction */
2255 if (hx > 0x3FD62E42) { /* if |x| > 0.5 ln2 */
2256 if (hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */
2257 if (xsb == 0) {
2258 hi = x - ln2_hi;
2259 lo = ln2_lo;
2260 k = 1;
2261 } else {
2262 hi = x + ln2_hi;
2263 lo = -ln2_lo;
2264 k = -1;
2265 }
2266 } else {
2267 k = invln2 * x + ((xsb == 0) ? 0.5 : -0.5);
2268 t = k;
2269 hi = x - t * ln2_hi; /* t*ln2_hi is exact here */
2270 lo = t * ln2_lo;
2271 }
2272 x = hi - lo;
2273 c = (hi - x) - lo;
2274 } else if (hx < 0x3C900000) { /* when |x|<2**-54, return x */
2275 t = huge + x; /* return x with inexact flags when x!=0 */
2276 return x - (t - (huge + x));
2277 } else {
2278 k = 0;
2279 }
2280
2281 /* x is now in primary range */
2282 hfx = 0.5 * x;
2283 hxs = x * hfx;
2284 r1 = one + hxs * (Q1 + hxs * (Q2 + hxs * (Q3 + hxs * (Q4 + hxs * Q5))));
2285 t = 3.0 - r1 * hfx;
2286 e = hxs * ((r1 - t) / (6.0 - x * t));
2287 if (k == 0) {
2288 return x - (x * e - hxs); /* c is 0 */
2289 } else {
2290 INSERT_WORDS(
2291 twopk,
2292 0x3FF00000 + static_cast<int32_t>(static_cast<uint32_t>(k) << 20),
2293 0); /* 2^k */
2294 e = (x * (e - c) - c);
2295 e -= hxs;
2296 if (k == -1) return 0.5 * (x - e) - 0.5;
2297 if (k == 1) {
2298 if (x < -0.25)
2299 return -2.0 * (e - (x + 0.5));
2300 else
2301 return one + 2.0 * (x - e);
2302 }
2303 if (k <= -2 || k > 56) { /* suffice to return exp(x)-1 */
2304 y = one - (e - x);
2305 // TODO(mvstanton): is this replacement for the hex float
2306 // sufficient?
2307 // if (k == 1024) y = y*2.0*0x1p1023;
2308 if (k == 1024)
2309 y = y * 2.0 * 8.98846567431158e+307;
2310 else
2311 y = y * twopk;
2312 return y - one;
2313 }
2314 t = one;
2315 if (k < 20) {
2316 SET_HIGH_WORD(t, 0x3FF00000 - (0x200000 >> k)); /* t=1-2^-k */
2317 y = t - (e - x);
2318 y = y * twopk;
2319 } else {
2320 SET_HIGH_WORD(t, ((0x3FF - k) << 20)); /* 2^-k */
2321 y = x - (e + t);
2322 y += one;
2323 y = y * twopk;
2324 }
2325 }
2326 return y;
2327}
2328
2329double cbrt(double x) {
2330 static const uint32_t
2331 B1 = 715094163, /* B1 = (1023-1023/3-0.03306235651)*2**20 */
2332 B2 = 696219795; /* B2 = (1023-1023/3-54/3-0.03306235651)*2**20 */
2333
2334 /* |1/cbrt(x) - p(x)| < 2**-23.5 (~[-7.93e-8, 7.929e-8]). */
2335 static const double P0 = 1.87595182427177009643, /* 0x3FFE03E6, 0x0F61E692 */
2336 P1 = -1.88497979543377169875, /* 0xBFFE28E0, 0x92F02420 */
2337 P2 = 1.621429720105354466140, /* 0x3FF9F160, 0x4A49D6C2 */
2338 P3 = -0.758397934778766047437, /* 0xBFE844CB, 0xBEE751D9 */
2339 P4 = 0.145996192886612446982; /* 0x3FC2B000, 0xD4E4EDD7 */
2340
2341 int32_t hx;
2342 double r, s, t = 0.0, w;
2343 uint32_t sign;
2344 uint32_t high, low;
2345
2346 EXTRACT_WORDS(hx, low, x);
2347 sign = hx & 0x80000000; /* sign= sign(x) */
2348 hx ^= sign;
2349 if (hx >= 0x7FF00000) return (x + x); /* cbrt(NaN,INF) is itself */
2350
2351 /*
2352 * Rough cbrt to 5 bits:
2353 * cbrt(2**e*(1+m) ~= 2**(e/3)*(1+(e%3+m)/3)
2354 * where e is integral and >= 0, m is real and in [0, 1), and "/" and
2355 * "%" are integer division and modulus with rounding towards minus
2356 * infinity. The RHS is always >= the LHS and has a maximum relative
2357 * error of about 1 in 16. Adding a bias of -0.03306235651 to the
2358 * (e%3+m)/3 term reduces the error to about 1 in 32. With the IEEE
2359 * floating point representation, for finite positive normal values,
2360 * ordinary integer division of the value in bits magically gives
2361 * almost exactly the RHS of the above provided we first subtract the
2362 * exponent bias (1023 for doubles) and later add it back. We do the
2363 * subtraction virtually to keep e >= 0 so that ordinary integer
2364 * division rounds towards minus infinity; this is also efficient.
