Bug Summary

File:out/../deps/v8/third_party/zlib/deflate.c
Warning:line 1973, column 21
Value stored to 'hash_head' is never read

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-unknown-linux-gnu -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name deflate.c -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -mrelocation-model pic -pic-level 2 -pic-is-pie -mframe-pointer=all -relaxed-aliasing -fmath-errno -ffp-contract=on -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/home/maurizio/node-v18.6.0/out -resource-dir /usr/local/lib/clang/16.0.0 -D _GLIBCXX_USE_CXX11_ABI=1 -D NODE_OPENSSL_CONF_NAME=nodejs_conf -D NODE_OPENSSL_HAS_QUIC -D V8_GYP_BUILD -D V8_TYPED_ARRAY_MAX_SIZE_IN_HEAP=64 -D __STDC_FORMAT_MACROS -D OPENSSL_NO_PINSHARED -D OPENSSL_THREADS -D V8_TARGET_ARCH_X64 -D V8_HAVE_TARGET_OS -D V8_TARGET_OS_LINUX -D V8_EMBEDDER_STRING="-node.8" -D ENABLE_DISASSEMBLER -D V8_PROMISE_INTERNAL_FIELD_COUNT=1 -D V8_SHORT_BUILTIN_CALLS -D OBJECT_PRINT -D V8_INTL_SUPPORT -D V8_ATOMIC_OBJECT_FIELD_WRITES -D V8_ENABLE_LAZY_SOURCE_POSITIONS -D V8_USE_SIPHASH -D V8_SHARED_RO_HEAP -D V8_WIN64_UNWINDING_INFO -D V8_ENABLE_REGEXP_INTERPRETER_THREADED_DISPATCH -D V8_SNAPSHOT_COMPRESSION -D V8_ENABLE_WEBASSEMBLY -D V8_ENABLE_JAVASCRIPT_PROMISE_HOOKS -D V8_ALLOCATION_FOLDING -D V8_ALLOCATION_SITE_TRACKING -D V8_SCRIPTORMODULE_LEGACY_LIFETIME -D V8_ADVANCED_BIGINT_ALGORITHMS -D ZLIB_IMPLEMENTATION -I ../deps/v8 -I ../deps/v8/include -I ../deps/v8/third_party/zlib -I ../deps/v8/third_party/zlib/google -internal-isystem /usr/local/lib/clang/16.0.0/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-redhat-linux/8/../../../../x86_64-redhat-linux/include -internal-externc-isystem /include -internal-externc-isystem /usr/include -O3 -Wno-unused-parameter -Wno-return-type -fdebug-compilation-dir=/home/maurizio/node-v18.6.0/out -ferror-limit 19 -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -analyzer-output=html -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2022-08-22-142216-507842-1 -x c ../deps/v8/third_party/zlib/deflate.c
1/* deflate.c -- compress data using the deflation algorithm
2 * Copyright (C) 1995-2017 Jean-loup Gailly and Mark Adler
3 * For conditions of distribution and use, see copyright notice in zlib.h
4 */
5
6/*
7 * ALGORITHM
8 *
9 * The "deflation" process depends on being able to identify portions
10 * of the input text which are identical to earlier input (within a
11 * sliding window trailing behind the input currently being processed).
12 *
13 * The most straightforward technique turns out to be the fastest for
14 * most input files: try all possible matches and select the longest.
15 * The key feature of this algorithm is that insertions into the string
16 * dictionary are very simple and thus fast, and deletions are avoided
17 * completely. Insertions are performed at each input character, whereas
18 * string matches are performed only when the previous match ends. So it
19 * is preferable to spend more time in matches to allow very fast string
20 * insertions and avoid deletions. The matching algorithm for small
21 * strings is inspired from that of Rabin & Karp. A brute force approach
22 * is used to find longer strings when a small match has been found.
23 * A similar algorithm is used in comic (by Jan-Mark Wams) and freeze
24 * (by Leonid Broukhis).
25 * A previous version of this file used a more sophisticated algorithm
26 * (by Fiala and Greene) which is guaranteed to run in linear amortized
27 * time, but has a larger average cost, uses more memory and is patented.
28 * However the F&G algorithm may be faster for some highly redundant
29 * files if the parameter max_chain_length (described below) is too large.
30 *
31 * ACKNOWLEDGEMENTS
32 *
33 * The idea of lazy evaluation of matches is due to Jan-Mark Wams, and
34 * I found it in 'freeze' written by Leonid Broukhis.
35 * Thanks to many people for bug reports and testing.
36 *
37 * REFERENCES
38 *
39 * Deutsch, L.P.,"DEFLATE Compressed Data Format Specification".
40 * Available in http://tools.ietf.org/html/rfc1951
41 *
42 * A description of the Rabin and Karp algorithm is given in the book
43 * "Algorithms" by R. Sedgewick, Addison-Wesley, p252.
44 *
45 * Fiala,E.R., and Greene,D.H.
46 * Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595
47 *
48 */
49
50/* @(#) $Id$ */
51#include <assert.h>
52#include "deflate.h"
53#include "cpu_features.h"
54#include "contrib/optimizations/insert_string.h"
55
56#if (defined(__ARM_NEON__) || defined(__ARM_NEON))
57#include "contrib/optimizations/slide_hash_neon.h"
58#endif
59#if defined(CRC32_ARMV8_CRC32)
60#include "crc32_simd.h"
61#endif
62
63#ifdef FASTEST
64/* See http://crbug.com/1113596 */
65#error "FASTEST is not supported in Chromium's zlib."
66#endif
67
68const char deflate_copyrightCr_z_deflate_copyright[] =
69 " deflate 1.2.11 Copyright 1995-2017 Jean-loup Gailly and Mark Adler ";
70/*
71 If you use the zlib library in a product, an acknowledgment is welcome
72 in the documentation of your product. If for some reason you cannot
73 include such an acknowledgment, I would appreciate that you keep this
74 copyright string in the executable of your product.
75 */
76
77/* ===========================================================================
78 * Function prototypes.
79 */
80typedef enum {
81 need_more, /* block not completed, need more input or more output */
82 block_done, /* block flush performed */
83 finish_started, /* finish started, need only more output at next deflate */
84 finish_done /* finish done, accept no more input or output */
85} block_state;
86
87typedef block_state (*compress_func) OF((deflate_state *s, int flush))(deflate_state *s, int flush);
88/* Compression function. Returns the block state after the call. */
89
90localstatic int deflateStateCheck OF((z_streamp strm))(z_streamp strm);
91localstatic void slide_hash OF((deflate_state *s))(deflate_state *s);
92localstatic void fill_window OF((deflate_state *s))(deflate_state *s);
93localstatic block_state deflate_stored OF((deflate_state *s, int flush))(deflate_state *s, int flush);
94localstatic block_state deflate_fast OF((deflate_state *s, int flush))(deflate_state *s, int flush);
95#ifndef FASTEST
96localstatic block_state deflate_slow OF((deflate_state *s, int flush))(deflate_state *s, int flush);
97#endif
98localstatic block_state deflate_rle OF((deflate_state *s, int flush))(deflate_state *s, int flush);
99localstatic block_state deflate_huff OF((deflate_state *s, int flush))(deflate_state *s, int flush);
100localstatic void lm_init OF((deflate_state *s))(deflate_state *s);
101localstatic void putShortMSB OF((deflate_state *s, uInt b))(deflate_state *s, Cr_z_uInt b);
102localstatic void flush_pending OF((z_streamp strm))(z_streamp strm);
103unsigned ZLIB_INTERNAL deflate_read_bufCr_z_deflate_read_buf OF((z_streamp strm, Bytef *buf, unsigned size))(z_streamp strm, Cr_z_Bytef *buf, unsigned size);
104#ifdef ASMV
105# pragma message("Assembler code may have bugs -- use at your own risk")
106 void match_init OF((void))(void); /* asm code initialization */
107 uIntCr_z_uInt longest_match OF((deflate_state *s, IPos cur_match))(deflate_state *s, IPos cur_match);
108#else
109localstatic uIntCr_z_uInt longest_match OF((deflate_state *s, IPos cur_match))(deflate_state *s, IPos cur_match);
110#endif
111
112#ifdef ZLIB_DEBUG
113localstatic void check_match OF((deflate_state *s, IPos start, IPos match,(deflate_state *s, IPos start, IPos match, int length)
114 int length))(deflate_state *s, IPos start, IPos match, int length);
115#endif
116
117/* From crc32.c */
118extern void ZLIB_INTERNAL crc_resetCr_z_crc_reset(deflate_state *const s);
119extern void ZLIB_INTERNAL crc_finalizeCr_z_crc_finalize(deflate_state *const s);
120extern void ZLIB_INTERNAL copy_with_crcCr_z_copy_with_crc(z_streamp strm, BytefCr_z_Bytef *dst, long size);
121
122/* ===========================================================================
123 * Local data
124 */
125
126#define NIL0 0
127/* Tail of hash chains */
128
129#ifndef TOO_FAR4096
130# define TOO_FAR4096 4096
131#endif
132/* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
133
134/* Values for max_lazy_match, good_match and max_chain_length, depending on
135 * the desired pack level (0..9). The values given below have been tuned to
136 * exclude worst case performance for pathological files. Better values may be
137 * found for specific files.
138 */
139typedef struct config_s {
140 ush good_length; /* reduce lazy search above this match length */
141 ush max_lazy; /* do not perform lazy search above this match length */
142 ush nice_length; /* quit search above this match length */
143 ush max_chain;
144 compress_func func;
145} config;
146
147#ifdef FASTEST
148localstatic const config configuration_table[2] = {
149/* good lazy nice chain */
150/* 0 */ {0, 0, 0, 0, deflate_stored}, /* store only */
151/* 1 */ {4, 4, 8, 4, deflate_fast}}; /* max speed, no lazy matches */
152#else
153localstatic const config configuration_table[10] = {
154/* good lazy nice chain */
155/* 0 */ {0, 0, 0, 0, deflate_stored}, /* store only */
156/* 1 */ {4, 4, 8, 4, deflate_fast}, /* max speed, no lazy matches */
157/* 2 */ {4, 5, 16, 8, deflate_fast},
158/* 3 */ {4, 6, 32, 32, deflate_fast},
159
160/* 4 */ {4, 4, 16, 16, deflate_slow}, /* lazy matches */
161/* 5 */ {8, 16, 32, 32, deflate_slow},
162/* 6 */ {8, 16, 128, 128, deflate_slow},
163/* 7 */ {8, 32, 128, 256, deflate_slow},
164/* 8 */ {32, 128, 258, 1024, deflate_slow},
165/* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* max compression */
166#endif
167
168/* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
169 * For deflate_fast() (levels <= 3) good is ignored and lazy has a different
170 * meaning.
171 */
172
173/* rank Z_BLOCK between Z_NO_FLUSH and Z_PARTIAL_FLUSH */
174#define RANK(f)(((f) * 2) - ((f) > 4 ? 9 : 0)) (((f) * 2) - ((f) > 4 ? 9 : 0))
175
176/* ===========================================================================
177 * Initialize the hash table (avoiding 64K overflow for 16 bit systems).
178 * prev[] will be initialized on the fly.
179 * TODO(cavalcantii): optimization opportunity, check comments on:
180 * https://chromium-review.googlesource.com/c/chromium/src/+/3561506/
181 */
182#define CLEAR_HASH(s)do { s->head[s->hash_size-1] = 0; memset((Cr_z_Bytef *)
s->head, 0, (unsigned)(s->hash_size-1)*sizeof(*s->head
)); } while (0)
\
183 do { \
184 s->head[s->hash_size-1] = NIL0; \
185 zmemzero((Bytef *)s->head, \memset((Cr_z_Bytef *)s->head, 0, (unsigned)(s->hash_size
-1)*sizeof(*s->head))
186 (unsigned)(s->hash_size-1)*sizeof(*s->head))memset((Cr_z_Bytef *)s->head, 0, (unsigned)(s->hash_size
-1)*sizeof(*s->head))
; \
187 } while (0)
188
189/* ===========================================================================
190 * Slide the hash table when sliding the window down (could be avoided with 32
191 * bit values at the expense of memory usage). We slide even when level == 0 to
192 * keep the hash table consistent if we switch back to level > 0 later.
193 */
194localstatic void slide_hash(s)
195 deflate_state *s;
196{
197#if (defined(__ARM_NEON__) || defined(__ARM_NEON))
198 /* NEON based hash table rebase. */
199 return neon_slide_hash(s->head, s->prev, s->w_size, s->hash_size);
200#endif
201 unsigned n, m;
202 Posf *p;
203 uIntCr_z_uInt wsize = s->w_size;
204
205 n = s->hash_size;
206 p = &s->head[n];
207 do {
208 m = *--p;
209 *p = (Pos)(m >= wsize ? m - wsize : NIL0);
210 } while (--n);
211 n = wsize;
212#ifndef FASTEST
213 p = &s->prev[n];
214 do {
215 m = *--p;
216 *p = (Pos)(m >= wsize ? m - wsize : NIL0);
217 /* If n is not on any hash chain, prev[n] is garbage but
218 * its value will never be used.
219 */
220 } while (--n);
221#endif
222}
223
224/* ========================================================================= */
225int ZEXPORT deflateInit_Cr_z_deflateInit_(strm, level, version, stream_size)
226 z_streamp strm;
227 int level;
228 const char *version;
229 int stream_size;
230{
231 return deflateInit2_Cr_z_deflateInit2_(strm, level, Z_DEFLATED8, MAX_WBITS15, DEF_MEM_LEVEL8,
232 Z_DEFAULT_STRATEGY0, version, stream_size);
233 /* To do: ignore strm->next_in if we use it as window */
234}
235
236/* ========================================================================= */
237int ZEXPORT deflateInit2_Cr_z_deflateInit2_(strm, level, method, windowBits, memLevel, strategy,
238 version, stream_size)
239 z_streamp strm;
240 int level;
241 int method;
242 int windowBits;
243 int memLevel;
244 int strategy;
245 const char *version;
246 int stream_size;
247{
248 unsigned window_padding = 8;
249 deflate_state *s;
250 int wrap = 1;
251 static const char my_version[] = ZLIB_VERSION"1.2.11";
252
253 // Needed to activate optimized insert_string() that helps compression
254 // for all wrapper formats (e.g. RAW, ZLIB, GZIP).
255 // Feature detection is not triggered while using RAW mode (i.e. we never
256 // call crc32() with a NULL buffer).
257#if defined(CRC32_ARMV8_CRC32) || defined(CRC32_SIMD_SSE42_PCLMUL)
258 cpu_check_featuresCr_z_cpu_check_features();
259#endif
260
261 if (version == Z_NULL0 || version[0] != my_version[0] ||
262 stream_size != sizeof(z_stream)) {
263 return Z_VERSION_ERROR(-6);
264 }
265 if (strm == Z_NULL0) return Z_STREAM_ERROR(-2);
266
267 strm->msg = Z_NULL0;
268 if (strm->zalloc == (alloc_funcCr_z_alloc_func)0) {
269#ifdef Z_SOLO
270 return Z_STREAM_ERROR(-2);
271#else
272 strm->zalloc = zcallocCr_z_zcalloc;
273 strm->opaque = (voidpfCr_z_voidpf)0;
274#endif
275 }
276 if (strm->zfree == (free_funcCr_z_free_func)0)
277#ifdef Z_SOLO
278 return Z_STREAM_ERROR(-2);
279#else
280 strm->zfree = zcfreeCr_z_zcfree;
281#endif
282
283#ifdef FASTEST
284 if (level != 0) level = 1;
285#else
286 if (level == Z_DEFAULT_COMPRESSION(-1)) level = 6;
287#endif
288
289 if (windowBits < 0) { /* suppress zlib wrapper */
290 wrap = 0;
291 windowBits = -windowBits;
292 }
293#ifdef GZIP
294 else if (windowBits > 15) {
295 wrap = 2; /* write gzip wrapper instead */
296 windowBits -= 16;
297 }
298#endif
299 if (memLevel < 1 || memLevel > MAX_MEM_LEVEL9 || method != Z_DEFLATED8 ||
300 windowBits < 8 || windowBits > 15 || level < 0 || level > 9 ||
301 strategy < 0 || strategy > Z_FIXED4 || (windowBits == 8 && wrap != 1)) {
302 return Z_STREAM_ERROR(-2);
303 }
304 if (windowBits == 8) windowBits = 9; /* until 256-byte window bug fixed */
305 s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state))(*((strm)->zalloc))((strm)->opaque, (1), (sizeof(deflate_state
)))
;
306 if (s == Z_NULL0) return Z_MEM_ERROR(-4);
307 strm->state = (struct internal_state FAR *)s;
308 s->strm = strm;
309 s->status = INIT_STATE42; /* to pass state test in deflateReset() */
310
311 s->wrap = wrap;
312 s->gzhead = Z_NULL0;
313 s->w_bits = (uIntCr_z_uInt)windowBits;
314 s->w_size = 1 << s->w_bits;
315 s->w_mask = s->w_size - 1;
316
317 s->hash_bits = memLevel + 7;
318 if ((x86_cpu_enable_simdCr_z_x86_cpu_enable_simd || arm_cpu_enable_crc32Cr_z_arm_cpu_enable_crc32) && s->hash_bits < 15) {
319 s->hash_bits = 15;
320 }
321
322 s->hash_size = 1 << s->hash_bits;
323 s->hash_mask = s->hash_size - 1;
324 s->hash_shift = ((s->hash_bits+MIN_MATCH3-1)/MIN_MATCH3);
325
326 s->window = (BytefCr_z_Bytef *) ZALLOC(strm,(*((strm)->zalloc))((strm)->opaque, (s->w_size + window_padding
), (2*sizeof(Byte)))
327 s->w_size + window_padding,(*((strm)->zalloc))((strm)->opaque, (s->w_size + window_padding
), (2*sizeof(Byte)))
328 2*sizeof(Byte))(*((strm)->zalloc))((strm)->opaque, (s->w_size + window_padding
), (2*sizeof(Byte)))
;
329 /* Avoid use of unitialized values in the window, see crbug.com/1137613 and
330 * crbug.com/1144420 */
331 zmemzero(s->window, (s->w_size + window_padding) * (2 * sizeof(Byte)))memset(s->window, 0, (s->w_size + window_padding) * (2 *
sizeof(Byte)))
;
332 s->prev = (Posf *) ZALLOC(strm, s->w_size, sizeof(Pos))(*((strm)->zalloc))((strm)->opaque, (s->w_size), (sizeof
(Pos)))
;
333 /* Avoid use of uninitialized value, see:
334 * https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=11360
335 */
336 zmemzero(s->prev, s->w_size * sizeof(Pos))memset(s->prev, 0, s->w_size * sizeof(Pos));
337 s->head = (Posf *) ZALLOC(strm, s->hash_size, sizeof(Pos))(*((strm)->zalloc))((strm)->opaque, (s->hash_size), (
sizeof(Pos)))
;
338
339 s->high_water = 0; /* nothing written to s->window yet */
340
341 s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */
342
343 /* We overlay pending_buf and sym_buf. This works since the average size
344 * for length/distance pairs over any compressed block is assured to be 31
345 * bits or less.
346 *
347 * Analysis: The longest fixed codes are a length code of 8 bits plus 5
348 * extra bits, for lengths 131 to 257. The longest fixed distance codes are
349 * 5 bits plus 13 extra bits, for distances 16385 to 32768. The longest
350 * possible fixed-codes length/distance pair is then 31 bits total.
351 *
352 * sym_buf starts one-fourth of the way into pending_buf. So there are
353 * three bytes in sym_buf for every four bytes in pending_buf. Each symbol
354 * in sym_buf is three bytes -- two for the distance and one for the
355 * literal/length. As each symbol is consumed, the pointer to the next
356 * sym_buf value to read moves forward three bytes. From that symbol, up to
357 * 31 bits are written to pending_buf. The closest the written pending_buf
358 * bits gets to the next sym_buf symbol to read is just before the last
359 * code is written. At that time, 31*(n-2) bits have been written, just
360 * after 24*(n-2) bits have been consumed from sym_buf. sym_buf starts at
361 * 8*n bits into pending_buf. (Note that the symbol buffer fills when n-1
362 * symbols are written.) The closest the writing gets to what is unread is
363 * then n+14 bits. Here n is lit_bufsize, which is 16384 by default, and
364 * can range from 128 to 32768.
365 *
366 * Therefore, at a minimum, there are 142 bits of space between what is
367 * written and what is read in the overlain buffers, so the symbols cannot
368 * be overwritten by the compressed data. That space is actually 139 bits,
369 * due to the three-bit fixed-code block header.
370 *
371 * That covers the case where either Z_FIXED is specified, forcing fixed
372 * codes, or when the use of fixed codes is chosen, because that choice
373 * results in a smaller compressed block than dynamic codes. That latter
374 * condition then assures that the above analysis also covers all dynamic
375 * blocks. A dynamic-code block will only be chosen to be emitted if it has
376 * fewer bits than a fixed-code block would for the same set of symbols.
377 * Therefore its average symbol length is assured to be less than 31. So
378 * the compressed data for a dynamic block also cannot overwrite the
379 * symbols from which it is being constructed.
380 */
381 s->pending_buf = (uchf *) ZALLOC(strm, s->lit_bufsize, 4)(*((strm)->zalloc))((strm)->opaque, (s->lit_bufsize)
, (4))
;
382 s->pending_buf_size = (ulg)s->lit_bufsize * 4;
383
384 if (s->window == Z_NULL0 || s->prev == Z_NULL0 || s->head == Z_NULL0 ||
385 s->pending_buf == Z_NULL0) {
386 s->status = FINISH_STATE666;
387 strm->msg = ERR_MSG(Z_MEM_ERROR)Cr_z_z_errmsg[2 -((-4))];
388 deflateEndCr_z_deflateEnd (strm);
389 return Z_MEM_ERROR(-4);
390 }
391 s->sym_buf = s->pending_buf + s->lit_bufsize;
392 s->sym_end = (s->lit_bufsize - 1) * 3;
393 /* We avoid equality with lit_bufsize*3 because of wraparound at 64K
394 * on 16 bit machines and because stored blocks are restricted to
395 * 64K-1 bytes.
396 */
397
398 s->level = level;
399 s->strategy = strategy;
400 s->method = (Byte)method;
401
402 return deflateResetCr_z_deflateReset(strm);
403}
404
405/* =========================================================================
406 * Check for a valid deflate stream state. Return 0 if ok, 1 if not.
407 */
408localstatic int deflateStateCheck (strm)
409 z_streamp strm;
410{
411 deflate_state *s;
412 if (strm == Z_NULL0 ||
413 strm->zalloc == (alloc_funcCr_z_alloc_func)0 || strm->zfree == (free_funcCr_z_free_func)0)
414 return 1;
415 s = strm->state;
416 if (s == Z_NULL0 || s->strm != strm || (s->status != INIT_STATE42 &&
417#ifdef GZIP
418 s->status != GZIP_STATE57 &&
419#endif
420 s->status != EXTRA_STATE69 &&
421 s->status != NAME_STATE73 &&
422 s->status != COMMENT_STATE91 &&
423 s->status != HCRC_STATE103 &&
424 s->status != BUSY_STATE113 &&
425 s->status != FINISH_STATE666))
426 return 1;
427 return 0;
428}
429
430/* ========================================================================= */
431int ZEXPORT deflateSetDictionaryCr_z_deflateSetDictionary (strm, dictionary, dictLength)
432 z_streamp strm;
433 const BytefCr_z_Bytef *dictionary;
434 uIntCr_z_uInt dictLength;
435{
436 deflate_state *s;
437 uIntCr_z_uInt str, n;
438 int wrap;
439 unsigned avail;
440 z_const unsigned char *next;
441
442 if (deflateStateCheck(strm) || dictionary == Z_NULL0)
443 return Z_STREAM_ERROR(-2);
444 s = strm->state;
445 wrap = s->wrap;
446 if (wrap == 2 || (wrap == 1 && s->status != INIT_STATE42) || s->lookahead)
447 return Z_STREAM_ERROR(-2);
448
449 /* when using zlib wrappers, compute Adler-32 for provided dictionary */
450 if (wrap == 1)
451 strm->adler = adler32Cr_z_adler32(strm->adler, dictionary, dictLength);
452 s->wrap = 0; /* avoid computing Adler-32 in deflate_read_buf */
453
454 /* if dictionary would fill window, just replace the history */
455 if (dictLength >= s->w_size) {
456 if (wrap == 0) { /* already empty otherwise */
457 CLEAR_HASH(s)do { s->head[s->hash_size-1] = 0; memset((Cr_z_Bytef *)
s->head, 0, (unsigned)(s->hash_size-1)*sizeof(*s->head
)); } while (0)
;
458 s->strstart = 0;
459 s->block_start = 0L;
460 s->insert = 0;
461 }
462 dictionary += dictLength - s->w_size; /* use the tail */
463 dictLength = s->w_size;
464 }
465
466 /* insert dictionary into window and hash */
467 avail = strm->avail_in;
468 next = strm->next_in;
469 strm->avail_in = dictLength;
470 strm->next_in = (z_const BytefCr_z_Bytef *)dictionary;
471 fill_window(s);
472 while (s->lookahead >= MIN_MATCH3) {
473 str = s->strstart;
474 n = s->lookahead - (MIN_MATCH3-1);
475 do {
476 insert_string(s, str);
477 str++;
478 } while (--n);
479 s->strstart = str;
480 s->lookahead = MIN_MATCH3-1;
481 fill_window(s);
482 }
483 s->strstart += s->lookahead;
484 s->block_start = (long)s->strstart;
485 s->insert = s->lookahead;
486 s->lookahead = 0;
487 s->match_length = s->prev_length = MIN_MATCH3-1;
488 s->match_available = 0;
489 strm->next_in = next;
490 strm->avail_in = avail;
491 s->wrap = wrap;
492 return Z_OK0;
493}
494
495/* ========================================================================= */
496int ZEXPORT deflateGetDictionaryCr_z_deflateGetDictionary (strm, dictionary, dictLength)
497 z_streamp strm;
498 BytefCr_z_Bytef *dictionary;
499 uIntCr_z_uInt *dictLength;
500{
501 deflate_state *s;
502 uIntCr_z_uInt len;
503
504 if (deflateStateCheck(strm))
505 return Z_STREAM_ERROR(-2);
506 s = strm->state;
507 len = s->strstart + s->lookahead;
508 if (len > s->w_size)
509 len = s->w_size;
510 if (dictionary != Z_NULL0 && len)
511 zmemcpymemcpy(dictionary, s->window + s->strstart + s->lookahead - len, len);
512 if (dictLength != Z_NULL0)
513 *dictLength = len;
514 return Z_OK0;
515}
516
517/* ========================================================================= */
518int ZEXPORT deflateResetKeepCr_z_deflateResetKeep (strm)
519 z_streamp strm;
520{
521 deflate_state *s;
522
523 if (deflateStateCheck(strm)) {
524 return Z_STREAM_ERROR(-2);
525 }
526
527 strm->total_in = strm->total_out = 0;
528 strm->msg = Z_NULL0; /* use zfree if we ever allocate msg dynamically */
529 strm->data_type = Z_UNKNOWN2;
530
531 s = (deflate_state *)strm->state;
532 s->pending = 0;
533 s->pending_out = s->pending_buf;
534
535 if (s->wrap < 0) {
536 s->wrap = -s->wrap; /* was made negative by deflate(..., Z_FINISH); */
537 }
538 s->status =
539#ifdef GZIP
540 s->wrap == 2 ? GZIP_STATE57 :
541#endif
542 INIT_STATE42;
543 strm->adler =
544#ifdef GZIP
545 s->wrap == 2 ? crc32Cr_z_crc32(0L, Z_NULL0, 0) :
546#endif
547 adler32Cr_z_adler32(0L, Z_NULL0, 0);
548 s->last_flush = -2;
549
550 _tr_initCr_z__tr_init(s);
551
552 return Z_OK0;
553}
554
555/* ========================================================================= */
556int ZEXPORT deflateResetCr_z_deflateReset (strm)
557 z_streamp strm;
558{
559 int ret;
560
561 ret = deflateResetKeepCr_z_deflateResetKeep(strm);
562 if (ret == Z_OK0)
563 lm_init(strm->state);
564 return ret;
565}
566
567/* ========================================================================= */
568int ZEXPORT deflateSetHeaderCr_z_deflateSetHeader (strm, head)
569 z_streamp strm;
570 gz_headerpCr_z_gz_headerp head;
571{
572 if (deflateStateCheck(strm) || strm->state->wrap != 2)
573 return Z_STREAM_ERROR(-2);
574 strm->state->gzhead = head;
575 return Z_OK0;
576}
577
578/* ========================================================================= */
579int ZEXPORT deflatePendingCr_z_deflatePending (strm, pending, bits)
580 unsigned *pending;
581 int *bits;
582 z_streamp strm;
583{
584 if (deflateStateCheck(strm)) return Z_STREAM_ERROR(-2);
585 if (pending != Z_NULL0)
586 *pending = strm->state->pending;
587 if (bits != Z_NULL0)
588 *bits = strm->state->bi_valid;
589 return Z_OK0;
590}
591
592/* ========================================================================= */
593int ZEXPORT deflatePrimeCr_z_deflatePrime (strm, bits, value)
594 z_streamp strm;
595 int bits;
596 int value;
597{
598 deflate_state *s;
599 int put;
600
601 if (deflateStateCheck(strm)) return Z_STREAM_ERROR(-2);
602 s = strm->state;
603 if (bits < 0 || bits > 16 ||
604 s->sym_buf < s->pending_out + ((Buf_size16 + 7) >> 3))
605 return Z_BUF_ERROR(-5);
606 do {
607 put = Buf_size16 - s->bi_valid;
608 if (put > bits)
609 put = bits;
610 s->bi_buf |= (ush)((value & ((1 << put) - 1)) << s->bi_valid);
611 s->bi_valid += put;
612 _tr_flush_bitsCr_z__tr_flush_bits(s);
613 value >>= put;
614 bits -= put;
615 } while (bits);
616 return Z_OK0;
617}
618
619/* ========================================================================= */
620int ZEXPORT deflateParamsCr_z_deflateParams(strm, level, strategy)
621 z_streamp strm;
622 int level;
623 int strategy;
624{
625 deflate_state *s;
626 compress_func func;
627
628 if (deflateStateCheck(strm)) return Z_STREAM_ERROR(-2);
629 s = strm->state;
630
631#ifdef FASTEST
632 if (level != 0) level = 1;
633#else
634 if (level == Z_DEFAULT_COMPRESSION(-1)) level = 6;
635#endif
636 if (level < 0 || level > 9 || strategy < 0 || strategy > Z_FIXED4) {
637 return Z_STREAM_ERROR(-2);
638 }
639 func = configuration_table[s->level].func;
640
641 if ((strategy != s->strategy || func != configuration_table[level].func) &&
642 s->last_flush != -2) {
643 /* Flush the last buffer: */
644 int err = deflateCr_z_deflate(strm, Z_BLOCK5);
645 if (err == Z_STREAM_ERROR(-2))
646 return err;
647 if (strm->avail_in || (s->strstart - s->block_start) + s->lookahead)
648 return Z_BUF_ERROR(-5);
649 }
650 if (s->level != level) {
651 if (s->level == 0 && s->matches != 0) {
652 if (s->matches == 1)
653 slide_hash(s);
654 else
655 CLEAR_HASH(s)do { s->head[s->hash_size-1] = 0; memset((Cr_z_Bytef *)
s->head, 0, (unsigned)(s->hash_size-1)*sizeof(*s->head
)); } while (0)
;
656 s->matches = 0;
657 }
658 s->level = level;
659 s->max_lazy_match = configuration_table[level].max_lazy;
660 s->good_match = configuration_table[level].good_length;
661 s->nice_match = configuration_table[level].nice_length;
662 s->max_chain_length = configuration_table[level].max_chain;
663 }
664 s->strategy = strategy;
665 return Z_OK0;
666}
667
668/* ========================================================================= */
669int ZEXPORT deflateTuneCr_z_deflateTune(strm, good_length, max_lazy, nice_length, max_chain)
670 z_streamp strm;
671 int good_length;
672 int max_lazy;
673 int nice_length;
674 int max_chain;
675{
676 deflate_state *s;
677
678 if (deflateStateCheck(strm)) return Z_STREAM_ERROR(-2);
679 s = strm->state;
680 s->good_match = (uIntCr_z_uInt)good_length;
681 s->max_lazy_match = (uIntCr_z_uInt)max_lazy;
682 s->nice_match = nice_length;
683 s->max_chain_length = (uIntCr_z_uInt)max_chain;
684 return Z_OK0;
685}
686
687/* =========================================================================
688 * For the default windowBits of 15 and memLevel of 8, this function returns
689 * a close to exact, as well as small, upper bound on the compressed size.