2365 */
2366 if (hx < 0x00100000) { /* zero or subnormal? */
2367 if ((hx | low) == 0) return (x); /* cbrt(0) is itself */
2368 SET_HIGH_WORD(t, 0x43500000); /* set t= 2**54 */
2369 t *= x;
2370 GET_HIGH_WORD(high, t);
2371 INSERT_WORDS(t, sign | ((high & 0x7FFFFFFF) / 3 + B2), 0);
2372 } else {
2373 INSERT_WORDS(t, sign | (hx / 3 + B1), 0);
2374 }
2375
2376 /*
2377 * New cbrt to 23 bits:
2378 * cbrt(x) = t*cbrt(x/t**3) ~= t*P(t**3/x)
2379 * where P(r) is a polynomial of degree 4 that approximates 1/cbrt(r)
2380 * to within 2**-23.5 when |r - 1| < 1/10. The rough approximation
2381 * has produced t such than |t/cbrt(x) - 1| ~< 1/32, and cubing this
2382 * gives us bounds for r = t**3/x.
2383 *
2384 * Try to optimize for parallel evaluation as in k_tanf.c.
2385 */
2386 r = (t * t) * (t / x);
2387 t = t * ((P0 + r * (P1 + r * P2)) + ((r * r) * r) * (P3 + r * P4));
2388
2389 /*
2390 * Round t away from zero to 23 bits (sloppily except for ensuring that
2391 * the result is larger in magnitude than cbrt(x) but not much more than
2392 * 2 23-bit ulps larger). With rounding towards zero, the error bound
2393 * would be ~5/6 instead of ~4/6. With a maximum error of 2 23-bit ulps
2394 * in the rounded t, the infinite-precision error in the Newton
2395 * approximation barely affects third digit in the final error
2396 * 0.667; the error in the rounded t can be up to about 3 23-bit ulps
2397 * before the final error is larger than 0.667 ulps.
2398 */
2399 uint64_t bits = bit_cast<uint64_t>(t);
2400 bits = (bits + 0x80000000) & 0xFFFFFFFFC0000000ULL;
2401 t = bit_cast<double>(bits);
2402
2403 /* one step Newton iteration to 53 bits with error < 0.667 ulps */
2404 s = t * t; /* t*t is exact */
2405 r = x / s; /* error <= 0.5 ulps; |r| < |t| */
2406 w = t + t; /* t+t is exact */
2407 r = (r - t) / (w + r); /* r-t is exact; w+r ~= 3*t */
2408 t = t + t * r; /* error <= 0.5 + 0.5/3 + epsilon */
2409
2410 return (t);
2411}
2412
2413/* sin(x)
2414 * Return sine function of x.
2415 *
2416 * kernel function:
2417 * __kernel_sin ... sine function on [-pi/4,pi/4]
2418 * __kernel_cos ... cose function on [-pi/4,pi/4]
2419 * __ieee754_rem_pio2 ... argument reduction routine
2420 *
2421 * Method.
2422 * Let S,C and T denote the sin, cos and tan respectively on
2423 * [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
2424 * in [-pi/4 , +pi/4], and let n = k mod 4.
2425 * We have
2426 *
2427 * n sin(x) cos(x) tan(x)
2428 * ----------------------------------------------------------
2429 * 0 S C T
2430 * 1 C -S -1/T
2431 * 2 -S -C T
2432 * 3 -C S -1/T
2433 * ----------------------------------------------------------
2434 *
2435 * Special cases:
2436 * Let trig be any of sin, cos, or tan.