690 * They are coded as constants here for a reason--if the #define's are
691 * changed, then this function needs to be changed as well. The return
692 * value for 15 and 8 only works for those exact settings.
693 *
694 * For any setting other than those defaults for windowBits and memLevel,
695 * the value returned is a conservative worst case for the maximum expansion
696 * resulting from using fixed blocks instead of stored blocks, which deflate
697 * can emit on compressed data for some combinations of the parameters.
698 *
699 * This function could be more sophisticated to provide closer upper bounds for
700 * every combination of windowBits and memLevel. But even the conservative
701 * upper bound of about 14% expansion does not seem onerous for output buffer
702 * allocation.
703 */
704uLongCr_z_uLong ZEXPORT deflateBoundCr_z_deflateBound(strm, sourceLen)
705 z_streamp strm;
706 uLongCr_z_uLong sourceLen;
707{
708 deflate_state *s;
709 uLongCr_z_uLong complen, wraplen;
710
711 /* conservative upper bound for compressed data */
712 complen = sourceLen +
713 ((sourceLen + 7) >> 3) + ((sourceLen + 63) >> 6) + 5;
714
715 /* if can't get parameters, return conservative bound plus zlib wrapper */
716 if (deflateStateCheck(strm))
717 return complen + 6;
718
719 /* compute wrapper length */
720 s = strm->state;
721 switch (s->wrap) {
722 case 0: /* raw deflate */
723 wraplen = 0;
724 break;
725 case 1: /* zlib wrapper */
726 wraplen = 6 + (s->strstart ? 4 : 0);
727 break;
728#ifdef GZIP
729 case 2: /* gzip wrapper */
730 wraplen = 18;
731 if (s->gzhead != Z_NULL0) { /* user-supplied gzip header */
732 BytefCr_z_Bytef *str;
733 if (s->gzhead->extra != Z_NULL0)
734 wraplen += 2 + s->gzhead->extra_len;
735 str = s->gzhead->name;
736 if (str != Z_NULL0)
737 do {
738 wraplen++;
739 } while (*str++);
740 str = s->gzhead->comment;
741 if (str != Z_NULL0)
742 do {
743 wraplen++;
744 } while (*str++);
745 if (s->gzhead->hcrc)
746 wraplen += 2;
747 }
748 break;
749#endif
750 default: /* for compiler happiness */
751 wraplen = 6;
752 }
753
754 /* if not default parameters, return conservative bound */
755 if (s->w_bits != 15 || s->hash_bits != 8 + 7)
756 return complen + wraplen;
757
758 /* default settings: return tight bound for that case */
759 return sourceLen + (sourceLen >> 12) + (sourceLen >> 14) +
760 (sourceLen >> 25) + 13 - 6 + wraplen;
761}
762
763/* =========================================================================
764 * Put a short in the pending buffer. The 16-bit value is put in MSB order.
765 * IN assertion: the stream state is correct and there is enough room in
766 * pending_buf.
767 */
768localstatic void putShortMSB (s, b)
769 deflate_state *s;
770 uIntCr_z_uInt b;
771{
772 put_byte(s, (Byte)(b >> 8)){s->pending_buf[s->pending++] = (Cr_z_Bytef)((Byte)(b >>
8));}
;
773 put_byte(s, (Byte)(b & 0xff)){s->pending_buf[s->pending++] = (Cr_z_Bytef)((Byte)(b &
0xff));}
;
774}
775
776/* =========================================================================
777 * Flush as much pending output as possible. All deflate() output, except for
778 * some deflate_stored() output, goes through this function so some
779 * applications may wish to modify it to avoid allocating a large
780 * strm->next_out buffer and copying into it. (See also deflate_read_buf()).
781 */
782localstatic void flush_pending(strm)
783 z_streamp strm;
784{
785 unsigned len;
786 deflate_state *s = strm->state;
787
788 _tr_flush_bitsCr_z__tr_flush_bits(s);
789 len = s->pending;
790 if (len > strm->avail_out) len = strm->avail_out;
791 if (len == 0) return;
792
793 zmemcpymemcpy(strm->next_out, s->pending_out, len);
794 strm->next_out += len;
795 s->pending_out += len;
796 strm->total_out += len;
797 strm->avail_out -= len;
798 s->pending -= len;
799 if (s->pending == 0) {
800 s->pending_out = s->pending_buf;
801 }
802}
803
804/* ===========================================================================
805 * Update the header CRC with the bytes s->pending_buf[beg..s->pending - 1].
806 */
807#define HCRC_UPDATE(beg)do { if (s->gzhead->hcrc && s->pending > (
beg)) strm->adler = Cr_z_crc32(strm->adler, s->pending_buf
+ (beg), s->pending - (beg)); } while (0)
\
808 do { \
809 if (s->gzhead->hcrc && s->pending > (beg)) \
810 strm->adler = crc32Cr_z_crc32(strm->adler, s->pending_buf + (beg), \
811 s->pending - (beg)); \
812 } while (0)
813
814/* ========================================================================= */
815int ZEXPORT deflateCr_z_deflate (strm, flush)
816 z_streamp strm;
817 int flush;
818{
819 int old_flush; /* value of flush param for previous deflate call */
820 deflate_state *s;
821
822 if (deflateStateCheck(strm) || flush > Z_BLOCK5 || flush < 0) {
823 return Z_STREAM_ERROR(-2);
824 }
825 s = strm->state;
826
827 if (strm->next_out == Z_NULL0 ||
828 (strm->avail_in != 0 && strm->next_in == Z_NULL0) ||
829 (s->status == FINISH_STATE666 && flush != Z_FINISH4)) {
830 ERR_RETURN(strm, Z_STREAM_ERROR)return (strm->msg = Cr_z_z_errmsg[2 -((-2))], ((-2)));
831 }
832 if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR)return (strm->msg = Cr_z_z_errmsg[2 -((-5))], ((-5)));
833
834 old_flush = s->last_flush;
835 s->last_flush = flush;
836
837 /* Flush as much pending output as possible */
838 if (s->pending != 0) {
839 flush_pending(strm);
840 if (strm->avail_out == 0) {
841 /* Since avail_out is 0, deflate will be called again with
842 * more output space, but possibly with both pending and
843 * avail_in equal to zero. There won't be anything to do,
844 * but this is not an error situation so make sure we
845 * return OK instead of BUF_ERROR at next call of deflate:
846 */
847 s->last_flush = -1;
848 return Z_OK0;
849 }
850
851 /* Make sure there is something to do and avoid duplicate consecutive
852 * flushes. For repeated and useless calls with Z_FINISH, we keep
853 * returning Z_STREAM_END instead of Z_BUF_ERROR.
854 */
855 } else if (strm->avail_in == 0 && RANK(flush)(((flush) * 2) - ((flush) > 4 ? 9 : 0)) <= RANK(old_flush)(((old_flush) * 2) - ((old_flush) > 4 ? 9 : 0)) &&
856 flush != Z_FINISH4) {
857 ERR_RETURN(strm, Z_BUF_ERROR)return (strm->msg = Cr_z_z_errmsg[2 -((-5))], ((-5)));
858 }
859
860 /* User must not provide more input after the first FINISH: */
861 if (s->status == FINISH_STATE666 && strm->avail_in != 0) {
862 ERR_RETURN(strm, Z_BUF_ERROR)return (strm->msg = Cr_z_z_errmsg[2 -((-5))], ((-5)));
863 }
864
865 /* Write the header */
866 if (s->status == INIT_STATE42 && s->wrap == 0)
867 s->status = BUSY_STATE113;
868 if (s->status == INIT_STATE42) {
869 /* zlib header */
870 uIntCr_z_uInt header = (Z_DEFLATED8 + ((s->w_bits-8)<<4)) << 8;
871 uIntCr_z_uInt level_flags;
872
873 if (s->strategy >= Z_HUFFMAN_ONLY2 || s->level < 2)
874 level_flags = 0;
875 else if (s->level < 6)
876 level_flags = 1;
877 else if (s->level == 6)
878 level_flags = 2;
879 else
880 level_flags = 3;
881 header |= (level_flags << 6);
882 if (s->strstart != 0) header |= PRESET_DICT0x20;
883 header += 31 - (header % 31);
884
885 putShortMSB(s, header);
886
887 /* Save the adler32 of the preset dictionary: */
888 if (s->strstart != 0) {
889 putShortMSB(s, (uIntCr_z_uInt)(strm->adler >> 16));
890 putShortMSB(s, (uIntCr_z_uInt)(strm->adler & 0xffff));
891 }
892 strm->adler = adler32Cr_z_adler32(0L, Z_NULL0, 0);
893 s->status = BUSY_STATE113;
894
895 /* Compression must start with an empty pending buffer */
896 flush_pending(strm);
897 if (s->pending != 0) {
898 s->last_flush = -1;
899 return Z_OK0;
900 }
901 }
902#ifdef GZIP
903 if (s->status == GZIP_STATE57) {
904 /* gzip header */
905 crc_resetCr_z_crc_reset(s);
906 put_byte(s, 31){s->pending_buf[s->pending++] = (Cr_z_Bytef)(31);};
907 put_byte(s, 139){s->pending_buf[s->pending++] = (Cr_z_Bytef)(139);};
908 put_byte(s, 8){s->pending_buf[s->pending++] = (Cr_z_Bytef)(8);};
909 if (s->gzhead == Z_NULL0) {
910 put_byte(s, 0){s->pending_buf[s->pending++] = (Cr_z_Bytef)(0);};
911 put_byte(s, 0){s->pending_buf[s->pending++] = (Cr_z_Bytef)(0);};
912 put_byte(s, 0){s->pending_buf[s->pending++] = (Cr_z_Bytef)(0);};
913 put_byte(s, 0){s->pending_buf[s->pending++] = (Cr_z_Bytef)(0);};
914 put_byte(s, 0){s->pending_buf[s->pending++] = (Cr_z_Bytef)(0);};
915 put_byte(s, s->level == 9 ? 2 :{s->pending_buf[s->pending++] = (Cr_z_Bytef)(s->level
== 9 ? 2 : (s->strategy >= 2 || s->level < 2 ? 4
: 0));}
916 (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?{s->pending_buf[s->pending++] = (Cr_z_Bytef)(s->level
== 9 ? 2 : (s->strategy >= 2 || s->level < 2 ? 4
: 0));}
917 4 : 0)){s->pending_buf[s->pending++] = (Cr_z_Bytef)(s->level
== 9 ? 2 : (s->strategy >= 2 || s->level < 2 ? 4
: 0));}
;
918 put_byte(s, OS_CODE){s->pending_buf[s->pending++] = (Cr_z_Bytef)(3);};
919 s->status = BUSY_STATE113;
920
921 /* Compression must start with an empty pending buffer */
922 flush_pending(strm);
923 if (s->pending != 0) {
924 s->last_flush = -1;
925 return Z_OK0;
926 }
927 }
928 else {
929 put_byte(s, (s->gzhead->text ? 1 : 0) +{s->pending_buf[s->pending++] = (Cr_z_Bytef)((s->gzhead
->text ? 1 : 0) + (s->gzhead->hcrc ? 2 : 0) + (s->
gzhead->extra == 0 ? 0 : 4) + (s->gzhead->name == 0 ?
0 : 8) + (s->gzhead->comment == 0 ? 0 : 16));}
930 (s->gzhead->hcrc ? 2 : 0) +{s->pending_buf[s->pending++] = (Cr_z_Bytef)((s->gzhead
->text ? 1 : 0) + (s->gzhead->hcrc ? 2 : 0) + (s->
gzhead->extra == 0 ? 0 : 4) + (s->gzhead->name == 0 ?
0 : 8) + (s->gzhead->comment == 0 ? 0 : 16));}
931 (s->gzhead->extra == Z_NULL ? 0 : 4) +{s->pending_buf[s->pending++] = (Cr_z_Bytef)((s->gzhead
->text ? 1 : 0) + (s->gzhead->hcrc ? 2 : 0) + (s->
gzhead->extra == 0 ? 0 : 4) + (s->gzhead->name == 0 ?
0 : 8) + (s->gzhead->comment == 0 ? 0 : 16));}
932 (s->gzhead->name == Z_NULL ? 0 : 8) +{s->pending_buf[s->pending++] = (Cr_z_Bytef)((s->gzhead
->text ? 1 : 0) + (s->gzhead->hcrc ? 2 : 0) + (s->
gzhead->extra == 0 ? 0 : 4) + (s->gzhead->name == 0 ?
0 : 8) + (s->gzhead->comment == 0 ? 0 : 16));}
933 (s->gzhead->comment == Z_NULL ? 0 : 16){s->pending_buf[s->pending++] = (Cr_z_Bytef)((s->gzhead
->text ? 1 : 0) + (s->gzhead->hcrc ? 2 : 0) + (s->
gzhead->extra == 0 ? 0 : 4) + (s->gzhead->name == 0 ?
0 : 8) + (s->gzhead->comment == 0 ? 0 : 16));}
934 ){s->pending_buf[s->pending++] = (Cr_z_Bytef)((s->gzhead
->text ? 1 : 0) + (s->gzhead->hcrc ? 2 : 0) + (s->
gzhead->extra == 0 ? 0 : 4) + (s->gzhead->name == 0 ?
0 : 8) + (s->gzhead->comment == 0 ? 0 : 16));}
;
935 put_byte(s, (Byte)(s->gzhead->time & 0xff)){s->pending_buf[s->pending++] = (Cr_z_Bytef)((Byte)(s->
gzhead->time & 0xff));}
;
936 put_byte(s, (Byte)((s->gzhead->time >> 8) & 0xff)){s->pending_buf[s->pending++] = (Cr_z_Bytef)((Byte)((s->
gzhead->time >> 8) & 0xff));}
;
937 put_byte(s, (Byte)((s->gzhead->time >> 16) & 0xff)){s->pending_buf[s->pending++] = (Cr_z_Bytef)((Byte)((s->
gzhead->time >> 16) & 0xff));}
;
938 put_byte(s, (Byte)((s->gzhead->time >> 24) & 0xff)){s->pending_buf[s->pending++] = (Cr_z_Bytef)((Byte)((s->
gzhead->time >> 24) & 0xff));}
;
939 put_byte(s, s->level == 9 ? 2 :{s->pending_buf[s->pending++] = (Cr_z_Bytef)(s->level
== 9 ? 2 : (s->strategy >= 2 || s->level < 2 ? 4
: 0));}
940 (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?{s->pending_buf[s->pending++] = (Cr_z_Bytef)(s->level
== 9 ? 2 : (s->strategy >= 2 || s->level < 2 ? 4
: 0));}
941 4 : 0)){s->pending_buf[s->pending++] = (Cr_z_Bytef)(s->level
== 9 ? 2 : (s->strategy >= 2 || s->level < 2 ? 4
: 0));}
;
942 put_byte(s, s->gzhead->os & 0xff){s->pending_buf[s->pending++] = (Cr_z_Bytef)(s->gzhead
->os & 0xff);}
;
943 if (s->gzhead->extra != Z_NULL0) {
944 put_byte(s, s->gzhead->extra_len & 0xff){s->pending_buf[s->pending++] = (Cr_z_Bytef)(s->gzhead
->extra_len & 0xff);}
;
945 put_byte(s, (s->gzhead->extra_len >> 8) & 0xff){s->pending_buf[s->pending++] = (Cr_z_Bytef)((s->gzhead
->extra_len >> 8) & 0xff);}
;
946 }
947 if (s->gzhead->hcrc)
948 strm->adler = crc32Cr_z_crc32(strm->adler, s->pending_buf,
949 s->pending);
950 s->gzindex = 0;
951 s->status = EXTRA_STATE69;
952 }
953 }
954 if (s->status == EXTRA_STATE69) {
955 if (s->gzhead->extra != Z_NULL0) {
956 ulg beg = s->pending; /* start of bytes to update crc */
957 uIntCr_z_uInt left = (s->gzhead->extra_len & 0xffff) - s->gzindex;
958 while (s->pending + left > s->pending_buf_size) {
959 uIntCr_z_uInt copy = s->pending_buf_size - s->pending;
960 zmemcpymemcpy(s->pending_buf + s->pending,
961 s->gzhead->extra + s->gzindex, copy);
962 s->pending = s->pending_buf_size;
963 HCRC_UPDATE(beg)do { if (s->gzhead->hcrc && s->pending > (
beg)) strm->adler = Cr_z_crc32(strm->adler, s->pending_buf
+ (beg), s->pending - (beg)); } while (0)
;
964 s->gzindex += copy;
965 flush_pending(strm);
966 if (s->pending != 0) {
967 s->last_flush = -1;
968 return Z_OK0;
969 }
970 beg = 0;
971 left -= copy;
972 }
973 zmemcpymemcpy(s->pending_buf + s->pending,
974 s->gzhead->extra + s->gzindex, left);
975 s->pending += left;
976 HCRC_UPDATE(beg)do { if (s->gzhead->hcrc && s->pending > (
beg)) strm->adler = Cr_z_crc32(strm->adler, s->pending_buf
+ (beg), s->pending - (beg)); } while (0)
;
977 s->gzindex = 0;
978 }
979 s->status = NAME_STATE73;
980 }
981 if (s->status == NAME_STATE73) {
982 if (s->gzhead->name != Z_NULL0) {
983 ulg beg = s->pending; /* start of bytes to update crc */
984 int val;
985 do {
986 if (s->pending == s->pending_buf_size) {
987 HCRC_UPDATE(beg)do { if (s->gzhead->hcrc && s->pending > (
beg)) strm->adler = Cr_z_crc32(strm->adler, s->pending_buf
+ (beg), s->pending - (beg)); } while (0)
;
988 flush_pending(strm);
989 if (s->pending != 0) {
990 s->last_flush = -1;
991 return Z_OK0;
992 }
993 beg = 0;
994 }
995 val = s->gzhead->name[s->gzindex++];
996 put_byte(s, val){s->pending_buf[s->pending++] = (Cr_z_Bytef)(val);};
997 } while (val != 0);
998 HCRC_UPDATE(beg)do { if (s->gzhead->hcrc && s->pending > (
beg)) strm->adler = Cr_z_crc32(strm->adler, s->pending_buf
+ (beg), s->pending - (beg)); } while (0)
;
999 s->gzindex = 0;
1000 }
1001 s->status = COMMENT_STATE91;
1002 }
1003 if (s->status == COMMENT_STATE91) {
1004 if (s->gzhead->comment != Z_NULL0) {
1005 ulg beg = s->pending; /* start of bytes to update crc */
1006 int val;
1007 do {
1008 if (s->pending == s->pending_buf_size) {
1009 HCRC_UPDATE(beg)do { if (s->gzhead->hcrc && s->pending > (
beg)) strm->adler = Cr_z_crc32(strm->adler, s->pending_buf
+ (beg), s->pending - (beg)); } while (0)
;
1010 flush_pending(strm);
1011 if (s->pending != 0) {
1012 s->last_flush = -1;
1013 return Z_OK0;
1014 }
1015 beg = 0;
1016 }
1017 val = s->gzhead->comment[s->gzindex++];
1018 put_byte(s, val){s->pending_buf[s->pending++] = (Cr_z_Bytef)(val);};
1019 } while (val != 0);
1020 HCRC_UPDATE(beg)do { if (s->gzhead->hcrc && s->pending > (
beg)) strm->adler = Cr_z_crc32(strm->adler, s->pending_buf
+ (beg), s->pending - (beg)); } while (0)
;
1021 }
1022 s->status = HCRC_STATE103;
1023 }
1024 if (s->status == HCRC_STATE103) {
1025 if (s->gzhead->hcrc) {
1026 if (s->pending + 2 > s->pending_buf_size) {
1027 flush_pending(strm);
1028 if (s->pending != 0) {
1029 s->last_flush = -1;
1030 return Z_OK0;
1031 }
1032 }
1033 put_byte(s, (Byte)(strm->adler & 0xff)){s->pending_buf[s->pending++] = (Cr_z_Bytef)((Byte)(strm
->adler & 0xff));}
;
1034 put_byte(s, (Byte)((strm->adler >> 8) & 0xff)){s->pending_buf[s->pending++] = (Cr_z_Bytef)((Byte)((strm
->adler >> 8) & 0xff));}
;
1035 strm->adler = crc32Cr_z_crc32(0L, Z_NULL0, 0);
1036 }
1037 s->status = BUSY_STATE113;
1038
1039 /* Compression must start with an empty pending buffer */
1040 flush_pending(strm);
1041 if (s->pending != 0) {
1042 s->last_flush = -1;
1043 return Z_OK0;
1044 }
1045 }
1046#endif
1047
1048 /* Start a new block or continue the current one.
1049 */
1050 if (strm->avail_in != 0 || s->lookahead != 0 ||
1051 (flush != Z_NO_FLUSH0 && s->status != FINISH_STATE666)) {
1052 block_state bstate;
1053
1054 bstate = s->level == 0 ? deflate_stored(s, flush) :
1055 s->strategy == Z_HUFFMAN_ONLY2 ? deflate_huff(s, flush) :
1056 s->strategy == Z_RLE3 ? deflate_rle(s, flush) :
1057 (*(configuration_table[s->level].func))(s, flush);
1058
1059 if (bstate == finish_started || bstate == finish_done) {
1060 s->status = FINISH_STATE666;
1061 }
1062 if (bstate == need_more || bstate == finish_started) {
1063 if (strm->avail_out == 0) {
1064 s->last_flush = -1; /* avoid BUF_ERROR next call, see above */
1065 }
1066 return Z_OK0;
1067 /* If flush != Z_NO_FLUSH && avail_out == 0, the next call
1068 * of deflate should use the same flush parameter to make sure
1069 * that the flush is complete. So we don't have to output an
1070 * empty block here, this will be done at next call. This also
1071 * ensures that for a very small output buffer, we emit at most
1072 * one empty block.
1073 */
1074 }
1075 if (bstate == block_done) {
1076 if (flush == Z_PARTIAL_FLUSH1) {
1077 _tr_alignCr_z__tr_align(s);
1078 } else if (flush != Z_BLOCK5) { /* FULL_FLUSH or SYNC_FLUSH */
1079 _tr_stored_blockCr_z__tr_stored_block(s, (char*)0, 0L, 0);
1080 /* For a full flush, this empty block will be recognized
1081 * as a special marker by inflate_sync().
1082 */
1083 if (flush == Z_FULL_FLUSH3) {
1084 CLEAR_HASH(s)do { s->head[s->hash_size-1] = 0; memset((Cr_z_Bytef *)
s->head, 0, (unsigned)(s->hash_size-1)*sizeof(*s->head
)); } while (0)
; /* forget history */
1085 if (s->lookahead == 0) {
1086 s->strstart = 0;
1087 s->block_start = 0L;
1088 s->insert = 0;
1089 }
1090 }
1091 }
1092 flush_pending(strm);
1093 if (strm->avail_out == 0) {
1094 s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */
1095 return Z_OK0;
1096 }
1097 }
1098 }
1099
1100 if (flush != Z_FINISH4) return Z_OK0;
1101 if (s->wrap <= 0) return Z_STREAM_END1;
1102
1103 /* Write the trailer */
1104#ifdef GZIP
1105 if (s->wrap == 2) {
1106 crc_finalizeCr_z_crc_finalize(s);
1107 put_byte(s, (Byte)(strm->adler & 0xff)){s->pending_buf[s->pending++] = (Cr_z_Bytef)((Byte)(strm
->adler & 0xff));}
;
1108 put_byte(s, (Byte)((strm->adler >> 8) & 0xff)){s->pending_buf[s->pending++] = (Cr_z_Bytef)((Byte)((strm
->adler >> 8) & 0xff));}
;
1109 put_byte(s, (Byte)((strm->adler >> 16) & 0xff)){s->pending_buf[s->pending++] = (Cr_z_Bytef)((Byte)((strm
->adler >> 16) & 0xff));}
;
1110 put_byte(s, (Byte)((strm->adler >> 24) & 0xff)){s->pending_buf[s->pending++] = (Cr_z_Bytef)((Byte)((strm
->adler >> 24) & 0xff));}
;
1111 put_byte(s, (Byte)(strm->total_in & 0xff)){s->pending_buf[s->pending++] = (Cr_z_Bytef)((Byte)(strm
->total_in & 0xff));}
;
1112 put_byte(s, (Byte)((strm->total_in >> 8) & 0xff)){s->pending_buf[s->pending++] = (Cr_z_Bytef)((Byte)((strm
->total_in >> 8) & 0xff));}
;
1113 put_byte(s, (Byte)((strm->total_in >> 16) & 0xff)){s->pending_buf[s->pending++] = (Cr_z_Bytef)((Byte)((strm
->total_in >> 16) & 0xff));}
;
1114 put_byte(s, (Byte)((strm->total_in >> 24) & 0xff)){s->pending_buf[s->pending++] = (Cr_z_Bytef)((Byte)((strm
->total_in >> 24) & 0xff));}
;
1115 }
1116 else
1117#endif
1118 {
1119 putShortMSB(s, (uIntCr_z_uInt)(strm->adler >> 16));
1120 putShortMSB(s, (uIntCr_z_uInt)(strm->adler & 0xffff));
1121 }
1122 flush_pending(strm);
1123 /* If avail_out is zero, the application will call deflate again
1124 * to flush the rest.