2437 * trig(+-INF) is NaN, with signals;
2438 * trig(NaN) is that NaN;
2439 *
2440 * Accuracy:
2441 * TRIG(x) returns trig(x) nearly rounded
2442 */
2443double sin(double x) {
2444 double y[2], z = 0.0;
2445 int32_t n, ix;
2446
2447 /* High word of x. */
2448 GET_HIGH_WORD(ix, x);
2449
2450 /* |x| ~< pi/4 */
2451 ix &= 0x7FFFFFFF;
2452 if (ix <= 0x3FE921FB) {
2453 return __kernel_sin(x, z, 0);
2454 } else if (ix >= 0x7FF00000) {
2455 /* sin(Inf or NaN) is NaN */
2456 return x - x;
2457 } else {
2458 /* argument reduction needed */
2459 n = __ieee754_rem_pio2(x, y);
2460 switch (n & 3) {
2461 case 0:
2462 return __kernel_sin(y[0], y[1], 1);
2463 case 1:
2464 return __kernel_cos(y[0], y[1]);
2465 case 2:
2466 return -__kernel_sin(y[0], y[1], 1);
2467 default:
2468 return -__kernel_cos(y[0], y[1]);
2469 }
2470 }
2471}
2472
2473/* tan(x)
2474 * Return tangent function of x.
2475 *
2476 * kernel function:
2477 * __kernel_tan ... tangent function on [-pi/4,pi/4]
2478 * __ieee754_rem_pio2 ... argument reduction routine
2479 *
2480 * Method.
2481 * Let S,C and T denote the sin, cos and tan respectively on
2482 * [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
2483 * in [-pi/4 , +pi/4], and let n = k mod 4.
2484 * We have
2485 *
2486 * n sin(x) cos(x) tan(x)
2487 * ----------------------------------------------------------
2488 * 0 S C T
2489 * 1 C -S -1/T
2490 * 2 -S -C T
2491 * 3 -C S -1/T
2492 * ----------------------------------------------------------
2493 *
2494 * Special cases:
2495 * Let trig be any of sin, cos, or tan.
2496 * trig(+-INF) is NaN, with signals;
2497 * trig(NaN) is that NaN;
2498 *
2499 * Accuracy:
2500 * TRIG(x) returns trig(x) nearly rounded
2501 */
2502double tan(double x) {
2503 double y[2], z = 0.0;
2504 int32_t n, ix;
2505
2506 /* High word of x. */
2507 GET_HIGH_WORD(ix, x);
2508
2509 /* |x| ~< pi/4 */
2510 ix &= 0x7FFFFFFF;
2511 if (ix <= 0x3FE921FB) {
2512 return __kernel_tan(x, z, 1);
2513 } else if (ix >= 0x7FF00000) {
2514 /* tan(Inf or NaN) is NaN */
2515 return x - x; /* NaN */
2516 } else {
2517 /* argument reduction needed */
2518 n = __ieee754_rem_pio2(x, y);
2519 /* 1 -> n even, -1 -> n odd */
2520 return __kernel_tan(y[0], y[1], 1 - ((n & 1) << 1));
2521 }
2522}
2523
2524/*
2525 * ES6 draft 09-27-13, section 20.2.2.12.
2526 * Math.cosh
2527 * Method :
2528 * mathematically cosh(x) if defined to be (exp(x)+exp(-x))/2
2529 * 1. Replace x by |x| (cosh(x) = cosh(-x)).
2530 * 2.
2531 * [ exp(x) - 1 ]^2
2532 * 0 <= x <= ln2/2 : cosh(x) := 1 + -------------------
2533 * 2*exp(x)
2534 *
2535 * exp(x) + 1/exp(x)
2536 * ln2/2 <= x <= 22 : cosh(x) := -------------------
2537 * 2
2538 * 22 <= x <= lnovft : cosh(x) := exp(x)/2
2539 * lnovft <= x <= ln2ovft: cosh(x) := exp(x/2)/2 * exp(x/2)
2540 * ln2ovft < x : cosh(x) := huge*huge (overflow)
2541 *
2542 * Special cases:
2543 * cosh(x) is |x| if x is +INF, -INF, or NaN.
2544 * only cosh(0)=1 is exact for finite x.