1125 */
1126 if (s->wrap > 0) s->wrap = -s->wrap; /* write the trailer only once! */
1127 return s->pending != 0 ? Z_OK0 : Z_STREAM_END1;
1128}
1129
1130/* ========================================================================= */
1131int ZEXPORT deflateEndCr_z_deflateEnd (strm)
1132 z_streamp strm;
1133{
1134 int status;
1135
1136 if (deflateStateCheck(strm)) return Z_STREAM_ERROR(-2);
1137
1138 status = strm->state->status;
1139
1140 /* Deallocate in reverse order of allocations: */
1141 TRY_FREE(strm, strm->state->pending_buf){if (strm->state->pending_buf) (*((strm)->zfree))((strm
)->opaque, (Cr_z_voidpf)(strm->state->pending_buf));
}
;
1142 TRY_FREE(strm, strm->state->head){if (strm->state->head) (*((strm)->zfree))((strm)->
opaque, (Cr_z_voidpf)(strm->state->head));}
;
1143 TRY_FREE(strm, strm->state->prev){if (strm->state->prev) (*((strm)->zfree))((strm)->
opaque, (Cr_z_voidpf)(strm->state->prev));}
;
1144 TRY_FREE(strm, strm->state->window){if (strm->state->window) (*((strm)->zfree))((strm)->
opaque, (Cr_z_voidpf)(strm->state->window));}
;
1145
1146 ZFREE(strm, strm->state)(*((strm)->zfree))((strm)->opaque, (Cr_z_voidpf)(strm->
state))
;
1147 strm->state = Z_NULL0;
1148
1149 return status == BUSY_STATE113 ? Z_DATA_ERROR(-3) : Z_OK0;
1150}
1151
1152/* =========================================================================
1153 * Copy the source state to the destination state.
1154 * To simplify the source, this is not supported for 16-bit MSDOS (which
1155 * doesn't have enough memory anyway to duplicate compression states).
1156 */
1157int ZEXPORT deflateCopyCr_z_deflateCopy (dest, source)
1158 z_streamp dest;
1159 z_streamp source;
1160{
1161#ifdef MAXSEG_64K
1162 return Z_STREAM_ERROR(-2);
1163#else
1164 deflate_state *ds;
1165 deflate_state *ss;
1166
1167
1168 if (deflateStateCheck(source) || dest == Z_NULL0) {
1169 return Z_STREAM_ERROR(-2);
1170 }
1171
1172 ss = source->state;
1173
1174 zmemcpymemcpy((voidpfCr_z_voidpf)dest, (voidpfCr_z_voidpf)source, sizeof(z_stream));
1175
1176 ds = (deflate_state *) ZALLOC(dest, 1, sizeof(deflate_state))(*((dest)->zalloc))((dest)->opaque, (1), (sizeof(deflate_state
)))
;
1177 if (ds == Z_NULL0) return Z_MEM_ERROR(-4);
1178 dest->state = (struct internal_state FAR *) ds;
1179 zmemcpymemcpy((voidpfCr_z_voidpf)ds, (voidpfCr_z_voidpf)ss, sizeof(deflate_state));
1180 ds->strm = dest;
1181
1182 ds->window = (BytefCr_z_Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof(Byte))(*((dest)->zalloc))((dest)->opaque, (ds->w_size), (2
*sizeof(Byte)))
;
1183 ds->prev = (Posf *) ZALLOC(dest, ds->w_size, sizeof(Pos))(*((dest)->zalloc))((dest)->opaque, (ds->w_size), (sizeof
(Pos)))
;
1184 ds->head = (Posf *) ZALLOC(dest, ds->hash_size, sizeof(Pos))(*((dest)->zalloc))((dest)->opaque, (ds->hash_size),
(sizeof(Pos)))
;
1185 ds->pending_buf = (uchf *) ZALLOC(dest, ds->lit_bufsize, 4)(*((dest)->zalloc))((dest)->opaque, (ds->lit_bufsize
), (4))
;
1186
1187 if (ds->window == Z_NULL0 || ds->prev == Z_NULL0 || ds->head == Z_NULL0 ||
1188 ds->pending_buf == Z_NULL0) {
1189 deflateEndCr_z_deflateEnd (dest);
1190 return Z_MEM_ERROR(-4);
1191 }
1192 /* following zmemcpy do not work for 16-bit MSDOS */
1193 zmemcpymemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(Byte));
1194 zmemcpymemcpy((voidpfCr_z_voidpf)ds->prev, (voidpfCr_z_voidpf)ss->prev, ds->w_size * sizeof(Pos));
1195 zmemcpymemcpy((voidpfCr_z_voidpf)ds->head, (voidpfCr_z_voidpf)ss->head, ds->hash_size * sizeof(Pos));
1196 zmemcpymemcpy(ds->pending_buf, ss->pending_buf, (uIntCr_z_uInt)ds->pending_buf_size);
1197
1198 ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf);
1199 ds->sym_buf = ds->pending_buf + ds->lit_bufsize;
1200
1201 ds->l_desc.dyn_tree = ds->dyn_ltree;
1202 ds->d_desc.dyn_tree = ds->dyn_dtree;
1203 ds->bl_desc.dyn_tree = ds->bl_tree;
1204
1205 return Z_OK0;
1206#endif /* MAXSEG_64K */
1207}
1208
1209/* ===========================================================================
1210 * Read a new buffer from the current input stream, update the adler32
1211 * and total number of bytes read. All deflate() input goes through
1212 * this function so some applications may wish to modify it to avoid
1213 * allocating a large strm->next_in buffer and copying from it.
1214 * (See also flush_pending()).
1215 */
1216ZLIB_INTERNAL unsigned deflate_read_bufCr_z_deflate_read_buf(strm, buf, size)
1217 z_streamp strm;
1218 BytefCr_z_Bytef *buf;
1219 unsigned size;
1220{
1221 unsigned len = strm->avail_in;
1222
1223 if (len > size) len = size;
1224 if (len == 0) return 0;
1225
1226 strm->avail_in -= len;
1227
1228#ifdef GZIP
1229 if (strm->state->wrap == 2)
1230 copy_with_crcCr_z_copy_with_crc(strm, buf, len);
1231 else
1232#endif
1233 {
1234 zmemcpymemcpy(buf, strm->next_in, len);
1235 if (strm->state->wrap == 1)
1236 strm->adler = adler32Cr_z_adler32(strm->adler, buf, len);
1237 }
1238 strm->next_in += len;
1239 strm->total_in += len;
1240
1241 return len;
1242}
1243
1244/* ===========================================================================
1245 * Initialize the "longest match" routines for a new zlib stream
1246 */
1247localstatic void lm_init (s)
1248 deflate_state *s;
1249{
1250 s->window_size = (ulg)2L*s->w_size;
1251
1252 CLEAR_HASH(s)do { s->head[s->hash_size-1] = 0; memset((Cr_z_Bytef *)
s->head, 0, (unsigned)(s->hash_size-1)*sizeof(*s->head
)); } while (0)
;
1253
1254 /* Set the default configuration parameters:
1255 */
1256 s->max_lazy_match = configuration_table[s->level].max_lazy;
1257 s->good_match = configuration_table[s->level].good_length;
1258 s->nice_match = configuration_table[s->level].nice_length;
1259 s->max_chain_length = configuration_table[s->level].max_chain;
1260
1261 s->strstart = 0;
1262 s->block_start = 0L;
1263 s->lookahead = 0;
1264 s->insert = 0;
1265 s->match_length = s->prev_length = MIN_MATCH3-1;
1266 s->match_available = 0;
1267 s->ins_h = 0;
1268#ifndef FASTEST
1269#ifdef ASMV
1270 match_init(); /* initialize the asm code */
1271#endif
1272#endif
1273}
1274
1275#ifndef FASTEST
1276/* ===========================================================================
1277 * Set match_start to the longest match starting at the given string and
1278 * return its length. Matches shorter or equal to prev_length are discarded,
1279 * in which case the result is equal to prev_length and match_start is
1280 * garbage.
1281 * IN assertions: cur_match is the head of the hash chain for the current
1282 * string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
1283 * OUT assertion: the match length is not greater than s->lookahead.
1284 */
1285#ifndef ASMV
1286/* For 80x86 and 680x0, an optimized version will be provided in match.asm or
1287 * match.S. The code will be functionally equivalent.
1288 */
1289localstatic uIntCr_z_uInt longest_match(s, cur_match)
1290 deflate_state *s;
1291 IPos cur_match; /* current match */
1292{
1293 unsigned chain_length = s->max_chain_length;/* max hash chain length */
1294 register BytefCr_z_Bytef *scan = s->window + s->strstart; /* current string */
1295 register BytefCr_z_Bytef *match; /* matched string */
1296 register int len; /* length of current match */
1297 int best_len = (int)s->prev_length; /* best match length so far */
1298 int nice_match = s->nice_match; /* stop if match long enough */
1299 IPos limit = s->strstart > (IPos)MAX_DIST(s)((s)->w_size-(258 +3 +1)) ?
1300 s->strstart - (IPos)MAX_DIST(s)((s)->w_size-(258 +3 +1)) : NIL0;
1301 /* Stop when cur_match becomes <= limit. To simplify the code,
1302 * we prevent matches with the string of window index 0.
1303 */
1304 Posf *prev = s->prev;
1305 uIntCr_z_uInt wmask = s->w_mask;
1306
1307#ifdef UNALIGNED_OK
1308 /* Compare two bytes at a time. Note: this is not always beneficial.
1309 * Try with and without -DUNALIGNED_OK to check.
1310 */
1311 register BytefCr_z_Bytef *strend = s->window + s->strstart + MAX_MATCH258 - 1;
1312 register ush scan_start = *(ushf*)scan;
1313 register ush scan_end = *(ushf*)(scan+best_len-1);
1314#else
1315 register BytefCr_z_Bytef *strend = s->window + s->strstart + MAX_MATCH258;
1316 register Byte scan_end1 = scan[best_len-1];
1317 register Byte scan_end = scan[best_len];
1318#endif
1319
1320 /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1321 * It is easy to get rid of this optimization if necessary.
1322 */
1323 Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1324
1325 /* Do not waste too much time if we already have a good match: */
1326 if (s->prev_length >= s->good_match) {
1327 chain_length >>= 2;
1328 }
1329 /* Do not look for matches beyond the end of the input. This is necessary
1330 * to make deflate deterministic.
1331 */
1332 if ((uIntCr_z_uInt)nice_match > s->lookahead) nice_match = (int)s->lookahead;
1333
1334 Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
1335
1336 do {
1337 Assert(cur_match < s->strstart, "no future");
1338 match = s->window + cur_match;
1339
1340 /* Skip to next match if the match length cannot increase
1341 * or if the match length is less than 2. Note that the checks below
1342 * for insufficient lookahead only occur occasionally for performance
1343 * reasons. Therefore uninitialized memory will be accessed, and
1344 * conditional jumps will be made that depend on those values.
1345 * However the length of the match is limited to the lookahead, so
1346 * the output of deflate is not affected by the uninitialized values.
1347 */
1348#if (defined(UNALIGNED_OK) && MAX_MATCH258 == 258)
1349 /* This code assumes sizeof(unsigned short) == 2. Do not use
1350 * UNALIGNED_OK if your compiler uses a different size.
1351 */
1352 if (*(ushf*)(match+best_len-1) != scan_end ||
1353 *(ushf*)match != scan_start) continue;
1354
1355 /* It is not necessary to compare scan[2] and match[2] since they are
1356 * always equal when the other bytes match, given that the hash keys
1357 * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at
1358 * strstart+3, +5, ... up to strstart+257. We check for insufficient
1359 * lookahead only every 4th comparison; the 128th check will be made
1360 * at strstart+257. If MAX_MATCH-2 is not a multiple of 8, it is
1361 * necessary to put more guard bytes at the end of the window, or
1362 * to check more often for insufficient lookahead.
1363 */
1364 if (!x86_cpu_enable_simdCr_z_x86_cpu_enable_simd && !arm_cpu_enable_crc32Cr_z_arm_cpu_enable_crc32) {
1365 Assert(scan[2] == match[2], "scan[2]?");
1366 } else {
1367 /* When using CRC hashing, scan[2] and match[2] may mismatch, but in
1368 * that case at least one of the other hashed bytes will mismatch
1369 * also. Bytes 0 and 1 were already checked above, and we know there
1370 * are at least four bytes to check otherwise the mismatch would have
1371 * been found by the scan_end comparison above, so: */
1372 Assert(scan[2] == match[2] || scan[3] != match[3], "scan[2]??");
1373 }
1374 scan++, match++;
1375 do {
1376 } while (*(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1377 *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1378 *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1379 *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1380 scan < strend);
1381 /* The funny "do {}" generates better code on most compilers */
1382
1383 /* Here, scan <= window+strstart+257 */
1384 Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1385 if (*scan == *match) scan++;
1386
1387 len = (MAX_MATCH258 - 1) - (int)(strend-scan);
1388 scan = strend - (MAX_MATCH258-1);
1389
1390#else /* UNALIGNED_OK */
1391
1392 if (match[best_len] != scan_end ||
1393 match[best_len-1] != scan_end1 ||
1394 *match != *scan ||
1395 *++match != scan[1]) continue;
1396
1397 /* The check at best_len-1 can be removed because it will be made
1398 * again later. (This heuristic is not always a win.)
1399 * It is not necessary to compare scan[2] and match[2] since they
1400 * are always equal when the other bytes match, given that
1401 * the hash keys are equal and that HASH_BITS >= 8.
1402 */
1403 scan += 2, match++;
1404 if (!x86_cpu_enable_simdCr_z_x86_cpu_enable_simd && !arm_cpu_enable_crc32Cr_z_arm_cpu_enable_crc32) {
1405 Assert(*scan == *match, "match[2]?");
1406 } else {
1407 /* When using CRC hashing, scan[2] and match[2] may mismatch, but in
1408 * that case at least one of the other hashed bytes will mismatch
1409 * also. Bytes 0 and 1 were already checked above, and we know there
1410 * are at least four bytes to check otherwise the mismatch would have
1411 * been found by the scan_end comparison above, so: */
1412 Assert(*scan == *match || scan[1] != match[1], "match[2]??");
1413 }
1414
1415 /* We check for insufficient lookahead only every 8th comparison;
1416 * the 256th check will be made at strstart+258.
1417 */
1418 do {
1419 } while (*++scan == *++match && *++scan == *++match &&
1420 *++scan == *++match && *++scan == *++match &&
1421 *++scan == *++match && *++scan == *++match &&
1422 *++scan == *++match && *++scan == *++match &&
1423 scan < strend);
1424
1425 Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1426
1427 len = MAX_MATCH258 - (int)(strend - scan);
1428 scan = strend - MAX_MATCH258;
1429
1430#endif /* UNALIGNED_OK */
1431
1432 if (len > best_len) {
1433 s->match_start = cur_match;
1434 best_len = len;
1435 if (len >= nice_match) break;
1436#ifdef UNALIGNED_OK
1437 scan_end = *(ushf*)(scan+best_len-1);
1438#else
1439 scan_end1 = scan[best_len-1];
1440 scan_end = scan[best_len];
1441#endif
1442 }
1443 } while ((cur_match = prev[cur_match & wmask]) > limit
1444 && --chain_length != 0);
1445
1446 if ((uIntCr_z_uInt)best_len <= s->lookahead) return (uIntCr_z_uInt)best_len;
1447 return s->lookahead;
1448}
1449#endif /* ASMV */
1450
1451#else /* FASTEST */
1452
1453/* ---------------------------------------------------------------------------
1454 * Optimized version for FASTEST only
1455 */
1456localstatic uIntCr_z_uInt longest_match(s, cur_match)
1457 deflate_state *s;
1458 IPos cur_match; /* current match */
1459{
1460 register BytefCr_z_Bytef *scan = s->window + s->strstart; /* current string */
1461 register BytefCr_z_Bytef *match; /* matched string */
1462 register int len; /* length of current match */
1463 register BytefCr_z_Bytef *strend = s->window + s->strstart + MAX_MATCH258;
1464
1465 /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1466 * It is easy to get rid of this optimization if necessary.
1467 */
1468 Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1469
1470 Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
1471
1472 Assert(cur_match < s->strstart, "no future");
1473
1474 match = s->window + cur_match;
1475
1476 /* Return failure if the match length is less than 2:
1477 */
1478 if (match[0] != scan[0] || match[1] != scan[1]) return MIN_MATCH3-1;
1479
1480 /* The check at best_len-1 can be removed because it will be made
1481 * again later. (This heuristic is not always a win.)
1482 * It is not necessary to compare scan[2] and match[2] since they
1483 * are always equal when the other bytes match, given that
1484 * the hash keys are equal and that HASH_BITS >= 8.
1485 */
1486 scan += 2, match += 2;
1487 Assert(*scan == *match, "match[2]?");
1488
1489 /* We check for insufficient lookahead only every 8th comparison;
1490 * the 256th check will be made at strstart+258.
1491 */
1492 do {
1493 } while (*++scan == *++match && *++scan == *++match &&
1494 *++scan == *++match && *++scan == *++match &&
1495 *++scan == *++match && *++scan == *++match &&
1496 *++scan == *++match && *++scan == *++match &&
1497 scan < strend);
1498
1499 Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1500
1501 len = MAX_MATCH258 - (int)(strend - scan);
1502
1503 if (len < MIN_MATCH3) return MIN_MATCH3 - 1;
1504
1505 s->match_start = cur_match;
1506 return (uIntCr_z_uInt)len <= s->lookahead ? (uIntCr_z_uInt)len : s->lookahead;
1507}
1508
1509#endif /* FASTEST */
1510
1511#ifdef ZLIB_DEBUG
1512
1513#define EQUAL 0
1514/* result of memcmp for equal strings */
1515
1516/* ===========================================================================
1517 * Check that the match at match_start is indeed a match.
1518 */
1519localstatic void check_match(s, start, match, length)
1520 deflate_state *s;
1521 IPos start, match;
1522 int length;
1523{
1524 /* check that the match is indeed a match */
1525 if (zmemcmpmemcmp(s->window + match,
1526 s->window + start, length) != EQUAL) {
1527 fprintf(stderr, " start %u, match %u, length %d\n",
1528 start, match, length);
1529 do {
1530 fprintf(stderr, "%c%c", s->window[match++], s->window[start++]);
1531 } while (--length != 0);
1532 z_error("invalid match");
1533 }
1534 if (z_verbose > 1) {
1535 fprintf(stderr,"\\[%d,%d]", start-match, length);
1536 do { putc(s->window[start++], stderr); } while (--length != 0);
1537 }
1538}
1539#else
1540# define check_match(s, start, match, length)
1541#endif /* ZLIB_DEBUG */
1542
1543/* ===========================================================================
1544 * Fill the window when the lookahead becomes insufficient.
1545 * Updates strstart and lookahead.
1546 *
1547 * IN assertion: lookahead < MIN_LOOKAHEAD
1548 * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
1549 * At least one byte has been read, or avail_in == 0; reads are
1550 * performed for at least two bytes (required for the zip translate_eol
1551 * option -- not supported here).
1552 */
1553localstatic void fill_window_c(deflate_state *s);
1554
1555localstatic void fill_window(deflate_state *s)
1556{
1557#ifdef DEFLATE_FILL_WINDOW_SSE2
1558 if (x86_cpu_enable_simdCr_z_x86_cpu_enable_simd) {
1559 fill_window_sseCr_z_fill_window_sse(s);
1560 return;
1561 }
1562#endif
1563 fill_window_c(s);
1564}
1565
1566localstatic void fill_window_c(s)
1567 deflate_state *s;
1568{
1569 unsigned n;
1570 unsigned more; /* Amount of free space at the end of the window. */
1571 uIntCr_z_uInt wsize = s->w_size;
1572
1573 Assert(s->lookahead < MIN_LOOKAHEAD, "already enough lookahead");
1574
1575 do {
1576 more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart);
1577
1578 /* Deal with !@#$% 64K limit: */
1579 if (sizeof(int) <= 2) {
1580 if (more == 0 && s->strstart == 0 && s->lookahead == 0) {
1581 more = wsize;
1582
1583 } else if (more == (unsigned)(-1)) {
1584 /* Very unlikely, but possible on 16 bit machine if
1585 * strstart == 0 && lookahead == 1 (input done a byte at time)
1586 */
1587 more--;
1588 }
1589 }
1590
1591 /* If the window is almost full and there is insufficient lookahead,
1592 * move the upper half to the lower one to make room in the upper half.
1593 */
1594 if (s->strstart >= wsize+MAX_DIST(s)((s)->w_size-(258 +3 +1))) {
1595
1596 zmemcpymemcpy(s->window, s->window+wsize, (unsigned)wsize - more);
1597 s->match_start -= wsize;
1598 s->strstart -= wsize; /* we now have strstart >= MAX_DIST */
1599 s->block_start -= (long) wsize;
1600 if (s->insert > s->strstart)
1601 s->insert = s->strstart;
1602 slide_hash(s);
1603 more += wsize;
1604 }
1605 if (s->strm->avail_in == 0) break;
1606
1607 /* If there was no sliding:
1608 * strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
1609 * more == window_size - lookahead - strstart
1610 * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
1611 * => more >= window_size - 2*WSIZE + 2
1612 * In the BIG_MEM or MMAP case (not yet supported),
1613 * window_size == input_size + MIN_LOOKAHEAD &&
1614 * strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
1615 * Otherwise, window_size == 2*WSIZE so more >= 2.
1616 * If there was sliding, more >= WSIZE. So in all cases, more >= 2.
1617 */
1618 Assert(more >= 2, "more < 2");
1619
1620 n = deflate_read_bufCr_z_deflate_read_buf(s->strm, s->window + s->strstart + s->lookahead, more);
1621 s->lookahead += n;
1622
1623 /* Initialize the hash value now that we have some input: */
1624 if (s->lookahead + s->insert >= MIN_MATCH3) {
1625 uIntCr_z_uInt str = s->strstart - s->insert;
1626 s->ins_h = s->window[str];
1627 UPDATE_HASH(s, s->ins_h, s->window[str + 1])(s->ins_h = (((s->ins_h) << s->hash_shift) ^ (
s->window[str + 1])) & s->hash_mask)
;
1628#if MIN_MATCH3 != 3
1629 Call UPDATE_HASH() MIN_MATCH3-3 more times
1630#endif
1631 while (s->insert) {
1632 UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1])(s->ins_h = (((s->ins_h) << s->hash_shift) ^ (
s->window[str + 3 -1])) & s->hash_mask)
;
1633#ifndef FASTEST
1634 s->prev[str & s->w_mask] = s->head[s->ins_h];
1635#endif
1636 s->head[s->ins_h] = (Pos)str;
1637 str++;
1638 s->insert--;
1639 if (s->lookahead + s->insert < MIN_MATCH3)
1640 break;
1641 }
1642 }
1643 /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
1644 * but this is not important since only literal bytes will be emitted.
1645 */
1646
1647 } while (s->lookahead < MIN_LOOKAHEAD(258 +3 +1) && s->strm->avail_in != 0);
1648
1649 /* If the WIN_INIT bytes after the end of the current data have never been
1650 * written, then zero those bytes in order to avoid memory check reports of
1651 * the use of uninitialized (or uninitialised as Julian writes) bytes by
1652 * the longest match routines. Update the high water mark for the next
1653 * time through here. WIN_INIT is set to MAX_MATCH since the longest match
1654 * routines allow scanning to strstart + MAX_MATCH, ignoring lookahead.
1655 */
1656 if (s->high_water < s->window_size) {
1657 ulg curr = s->strstart + (ulg)(s->lookahead);
1658 ulg init;
1659
1660 if (s->high_water < curr) {
1661 /* Previous high water mark below current data -- zero WIN_INIT
1662 * bytes or up to end of window, whichever is less.
1663 */
1664 init = s->window_size - curr;
1665 if (init > WIN_INIT258)
1666 init = WIN_INIT258;
1667 zmemzero(s->window + curr, (unsigned)init)memset(s->window + curr, 0, (unsigned)init);
1668 s->high_water = curr + init;
1669 }
1670 else if (s->high_water < (ulg)curr + WIN_INIT258) {
1671 /* High water mark at or above current data, but below current data
1672 * plus WIN_INIT -- zero out to current data plus WIN_INIT, or up
1673 * to end of window, whichever is less.
1674 */
1675 init = (ulg)curr + WIN_INIT258 - s->high_water;
1676 if (init > s->window_size - s->high_water)
1677 init = s->window_size - s->high_water;
1678 zmemzero(s->window + s->high_water, (unsigned)init)memset(s->window + s->high_water, 0, (unsigned)init);
1679 s->high_water += init;
1680 }
1681 }
1682
1683 Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD,
1684 "not enough room for search");
1685}
1686
1687/* ===========================================================================
1688 * Flush the current block, with given end-of-file flag.
1689 * IN assertion: strstart is set to the end of the current match.
1690 */
1691#define FLUSH_BLOCK_ONLY(s, last){ Cr_z__tr_flush_block(s, (s->block_start >= 0L ? (Cr_z_charf
*)&s->window[(unsigned)s->block_start] : (Cr_z_charf
*)0), (ulg)((long)s->strstart - s->block_start), (last
)); s->block_start = s->strstart; flush_pending(s->strm
); ; }
{ \
1692 _tr_flush_blockCr_z__tr_flush_block(s, (s->block_start >= 0L ? \
1693 (charfCr_z_charf *)&s->window[(unsigned)s->block_start] : \
1694 (charfCr_z_charf *)Z_NULL0), \
1695 (ulg)((long)s->strstart - s->block_start), \
1696 (last)); \
1697 s->block_start = s->strstart; \
1698 flush_pending(s->strm); \
1699 Tracev((stderr,"[FLUSH]")); \
1700}
1701
1702/* Same but force premature exit if necessary. */
1703#define FLUSH_BLOCK(s, last){ { Cr_z__tr_flush_block(s, (s->block_start >= 0L ? (Cr_z_charf
*)&s->window[(unsigned)s->block_start] : (Cr_z_charf
*)0), (ulg)((long)s->strstart - s->block_start), (last
)); s->block_start = s->strstart; flush_pending(s->strm
); ; }; if (s->strm->avail_out == 0) return (last) ? finish_started
: need_more; }
{ \
1704 FLUSH_BLOCK_ONLY(s, last){ Cr_z__tr_flush_block(s, (s->block_start >= 0L ? (Cr_z_charf
*)&s->window[(unsigned)s->block_start] : (Cr_z_charf
*)0), (ulg)((long)s->strstart - s->block_start), (last
)); s->block_start = s->strstart; flush_pending(s->strm
); ; }
; \
1705 if (s->strm->avail_out == 0) return (last) ? finish_started : need_more; \
1706}
1707
1708/* Maximum stored block length in deflate format (not including header). */
1709#define MAX_STORED65535 65535
1710
1711/* Minimum of a and b. */
1712#define MIN(a, b)((a) > (b) ? (b) : (a)) ((a) > (b) ? (b) : (a))
1713
1714/* ===========================================================================
1715 * Copy without compression as much as possible from the input stream, return
1716 * the current block state.
1717 *
1718 * In case deflateParams() is used to later switch to a non-zero compression
1719 * level, s->matches (otherwise unused when storing) keeps track of the number
1720 * of hash table slides to perform. If s->matches is 1, then one hash table
1721 * slide will be done when switching. If s->matches is 2, the maximum value
1722 * allowed here, then the hash table will be cleared, since two or more slides
1723 * is the same as a clear.
1724 *
1725 * deflate_stored() is written to minimize the number of times an input byte is
1726 * copied. It is most efficient with large input and output buffers, which
1727 * maximizes the opportunites to have a single copy from next_in to next_out.
1728 */
1729localstatic block_state deflate_stored(s, flush)
1730 deflate_state *s;
1731 int flush;
1732{
1733 /* Smallest worthy block size when not flushing or finishing. By default
1734 * this is 32K. This can be as small as 507 bytes for memLevel == 1. For
1735 * large input and output buffers, the stored block size will be larger.
1736 */
1737 unsigned min_block = MIN(s->pending_buf_size - 5, s->w_size)((s->pending_buf_size - 5) > (s->w_size) ? (s->w_size
) : (s->pending_buf_size - 5))
;
1738
1739 /* Copy as many min_block or larger stored blocks directly to next_out as
1740 * possible. If flushing, copy the remaining available input to next_out as
1741 * stored blocks, if there is enough space.
1742 */
1743 unsigned len, left, have, last = 0;
1744 unsigned used = s->strm->avail_in;
1745 do {
1746 /* Set len to the maximum size block that we can copy directly with the
1747 * available input data and output space. Set left to how much of that
1748 * would be copied from what's left in the window.