2545 */
2546double cosh(double x) {
2547 static const double KCOSH_OVERFLOW = 710.4758600739439;
2548 static const double one = 1.0, half = 0.5;
2549 static volatile double huge = 1.0e+300;
2550
2551 int32_t ix;
2552
2553 /* High word of |x|. */
2554 GET_HIGH_WORD(ix, x);
2555 ix &= 0x7FFFFFFF;
2556
2557 // |x| in [0,0.5*log2], return 1+expm1(|x|)^2/(2*exp(|x|))
2558 if (ix < 0x3FD62E43) {
2559 double t = expm1(fabs(x));
2560 double w = one + t;
2561 // For |x| < 2^-55, cosh(x) = 1
2562 if (ix < 0x3C800000) return w;
2563 return one + (t * t) / (w + w);
2564 }
2565
2566 // |x| in [0.5*log2, 22], return (exp(|x|)+1/exp(|x|)/2
2567 if (ix < 0x40360000) {
2568 double t = exp(fabs(x));
2569 return half * t + half / t;
2570 }
2571
2572 // |x| in [22, log(maxdouble)], return half*exp(|x|)
2573 if (ix < 0x40862E42) return half * exp(fabs(x));
2574
2575 // |x| in [log(maxdouble), overflowthreshold]
2576 if (fabs(x) <= KCOSH_OVERFLOW) {
2577 double w = exp(half * fabs(x));
2578 double t = half * w;
2579 return t * w;
2580 }
2581
2582 /* x is INF or NaN */
2583 if (ix >= 0x7FF00000) return x * x;
2584
2585 // |x| > overflowthreshold.
2586 return huge * huge;
2587}
2588
2589/*
2590 * ES2019 Draft 2019-01-02 12.6.4
2591 * Math.pow & Exponentiation Operator
2592 *
2593 * Return X raised to the Yth power
2594 *
2595 * Method:
2596 * Let x = 2 * (1+f)
2597 * 1. Compute and return log2(x) in two pieces:
2598 * log2(x) = w1 + w2,
2599 * where w1 has 53-24 = 29 bit trailing zeros.
2600 * 2. Perform y*log2(x) = n+y' by simulating muti-precision
2601 * arithmetic, where |y'|<=0.5.
2602 * 3. Return x**y = 2**n*exp(y'*log2)
2603 *
2604 * Special cases:
2605 * 1. (anything) ** 0 is 1
2606 * 2. (anything) ** 1 is itself
2607 * 3. (anything) ** NAN is NAN
2608 * 4. NAN ** (anything except 0) is NAN
2609 * 5. +-(|x| > 1) ** +INF is +INF
2610 * 6. +-(|x| > 1) ** -INF is +0
2611 * 7. +-(|x| < 1) ** +INF is +0
2612 * 8. +-(|x| < 1) ** -INF is +INF
2613 * 9. +-1 ** +-INF is NAN
2614 * 10. +0 ** (+anything except 0, NAN) is +0
2615 * 11. -0 ** (+anything except 0, NAN, odd integer) is +0
2616 * 12. +0 ** (-anything except 0, NAN) is +INF
2617 * 13. -0 ** (-anything except 0, NAN, odd integer) is +INF
2618 * 14. -0 ** (odd integer) = -( +0 ** (odd integer) )
2619 * 15. +INF ** (+anything except 0,NAN) is +INF
2620 * 16. +INF ** (-anything except 0,NAN) is +0
2621 * 17. -INF ** (anything) = -0 ** (-anything)
2622 * 18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
2623 * 19. (-anything except 0 and inf) ** (non-integer) is NAN
2624 *
2625 * Accuracy:
2626 * pow(x,y) returns x**y nearly rounded. In particular,
2627 * pow(integer, integer) always returns the correct integer provided it is
2628 * representable.
2629 *
2630 * Constants:
2631 * The hexadecimal values are the intended ones for the following
2632 * constants. The decimal values may be used, provided that the
2633 * compiler will convert from decimal to binary accurately enough
2634 * to produce the hexadecimal values shown.
2635 */
2636
2637double pow(double x, double y) {
2638 static const double
2639 bp[] = {1.0, 1.5},
2640 dp_h[] = {0.0, 5.84962487220764160156e-01}, // 0x3FE2B803, 0x40000000
2641 dp_l[] = {0.0, 1.35003920212974897128e-08}, // 0x3E4CFDEB, 0x43CFD006
2642 zero = 0.0, one = 1.0, two = 2.0,
2643 two53 = 9007199254740992.0, // 0x43400000, 0x00000000
2644 huge = 1.0e300, tiny = 1.0e-300,
2645 // poly coefs for (3/2)*(log(x)-2s-2/3*s**3
2646 L1 = 5.99999999999994648725e-01, // 0x3FE33333, 0x33333303
2647 L2 = 4.28571428578550184252e-01, // 0x3FDB6DB6, 0xDB6FABFF
2648 L3 = 3.33333329818377432918e-01, // 0x3FD55555, 0x518F264D
2649 L4 = 2.72728123808534006489e-01, // 0x3FD17460, 0xA91D4101
2650 L5 = 2.30660745775561754067e-01, // 0x3FCD864A, 0x93C9DB65
2651 L6 = 2.06975017800338417784e-01, // 0x3FCA7E28, 0x4A454EEF
2652 P1 = 1.66666666666666019037e-01, // 0x3FC55555, 0x5555553E
2653 P2 = -2.77777777770155933842e-03, // 0xBF66C16C, 0x16BEBD93
2654 P3 = 6.61375632143793436117e-05, // 0x3F11566A, 0xAF25DE2C
2655 P4 = -1.65339022054652515390e-06, // 0xBEBBBD41, 0xC5D26BF1
2656 P5 = 4.13813679705723846039e-08, // 0x3E663769, 0x72BEA4D0
2657 lg2 = 6.93147180559945286227e-01, // 0x3FE62E42, 0xFEFA39EF
2658 lg2_h = 6.93147182464599609375e-01, // 0x3FE62E43, 0x00000000
2659 lg2_l = -1.90465429995776804525e-09, // 0xBE205C61, 0x0CA86C39
2660 ovt = 8.0085662595372944372e-0017, // -(1024-log2(ovfl+.5ulp))
2661 cp = 9.61796693925975554329e-01, // 0x3FEEC709, 0xDC3A03FD =2/(3ln2)
2662 cp_h = 9.61796700954437255859e-01, // 0x3FEEC709, 0xE0000000 =(float)cp
2663 cp_l = -7.02846165095275826516e-09, // 0xBE3E2FE0, 0x145B01F5 =tail cp_h
2664 ivln2 = 1.44269504088896338700e+00, // 0x3FF71547, 0x652B82FE =1/ln2
2665 ivln2_h =
2666 1.44269502162933349609e+00, // 0x3FF71547, 0x60000000 =24b 1/ln2
2667 ivln2_l =
2668 1.92596299112661746887e-08; // 0x3E54AE0B, 0xF85DDF44 =1/ln2 tail
2669
2670 double z, ax, z_h, z_l, p_h, p_l;
2671 double y1, t1, t2, r, s, t, u, v, w;
2672 int i, j, k, yisint, n;
2673 int hx, hy, ix, iy;
2674 unsigned lx, ly;
2675
2676 EXTRACT_WORDS(hx, lx, x);
2677 EXTRACT_WORDS(hy, ly, y);
2678 ix = hx & 0x7fffffff;
2679 iy = hy & 0x7fffffff;
2680
2681 /* y==zero: x**0 = 1 */
2682 if ((iy | ly) == 0) return one;
2683
2684 /* +-NaN return x+y */
2685 if (ix > 0x7ff00000 || ((ix == 0x7ff00000) && (lx != 0)) || iy > 0x7ff00000 ||
2686 ((iy == 0x7ff00000) && (ly != 0))) {
2687 return x + y;
2688 }
2689
2690 /* determine if y is an odd int when x < 0
2691 * yisint = 0 ... y is not an integer
2692 * yisint = 1 ... y is an odd int
2693 * yisint = 2 ... y is an even int
2694 */
2695 yisint = 0;
2696 if (hx < 0) {
2697 if (iy >= 0x43400000) {
2698 yisint = 2; /* even integer y */
2699 } else if (iy >= 0x3ff00000) {
2700 k = (iy >> 20) - 0x3ff; /* exponent */
2701 if (k > 20) {
2702 j = ly >> (52 - k);
2703 if ((j << (52 - k)) == static_cast<int>(ly)) yisint = 2 - (j & 1);
2704 } else if (ly == 0) {
2705 j = iy >> (20 - k);
2706 if ((j << (20 - k)) == iy) yisint = 2 - (j & 1);
2707 }
2708 }
2709 }
2710