1749 */
1750 len = MAX_STORED65535; /* maximum deflate stored block length */
1751 have = (s->bi_valid + 42) >> 3; /* number of header bytes */
1752 if (s->strm->avail_out < have) /* need room for header */
1753 break;
1754 /* maximum stored block length that will fit in avail_out: */
1755 have = s->strm->avail_out - have;
1756 left = s->strstart - s->block_start; /* bytes left in window */
1757 if (len > (ulg)left + s->strm->avail_in)
1758 len = left + s->strm->avail_in; /* limit len to the input */
1759 if (len > have)
1760 len = have; /* limit len to the output */
1761
1762 /* If the stored block would be less than min_block in length, or if
1763 * unable to copy all of the available input when flushing, then try
1764 * copying to the window and the pending buffer instead. Also don't
1765 * write an empty block when flushing -- deflate() does that.
1766 */
1767 if (len < min_block && ((len == 0 && flush != Z_FINISH4) ||
1768 flush == Z_NO_FLUSH0 ||
1769 len != left + s->strm->avail_in))
1770 break;
1771
1772 /* Make a dummy stored block in pending to get the header bytes,
1773 * including any pending bits. This also updates the debugging counts.
1774 */
1775 last = flush == Z_FINISH4 && len == left + s->strm->avail_in ? 1 : 0;
1776 _tr_stored_blockCr_z__tr_stored_block(s, (char *)0, 0L, last);
1777
1778 /* Replace the lengths in the dummy stored block with len. */
1779 s->pending_buf[s->pending - 4] = len;
1780 s->pending_buf[s->pending - 3] = len >> 8;
1781 s->pending_buf[s->pending - 2] = ~len;
1782 s->pending_buf[s->pending - 1] = ~len >> 8;
1783
1784 /* Write the stored block header bytes. */
1785 flush_pending(s->strm);
1786
1787#ifdef ZLIB_DEBUG
1788 /* Update debugging counts for the data about to be copied. */
1789 s->compressed_len += len << 3;
1790 s->bits_sent += len << 3;
1791#endif
1792
1793 /* Copy uncompressed bytes from the window to next_out. */
1794 if (left) {
1795 if (left > len)
1796 left = len;
1797 zmemcpymemcpy(s->strm->next_out, s->window + s->block_start, left);
1798 s->strm->next_out += left;
1799 s->strm->avail_out -= left;
1800 s->strm->total_out += left;
1801 s->block_start += left;
1802 len -= left;
1803 }
1804
1805 /* Copy uncompressed bytes directly from next_in to next_out, updating
1806 * the check value.
1807 */
1808 if (len) {
1809 deflate_read_bufCr_z_deflate_read_buf(s->strm, s->strm->next_out, len);
1810 s->strm->next_out += len;
1811 s->strm->avail_out -= len;
1812 s->strm->total_out += len;
1813 }
1814 } while (last == 0);
1815
1816 /* Update the sliding window with the last s->w_size bytes of the copied
1817 * data, or append all of the copied data to the existing window if less
1818 * than s->w_size bytes were copied. Also update the number of bytes to
1819 * insert in the hash tables, in the event that deflateParams() switches to
1820 * a non-zero compression level.
1821 */
1822 used -= s->strm->avail_in; /* number of input bytes directly copied */
1823 if (used) {
1824 /* If any input was used, then no unused input remains in the window,
1825 * therefore s->block_start == s->strstart.
1826 */
1827 if (used >= s->w_size) { /* supplant the previous history */
1828 s->matches = 2; /* clear hash */
1829 zmemcpymemcpy(s->window, s->strm->next_in - s->w_size, s->w_size);
1830 s->strstart = s->w_size;
1831 s->insert = s->strstart;
1832 }
1833 else {
1834 if (s->window_size - s->strstart <= used) {
1835 /* Slide the window down. */
1836 s->strstart -= s->w_size;
1837 zmemcpymemcpy(s->window, s->window + s->w_size, s->strstart);
1838 if (s->matches < 2)
1839 s->matches++; /* add a pending slide_hash() */
1840 if (s->insert > s->strstart)
1841 s->insert = s->strstart;
1842 }
1843 zmemcpymemcpy(s->window + s->strstart, s->strm->next_in - used, used);
1844 s->strstart += used;
1845 s->insert += MIN(used, s->w_size - s->insert)((used) > (s->w_size - s->insert) ? (s->w_size - s
->insert) : (used))
;
1846 }
1847 s->block_start = s->strstart;
1848 }
1849 if (s->high_water < s->strstart)
1850 s->high_water = s->strstart;
1851
1852 /* If the last block was written to next_out, then done. */
1853 if (last)
1854 return finish_done;
1855
1856 /* If flushing and all input has been consumed, then done. */
1857 if (flush != Z_NO_FLUSH0 && flush != Z_FINISH4 &&
1858 s->strm->avail_in == 0 && (long)s->strstart == s->block_start)
1859 return block_done;
1860
1861 /* Fill the window with any remaining input. */
1862 have = s->window_size - s->strstart;
1863 if (s->strm->avail_in > have && s->block_start >= (long)s->w_size) {
1864 /* Slide the window down. */
1865 s->block_start -= s->w_size;
1866 s->strstart -= s->w_size;
1867 zmemcpymemcpy(s->window, s->window + s->w_size, s->strstart);
1868 if (s->matches < 2)
1869 s->matches++; /* add a pending slide_hash() */
1870 have += s->w_size; /* more space now */
1871 if (s->insert > s->strstart)
1872 s->insert = s->strstart;
1873 }
1874 if (have > s->strm->avail_in)
1875 have = s->strm->avail_in;
1876 if (have) {
1877 deflate_read_bufCr_z_deflate_read_buf(s->strm, s->window + s->strstart, have);
1878 s->strstart += have;
1879 s->insert += MIN(have, s->w_size - s->insert)((have) > (s->w_size - s->insert) ? (s->w_size - s
->insert) : (have))
;
1880 }
1881 if (s->high_water < s->strstart)
1882 s->high_water = s->strstart;
1883
1884 /* There was not enough avail_out to write a complete worthy or flushed
1885 * stored block to next_out. Write a stored block to pending instead, if we
1886 * have enough input for a worthy block, or if flushing and there is enough
1887 * room for the remaining input as a stored block in the pending buffer.
1888 */
1889 have = (s->bi_valid + 42) >> 3; /* number of header bytes */
1890 /* maximum stored block length that will fit in pending: */
1891 have = MIN(s->pending_buf_size - have, MAX_STORED)((s->pending_buf_size - have) > (65535) ? (65535) : (s->
pending_buf_size - have))
;
1892 min_block = MIN(have, s->w_size)((have) > (s->w_size) ? (s->w_size) : (have));
1893 left = s->strstart - s->block_start;
1894 if (left >= min_block ||
1895 ((left || flush == Z_FINISH4) && flush != Z_NO_FLUSH0 &&
1896 s->strm->avail_in == 0 && left <= have)) {
1897 len = MIN(left, have)((left) > (have) ? (have) : (left));
1898 last = flush == Z_FINISH4 && s->strm->avail_in == 0 &&
1899 len == left ? 1 : 0;
1900 _tr_stored_blockCr_z__tr_stored_block(s, (charfCr_z_charf *)s->window + s->block_start, len, last);
1901 s->block_start += len;
1902 flush_pending(s->strm);
1903 }
1904
1905 /* We've done all we can with the available input and output. */
1906 return last ? finish_started : need_more;
1907}
1908
1909/* ===========================================================================
1910 * Compress as much as possible from the input stream, return the current
1911 * block state.
1912 * This function does not perform lazy evaluation of matches and inserts
1913 * new strings in the dictionary only for unmatched strings or for short
1914 * matches. It is used only for the fast compression options.
1915 */
1916localstatic block_state deflate_fast(s, flush)
1917 deflate_state *s;
1918 int flush;
1919{
1920 IPos hash_head; /* head of the hash chain */
1921 int bflush; /* set if current block must be flushed */
1922
1923 for (;;) {
1924 /* Make sure that we always have enough lookahead, except
1925 * at the end of the input file. We need MAX_MATCH bytes
1926 * for the next match, plus MIN_MATCH bytes to insert the
1927 * string following the next match.
1928 */
1929 if (s->lookahead < MIN_LOOKAHEAD(258 +3 +1)) {
1930 fill_window(s);
1931 if (s->lookahead < MIN_LOOKAHEAD(258 +3 +1) && flush == Z_NO_FLUSH0) {
1932 return need_more;
1933 }
1934 if (s->lookahead == 0) break; /* flush the current block */
1935 }
1936
1937 /* Insert the string window[strstart .. strstart+2] in the
1938 * dictionary, and set hash_head to the head of the hash chain:
1939 */
1940 hash_head = NIL0;
1941 if (s->lookahead >= MIN_MATCH3) {
1942 hash_head = insert_string(s, s->strstart);
1943 }
1944
1945 /* Find the longest match, discarding those <= prev_length.
1946 * At this point we have always match_length < MIN_MATCH
1947 */
1948 if (hash_head != NIL0 && s->strstart - hash_head <= MAX_DIST(s)((s)->w_size-(258 +3 +1))) {
1949 /* To simplify the code, we prevent matches with the string
1950 * of window index 0 (in particular we have to avoid a match
1951 * of the string with itself at the start of the input file).
1952 */
1953 s->match_length = longest_match (s, hash_head);
1954 /* longest_match() sets match_start */
1955 }
1956 if (s->match_length >= MIN_MATCH3) {
1957 check_match(s, s->strstart, s->match_start, s->match_length);
1958
1959 _tr_tally_dist(s, s->strstart - s->match_start,{ uch len = (uch)(s->match_length - 3); ush dist = (ush)(s
->strstart - s->match_start); s->sym_buf[s->sym_next
++] = dist; s->sym_buf[s->sym_next++] = dist >> 8
; s->sym_buf[s->sym_next++] = len; dist--; s->dyn_ltree
[Cr_z__length_code[len]+256 +1].fc.freq++; s->dyn_dtree[((
dist) < 256 ? Cr_z__dist_code[dist] : Cr_z__dist_code[256+
((dist)>>7)])].fc.freq++; bflush = (s->sym_next == s
->sym_end); }
1960 s->match_length - MIN_MATCH, bflush){ uch len = (uch)(s->match_length - 3); ush dist = (ush)(s
->strstart - s->match_start); s->sym_buf[s->sym_next
++] = dist; s->sym_buf[s->sym_next++] = dist >> 8
; s->sym_buf[s->sym_next++] = len; dist--; s->dyn_ltree
[Cr_z__length_code[len]+256 +1].fc.freq++; s->dyn_dtree[((
dist) < 256 ? Cr_z__dist_code[dist] : Cr_z__dist_code[256+
((dist)>>7)])].fc.freq++; bflush = (s->sym_next == s
->sym_end); }
;
1961
1962 s->lookahead -= s->match_length;
1963
1964 /* Insert new strings in the hash table only if the match length
1965 * is not too large. This saves time but degrades compression.
1966 */
1967#ifndef FASTEST
1968 if (s->match_length <= s->max_insert_lengthmax_lazy_match &&
1969 s->lookahead >= MIN_MATCH3) {
1970 s->match_length--; /* string at strstart already in table */
1971 do {
1972 s->strstart++;
1973 hash_head = insert_string(s, s->strstart);
Value stored to 'hash_head' is never read
1974 /* strstart never exceeds WSIZE-MAX_MATCH, so there are
1975 * always MIN_MATCH bytes ahead.
1976 */
1977 } while (--s->match_length != 0);
1978 s->strstart++;
1979 } else
1980#endif
1981 {
1982 s->strstart += s->match_length;
1983 s->match_length = 0;
1984 s->ins_h = s->window[s->strstart];
1985 UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1])(s->ins_h = (((s->ins_h) << s->hash_shift) ^ (
s->window[s->strstart+1])) & s->hash_mask)
;
1986#if MIN_MATCH3 != 3
1987 Call UPDATE_HASH() MIN_MATCH3-3 more times
1988#endif
1989 /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not
1990 * matter since it will be recomputed at next deflate call.
1991 */
1992 }
1993 } else {
1994 /* No match, output a literal byte */
1995 Tracevv((stderr,"%c", s->window[s->strstart]));
1996 _tr_tally_lit (s, s->window[s->strstart], bflush){ uch cc = (s->window[s->strstart]); s->sym_buf[s->
sym_next++] = 0; s->sym_buf[s->sym_next++] = 0; s->sym_buf
[s->sym_next++] = cc; s->dyn_ltree[cc].fc.freq++; bflush
= (s->sym_next == s->sym_end); }
;
1997 s->lookahead--;
1998 s->strstart++;
1999 }
2000 if (bflush) FLUSH_BLOCK(s, 0){ { Cr_z__tr_flush_block(s, (s->block_start >= 0L ? (Cr_z_charf
*)&s->window[(unsigned)s->block_start] : (Cr_z_charf
*)0), (ulg)((long)s->strstart - s->block_start), (0));
s->block_start = s->strstart; flush_pending(s->strm
); ; }; if (s->strm->avail_out == 0) return (0) ? finish_started
: need_more; }
;
2001 }
2002 s->insert = s->strstart < MIN_MATCH3-1 ? s->strstart : MIN_MATCH3-1;
2003 if (flush == Z_FINISH4) {
2004 FLUSH_BLOCK(s, 1){ { Cr_z__tr_flush_block(s, (s->block_start >= 0L ? (Cr_z_charf
*)&s->window[(unsigned)s->block_start] : (Cr_z_charf
*)0), (ulg)((long)s->strstart - s->block_start), (1));
s->block_start = s->strstart; flush_pending(s->strm
); ; }; if (s->strm->avail_out == 0) return (1) ? finish_started
: need_more; }
;
2005 return finish_done;
2006 }
2007 if (s->sym_next)
2008 FLUSH_BLOCK(s, 0){ { Cr_z__tr_flush_block(s, (s->block_start >= 0L ? (Cr_z_charf
*)&s->window[(unsigned)s->block_start] : (Cr_z_charf
*)0), (ulg)((long)s->strstart - s->block_start), (0));
s->block_start = s->strstart; flush_pending(s->strm
); ; }; if (s->strm->avail_out == 0) return (0) ? finish_started
: need_more; }
;
2009 return block_done;
2010}
2011
2012#ifndef FASTEST
2013/* ===========================================================================
2014 * Same as above, but achieves better compression. We use a lazy
2015 * evaluation for matches: a match is finally adopted only if there is
2016 * no better match at the next window position.