2711 /* special value of y */
2712 if (ly == 0) {
2713 if (iy == 0x7ff00000) { /* y is +-inf */
2714 if (((ix - 0x3ff00000) | lx) == 0) {
2715 return y - y; /* inf**+-1 is NaN */
2716 } else if (ix >= 0x3ff00000) { /* (|x|>1)**+-inf = inf,0 */
2717 return (hy >= 0) ? y : zero;
2718 } else { /* (|x|<1)**-,+inf = inf,0 */
2719 return (hy < 0) ? -y : zero;
2720 }
2721 }
2722 if (iy == 0x3ff00000) { /* y is +-1 */
2723 if (hy < 0) {
2724 return base::Divide(one, x);
2725 } else {
2726 return x;
2727 }
2728 }
2729 if (hy == 0x40000000) return x * x; /* y is 2 */
2730 if (hy == 0x3fe00000) { /* y is 0.5 */
2731 if (hx >= 0) { /* x >= +0 */
2732 return sqrt(x);
2733 }
2734 }
2735 }
2736
2737 ax = fabs(x);
2738 /* special value of x */
2739 if (lx == 0) {
2740 if (ix == 0x7ff00000 || ix == 0 || ix == 0x3ff00000) {
2741 z = ax; /*x is +-0,+-inf,+-1*/
2742 if (hy < 0) z = base::Divide(one, z); /* z = (1/|x|) */
2743 if (hx < 0) {
2744 if (((ix - 0x3ff00000) | yisint) == 0) {
2745 /* (-1)**non-int is NaN */
2746 z = std::numeric_limits<double>::signaling_NaN();
2747 } else if (yisint == 1) {
2748 z = -z; /* (x<0)**odd = -(|x|**odd) */
2749 }
2750 }
2751 return z;
2752 }
2753 }
2754
2755 n = (hx >> 31) + 1;
2756
2757 /* (x<0)**(non-int) is NaN */
2758 if ((n | yisint) == 0) {
2759 return std::numeric_limits<double>::signaling_NaN();
2760 }
2761
2762 s = one; /* s (sign of result -ve**odd) = -1 else = 1 */
2763 if ((n | (yisint - 1)) == 0) s = -one; /* (-ve)**(odd int) */
2764
2765 /* |y| is huge */
2766 if (iy > 0x41e00000) { /* if |y| > 2**31 */
2767 if (iy > 0x43f00000) { /* if |y| > 2**64, must o/uflow */
2768 if (ix <= 0x3fefffff) return (hy < 0) ? huge * huge : tiny * tiny;
2769 if (ix >= 0x3ff00000) return (hy > 0) ? huge * huge : tiny * tiny;
2770 }
2771 /* over/underflow if x is not close to one */
2772 if (ix < 0x3fefffff) return (hy < 0) ? s * huge * huge : s * tiny * tiny;
2773 if (ix > 0x3ff00000) return (hy > 0) ? s * huge * huge : s * tiny * tiny;
2774 /* now |1-x| is tiny <= 2**-20, suffice to compute
2775 log(x) by x-x^2/2+x^3/3-x^4/4 */
2776 t = ax - one; /* t has 20 trailing zeros */
2777 w = (t * t) * (0.5 - t * (0.3333333333333333333333 - t * 0.25));
2778 u = ivln2_h * t; /* ivln2_h has 21 sig. bits */
2779 v = t * ivln2_l - w * ivln2;
2780 t1 = u + v;
2781 SET_LOW_WORD(t1, 0);
2782 t2 = v - (t1 - u);
2783 } else {
2784 double ss, s2, s_h, s_l, t_h, t_l;
2785 n = 0;
2786 /* take care subnormal number */
2787 if (ix < 0x00100000) {
2788 ax *= two53;
2789 n -= 53;
2790 GET_HIGH_WORD(ix, ax);
2791 }
2792 n += ((ix) >> 20) - 0x3ff;
2793 j = ix & 0x000fffff;
2794 /* determine interval */
2795 ix = j | 0x3ff00000; /* normalize ix */
2796 if (j <= 0x3988E) {
2797 k = 0; /* |x|<sqrt(3/2) */
2798 } else if (j < 0xBB67A) {
2799 k = 1; /* |x|<sqrt(3) */
2800 } else {
2801 k = 0;
2802 n += 1;
2803 ix -= 0x00100000;
2804 }
2805 SET_HIGH_WORD(ax, ix);
2806
2807 /* compute ss = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
2808 u = ax - bp[k]; /* bp[0]=1.0, bp[1]=1.5 */
2809 v = base::Divide(one, ax + bp[k]);
2810 ss = u * v;
2811 s_h = ss;
2812 SET_LOW_WORD(s_h, 0);
2813 /* t_h=ax+bp[k] High */
2814 t_h = zero;
2815 SET_HIGH_WORD(t_h, ((ix >> 1) | 0x20000000) + 0x00080000 + (k << 18));
2816 t_l = ax - (t_h - bp[k]);
2817 s_l = v * ((u - s_h * t_h) - s_h * t_l);
2818 /* compute log(ax) */
2819 s2 = ss * ss;
2820 r = s2 * s2 *
2821 (L1 + s2 * (L2 + s2 * (L3 + s2 * (L4 + s2 * (L5 + s2 * L6)))));
2822 r += s_l * (s_h + ss);
2823 s2 = s_h * s_h;
2824 t_h = 3.0 + s2 + r;
2825 SET_LOW_WORD(t_h, 0);
2826 t_l = r - ((t_h - 3.0) - s2);
2827 /* u+v = ss*(1+...) */
2828 u = s_h * t_h;
2829 v = s_l * t_h + t_l * ss;
2830 /* 2/(3log2)*(ss+...) */
2831 p_h = u + v;
2832 SET_LOW_WORD(p_h, 0);
2833 p_l = v - (p_h - u);
2834 z_h = cp_h * p_h; /* cp_h+cp_l = 2/(3*log2) */
2835 z_l = cp_l * p_h + p_l * cp + dp_l[k];
2836 /* log2(ax) = (ss+..)*2/(3*log2) = n + dp_h + z_h + z_l */
2837 t = static_cast<double>(n);
2838 t1 = (((z_h + z_l) + dp_h[k]) + t);
2839 SET_LOW_WORD(t1, 0);
2840 t2 = z_l - (((t1 - t) - dp_h[k]) - z_h);
2841 }
2842
2843 /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */
2844 y1 = y;
2845 SET_LOW_WORD(y1, 0);
2846 p_l = (y - y1) * t1 + y * t2;
2847 p_h = y1 * t1;
2848 z = p_l + p_h;
2849 EXTRACT_WORDS(j, i, z);
2850 if (j >= 0x40900000) { /* z >= 1024 */
2851 if (((j - 0x40900000) | i) != 0) { /* if z > 1024 */
2852 return s * huge * huge; /* overflow */
2853 } else {
2854 if (p_l + ovt > z - p_h) return s * huge * huge; /* overflow */
2855 }
2856 } else if ((j & 0x7fffffff) >= 0x4090cc00) { /* z <= -1075 */
2857 if (((j - 0xc090cc00) | i) != 0) { /* z < -1075 */
2858 return s * tiny * tiny; /* underflow */
2859 } else {
2860 if (p_l <= z - p_h) return s * tiny * tiny; /* underflow */
2861 }
2862 }
2863 /*
2864 * compute 2**(p_h+p_l)
2865 */
2866 i = j & 0x7fffffff;
2867 k = (i >> 20) - 0x3ff;
2868 n = 0;
2869 if (i > 0x3fe00000) { /* if |z| > 0.5, set n = [z+0.5] */
2870 n = j + (0x00100000 >> (k + 1));
2871 k = ((n & 0x7fffffff) >> 20) - 0x3ff; /* new k for n */
2872 t = zero;
2873 SET_HIGH_WORD(t, n & ~(0x000fffff >> k));
2874 n = ((n & 0x000fffff) | 0x00100000) >> (20 - k);
2875 if (j < 0) n = -n;
2876 p_h -= t;
2877 }
2878 t = p_l + p_h;
2879 SET_LOW_WORD(t, 0);
2880 u = t * lg2_h;
2881 v = (p_l - (t - p_h)) * lg2 + t * lg2_l;
2882 z = u + v;
2883 w = v - (z - u);
2884 t = z * z;
2885 t1 = z - t * (P1 + t * (P2 + t * (P3 + t * (P4 + t * P5))));
2886 r = base::Divide(z * t1, (t1 - two) - (w + z * w));
2887 z = one - (r - z);
2888 GET_HIGH_WORD(j, z);
2889 j += static_cast<int>(static_cast<uint32_t>(n) << 20);
2890 if ((j >> 20) <= 0) {
2891 z = scalbn(z, n); /* subnormal output */
2892 } else {
2893 int tmp;
2894 GET_HIGH_WORD(tmp, z);
2895 SET_HIGH_WORD(z, tmp + static_cast<int>(static_cast<uint32_t>(n) << 20));
2896 }
2897 return s * z;
2898}
2899
2900/*
2901 * ES6 draft 09-27-13, section 20.2.2.30.
2902 * Math.sinh
2903 * Method :
2904 * mathematically sinh(x) if defined to be (exp(x)-exp(-x))/2
2905 * 1. Replace x by |x| (sinh(-x) = -sinh(x)).
2906 * 2.
2907 * E + E/(E+1)
2908 * 0 <= x <= 22 : sinh(x) := --------------, E=expm1(x)
2909 * 2
2910 *
2911 * 22 <= x <= lnovft : sinh(x) := exp(x)/2
2912 * lnovft <= x <= ln2ovft: sinh(x) := exp(x/2)/2 * exp(x/2)
2913 * ln2ovft < x : sinh(x) := x*shuge (overflow)
2914 *
2915 * Special cases:
2916 * sinh(x) is |x| if x is +Infinity, -Infinity, or NaN.
2917 * only sinh(0)=0 is exact for finite x.
2918 */
2919double sinh(double x) {
2920 static const double KSINH_OVERFLOW = 710.4758600739439,
2921 TWO_M28 =
2922 3.725290298461914e-9, // 2^-28, empty lower half
2923 LOG_MAXD = 709.7822265625; // 0x40862E42 00000000, empty lower half
2924 static const double shuge = 1.0e307;
2925
2926 double h = (x < 0) ? -0.5 : 0.5;
2927 // |x| in [0, 22]. return sign(x)*0.5*(E+E/(E+1))
2928 double ax = fabs(x);
2929 if (ax < 22) {
2930 // For |x| < 2^-28, sinh(x) = x
2931 if (ax < TWO_M28) return x;
2932 double t = expm1(ax);
2933 if (ax < 1) {
2934 return h * (2 * t - t * t / (t + 1));
2935 }
2936 return h * (t + t / (t + 1));
2937 }
2938 // |x| in [22, log(maxdouble)], return 0.5 * exp(|x|)
2939 if (ax < LOG_MAXD) return h * exp(ax);
2940 // |x| in [log(maxdouble), overflowthreshold]
2941 // overflowthreshold = 710.4758600739426
2942 if (ax <= KSINH_OVERFLOW) {
2943 double w = exp(0.5 * ax);
2944 double t = h * w;
2945 return t * w;
2946 }
2947 // |x| > overflowthreshold or is NaN.
2948 // Return Infinity of the appropriate sign or NaN.
2949 return x * shuge;
2950}
2951
2952/* Tanh(x)
2953 * Return the Hyperbolic Tangent of x
2954 *
2955 * Method :
2956 * x -x
2957 * e - e
2958 * 0. tanh(x) is defined to be -----------
2959 * x -x
2960 * e + e
2961 * 1. reduce x to non-negative by tanh(-x) = -tanh(x).
2962 * 2. 0 <= x < 2**-28 : tanh(x) := x with inexact if x != 0
2963 * -t
2964 * 2**-28 <= x < 1 : tanh(x) := -----; t = expm1(-2x)
2965 * t + 2
2966 * 2
2967 * 1 <= x < 22 : tanh(x) := 1 - -----; t = expm1(2x)
2968 * t + 2
2969 * 22 <= x <= INF : tanh(x) := 1.
2970 *
2971 * Special cases:
2972 * tanh(NaN) is NaN;
2973 * only tanh(0)=0 is exact for finite argument.
2974 */
2975double tanh(double x) {
2976 static const volatile double tiny = 1.0e-300;
2977 static const double one = 1.0, two = 2.0, huge = 1.0e300;
2978 double t, z;
2979 int32_t jx, ix;
2980
2981 GET_HIGH_WORD(jx, x);
2982 ix = jx & 0x7FFFFFFF;
2983
2984 /* x is INF or NaN */
2985 if (ix >= 0x7FF00000) {
2986 if (jx >= 0)
2987 return one / x + one; /* tanh(+-inf)=+-1 */
2988 else
2989 return one / x - one; /* tanh(NaN) = NaN */
2990 }
2991
2992 /* |x| < 22 */
2993 if (ix < 0x40360000) { /* |x|<22 */
2994 if (ix < 0x3E300000) { /* |x|<2**-28 */
2995 if (huge + x > one) return x; /* tanh(tiny) = tiny with inexact */
2996 }
2997 if (ix >= 0x3FF00000) { /* |x|>=1 */
2998 t = expm1(two * fabs(x));
2999 z = one - two / (t + two);
3000 } else {
3001 t = expm1(-two * fabs(x));
3002 z = -t / (t + two);
3003 }
3004 /* |x| >= 22, return +-1 */
3005 } else {
3006 z = one - tiny; /* raise inexact flag */
3007 }
3008 return (jx >= 0) ? z : -z;
3009}
3010
3011#undef EXTRACT_WORDS
3012#undef GET_HIGH_WORD
3013#undef GET_LOW_WORD
3014#undef INSERT_WORDS
3015#undef SET_HIGH_WORD
3016#undef SET_LOW_WORD
3017
3018} // namespace ieee754
3019} // namespace base
3020} // namespace v8