2017 */
2018localstatic block_state deflate_slow(s, flush)
2019 deflate_state *s;
2020 int flush;
2021{
2022 IPos hash_head; /* head of hash chain */
2023 int bflush; /* set if current block must be flushed */
2024
2025 /* Process the input block. */
2026 for (;;) {
2027 /* Make sure that we always have enough lookahead, except
2028 * at the end of the input file. We need MAX_MATCH bytes
2029 * for the next match, plus MIN_MATCH bytes to insert the
2030 * string following the next match.
2031 */
2032 if (s->lookahead < MIN_LOOKAHEAD(258 +3 +1)) {
2033 fill_window(s);
2034 if (s->lookahead < MIN_LOOKAHEAD(258 +3 +1) && flush == Z_NO_FLUSH0) {
2035 return need_more;
2036 }
2037 if (s->lookahead == 0) break; /* flush the current block */
2038 }
2039
2040 /* Insert the string window[strstart .. strstart+2] in the
2041 * dictionary, and set hash_head to the head of the hash chain:
2042 */
2043 hash_head = NIL0;
2044 if (s->lookahead >= MIN_MATCH3) {
2045 hash_head = insert_string(s, s->strstart);
2046 }
2047
2048 /* Find the longest match, discarding those <= prev_length.
2049 */
2050 s->prev_length = s->match_length, s->prev_match = s->match_start;
2051 s->match_length = MIN_MATCH3-1;
2052
2053 if (hash_head != NIL0 && s->prev_length < s->max_lazy_match &&
2054 s->strstart - hash_head <= MAX_DIST(s)((s)->w_size-(258 +3 +1))) {
2055 /* To simplify the code, we prevent matches with the string
2056 * of window index 0 (in particular we have to avoid a match
2057 * of the string with itself at the start of the input file).
2058 */
2059 s->match_length = longest_match (s, hash_head);
2060 /* longest_match() sets match_start */
2061
2062 if (s->match_length <= 5 && (s->strategy == Z_FILTERED1
2063#if TOO_FAR4096 <= 32767
2064 || (s->match_length == MIN_MATCH3 &&
2065 s->strstart - s->match_start > TOO_FAR4096)
2066#endif
2067 )) {
2068
2069 /* If prev_match is also MIN_MATCH, match_start is garbage
2070 * but we will ignore the current match anyway.
2071 */
2072 s->match_length = MIN_MATCH3-1;
2073 }
2074 }
2075 /* If there was a match at the previous step and the current
2076 * match is not better, output the previous match:
2077 */
2078 if (s->prev_length >= MIN_MATCH3 && s->match_length <= s->prev_length) {
2079 uIntCr_z_uInt max_insert = s->strstart + s->lookahead - MIN_MATCH3;
2080 /* Do not insert strings in hash table beyond this. */
2081
2082 if (s->prev_match == -1) {
2083 /* The window has slid one byte past the previous match,
2084 * so the first byte cannot be compared. */
2085 check_match(s, s->strstart, s->prev_match+1, s->prev_length-1);
2086 } else {
2087 check_match(s, s->strstart-1, s->prev_match, s->prev_length);
2088 }
2089
2090 _tr_tally_dist(s, s->strstart -1 - s->prev_match,{ uch len = (uch)(s->prev_length - 3); ush dist = (ush)(s->
strstart -1 - s->prev_match); s->sym_buf[s->sym_next
++] = dist; s->sym_buf[s->sym_next++] = dist >> 8
; s->sym_buf[s->sym_next++] = len; dist--; s->dyn_ltree
[Cr_z__length_code[len]+256 +1].fc.freq++; s->dyn_dtree[((
dist) < 256 ? Cr_z__dist_code[dist] : Cr_z__dist_code[256+
((dist)>>7)])].fc.freq++; bflush = (s->sym_next == s
->sym_end); }
2091 s->prev_length - MIN_MATCH, bflush){ uch len = (uch)(s->prev_length - 3); ush dist = (ush)(s->
strstart -1 - s->prev_match); s->sym_buf[s->sym_next
++] = dist; s->sym_buf[s->sym_next++] = dist >> 8
; s->sym_buf[s->sym_next++] = len; dist--; s->dyn_ltree
[Cr_z__length_code[len]+256 +1].fc.freq++; s->dyn_dtree[((
dist) < 256 ? Cr_z__dist_code[dist] : Cr_z__dist_code[256+
((dist)>>7)])].fc.freq++; bflush = (s->sym_next == s
->sym_end); }
;
2092
2093 /* Insert in hash table all strings up to the end of the match.
2094 * strstart-1 and strstart are already inserted. If there is not
2095 * enough lookahead, the last two strings are not inserted in
2096 * the hash table.
2097 */
2098 s->lookahead -= s->prev_length-1;
2099 s->prev_length -= 2;
2100 do {
2101 if (++s->strstart <= max_insert) {
2102 hash_head = insert_string(s, s->strstart);
2103 }
2104 } while (--s->prev_length != 0);
2105 s->match_available = 0;
2106 s->match_length = MIN_MATCH3-1;
2107 s->strstart++;
2108
2109 if (bflush) FLUSH_BLOCK(s, 0){ { Cr_z__tr_flush_block(s, (s->block_start >= 0L ? (Cr_z_charf
*)&s->window[(unsigned)s->block_start] : (Cr_z_charf
*)0), (ulg)((long)s->strstart - s->block_start), (0));
s->block_start = s->strstart; flush_pending(s->strm
); ; }; if (s->strm->avail_out == 0) return (0) ? finish_started
: need_more; }
;
2110
2111 } else if (s->match_available) {
2112 /* If there was no match at the previous position, output a
2113 * single literal. If there was a match but the current match
2114 * is longer, truncate the previous match to a single literal.
2115 */
2116 Tracevv((stderr,"%c", s->window[s->strstart-1]));
2117 _tr_tally_lit(s, s->window[s->strstart-1], bflush){ uch cc = (s->window[s->strstart-1]); s->sym_buf[s->
sym_next++] = 0; s->sym_buf[s->sym_next++] = 0; s->sym_buf
[s->sym_next++] = cc; s->dyn_ltree[cc].fc.freq++; bflush
= (s->sym_next == s->sym_end); }
;
2118 if (bflush) {
2119 FLUSH_BLOCK_ONLY(s, 0){ Cr_z__tr_flush_block(s, (s->block_start >= 0L ? (Cr_z_charf
*)&s->window[(unsigned)s->block_start] : (Cr_z_charf
*)0), (ulg)((long)s->strstart - s->block_start), (0));
s->block_start = s->strstart; flush_pending(s->strm
); ; }
;
2120 }
2121 s->strstart++;
2122 s->lookahead--;
2123 if (s->strm->avail_out == 0) return need_more;
2124 } else {
2125 /* There is no previous match to compare with, wait for
2126 * the next step to decide.
2127 */
2128 s->match_available = 1;
2129 s->strstart++;
2130 s->lookahead--;
2131 }
2132 }
2133 Assert (flush != Z_NO_FLUSH, "no flush?");
2134 if (s->match_available) {
2135 Tracevv((stderr,"%c", s->window[s->strstart-1]));
2136 _tr_tally_lit(s, s->window[s->strstart-1], bflush){ uch cc = (s->window[s->strstart-1]); s->sym_buf[s->
sym_next++] = 0; s->sym_buf[s->sym_next++] = 0; s->sym_buf
[s->sym_next++] = cc; s->dyn_ltree[cc].fc.freq++; bflush
= (s->sym_next == s->sym_end); }
;
2137 s->match_available = 0;
2138 }
2139 s->insert = s->strstart < MIN_MATCH3-1 ? s->strstart : MIN_MATCH3-1;
2140 if (flush == Z_FINISH4) {
2141 FLUSH_BLOCK(s, 1){ { Cr_z__tr_flush_block(s, (s->block_start >= 0L ? (Cr_z_charf
*)&s->window[(unsigned)s->block_start] : (Cr_z_charf
*)0), (ulg)((long)s->strstart - s->block_start), (1));
s->block_start = s->strstart; flush_pending(s->strm
); ; }; if (s->strm->avail_out == 0) return (1) ? finish_started
: need_more; }
;
2142 return finish_done;
2143 }
2144 if (s->sym_next)
2145 FLUSH_BLOCK(s, 0){ { Cr_z__tr_flush_block(s, (s->block_start >= 0L ? (Cr_z_charf
*)&s->window[(unsigned)s->block_start] : (Cr_z_charf
*)0), (ulg)((long)s->strstart - s->block_start), (0));
s->block_start = s->strstart; flush_pending(s->strm
); ; }; if (s->strm->avail_out == 0) return (0) ? finish_started
: need_more; }
;
2146 return block_done;
2147}
2148#endif /* FASTEST */
2149
2150/* ===========================================================================
2151 * For Z_RLE, simply look for runs of bytes, generate matches only of distance
2152 * one. Do not maintain a hash table. (It will be regenerated if this run of
2153 * deflate switches away from Z_RLE.)
2154 */
2155localstatic block_state deflate_rle(s, flush)
2156 deflate_state *s;
2157 int flush;
2158{
2159 int bflush; /* set if current block must be flushed */
2160 uIntCr_z_uInt prev; /* byte at distance one to match */
2161 BytefCr_z_Bytef *scan, *strend; /* scan goes up to strend for length of run */
2162
2163 for (;;) {
2164 /* Make sure that we always have enough lookahead, except
2165 * at the end of the input file. We need MAX_MATCH bytes
2166 * for the longest run, plus one for the unrolled loop.
2167 */
2168 if (s->lookahead <= MAX_MATCH258) {
2169 fill_window(s);
2170 if (s->lookahead <= MAX_MATCH258 && flush == Z_NO_FLUSH0) {
2171 return need_more;
2172 }
2173 if (s->lookahead == 0) break; /* flush the current block */
2174 }
2175
2176 /* See how many times the previous byte repeats */
2177 s->match_length = 0;
2178 if (s->lookahead >= MIN_MATCH3 && s->strstart > 0) {
2179 scan = s->window + s->strstart - 1;
2180 prev = *scan;
2181 if (prev == *++scan && prev == *++scan && prev == *++scan) {
2182 strend = s->window + s->strstart + MAX_MATCH258;
2183 do {
2184 } while (prev == *++scan && prev == *++scan &&
2185 prev == *++scan && prev == *++scan &&
2186 prev == *++scan && prev == *++scan &&
2187 prev == *++scan && prev == *++scan &&
2188 scan < strend);
2189 s->match_length = MAX_MATCH258 - (uIntCr_z_uInt)(strend - scan);
2190 if (s->match_length > s->lookahead)
2191 s->match_length = s->lookahead;
2192 }
2193 Assert(scan <= s->window+(uInt)(s->window_size-1), "wild scan");
2194 }
2195
2196 /* Emit match if have run of MIN_MATCH or longer, else emit literal */
2197 if (s->match_length >= MIN_MATCH3) {
2198 check_match(s, s->strstart, s->strstart - 1, s->match_length);
2199
2200 _tr_tally_dist(s, 1, s->match_length - MIN_MATCH, bflush){ uch len = (uch)(s->match_length - 3); ush dist = (ush)(1
); s->sym_buf[s->sym_next++] = dist; s->sym_buf[s->
sym_next++] = dist >> 8; s->sym_buf[s->sym_next++
] = len; dist--; s->dyn_ltree[Cr_z__length_code[len]+256 +
1].fc.freq++; s->dyn_dtree[((dist) < 256 ? Cr_z__dist_code
[dist] : Cr_z__dist_code[256+((dist)>>7)])].fc.freq++; bflush
= (s->sym_next == s->sym_end); }
;
2201
2202 s->lookahead -= s->match_length;
2203 s->strstart += s->match_length;
2204 s->match_length = 0;
2205 } else {
2206 /* No match, output a literal byte */
2207 Tracevv((stderr,"%c", s->window[s->strstart]));
2208 _tr_tally_lit (s, s->window[s->strstart], bflush){ uch cc = (s->window[s->strstart]); s->sym_buf[s->
sym_next++] = 0; s->sym_buf[s->sym_next++] = 0; s->sym_buf
[s->sym_next++] = cc; s->dyn_ltree[cc].fc.freq++; bflush
= (s->sym_next == s->sym_end); }
;
2209 s->lookahead--;
2210 s->strstart++;
2211 }
2212 if (bflush) FLUSH_BLOCK(s, 0){ { Cr_z__tr_flush_block(s, (s->block_start >= 0L ? (Cr_z_charf
*)&s->window[(unsigned)s->block_start] : (Cr_z_charf
*)0), (ulg)((long)s->strstart - s->block_start), (0));
s->block_start = s->strstart; flush_pending(s->strm
); ; }; if (s->strm->avail_out == 0) return (0) ? finish_started
: need_more; }
;
2213 }
2214 s->insert = 0;
2215 if (flush == Z_FINISH4) {
2216 FLUSH_BLOCK(s, 1){ { Cr_z__tr_flush_block(s, (s->block_start >= 0L ? (Cr_z_charf
*)&s->window[(unsigned)s->block_start] : (Cr_z_charf
*)0), (ulg)((long)s->strstart - s->block_start), (1));
s->block_start = s->strstart; flush_pending(s->strm
); ; }; if (s->strm->avail_out == 0) return (1) ? finish_started
: need_more; }
;
2217 return finish_done;
2218 }
2219 if (s->sym_next)
2220 FLUSH_BLOCK(s, 0){ { Cr_z__tr_flush_block(s, (s->block_start >= 0L ? (Cr_z_charf
*)&s->window[(unsigned)s->block_start] : (Cr_z_charf
*)0), (ulg)((long)s->strstart - s->block_start), (0));
s->block_start = s->strstart; flush_pending(s->strm
); ; }; if (s->strm->avail_out == 0) return (0) ? finish_started
: need_more; }
;
2221 return block_done;
2222}
2223
2224/* ===========================================================================
2225 * For Z_HUFFMAN_ONLY, do not look for matches. Do not maintain a hash table.
2226 * (It will be regenerated if this run of deflate switches away from Huffman.)
2227 */
2228localstatic block_state deflate_huff(s, flush)
2229 deflate_state *s;
2230 int flush;
2231{
2232 int bflush; /* set if current block must be flushed */
2233
2234 for (;;) {
2235 /* Make sure that we have a literal to write. */
2236 if (s->lookahead == 0) {
2237 fill_window(s);
2238 if (s->lookahead == 0) {
2239 if (flush == Z_NO_FLUSH0)
2240 return need_more;
2241 break; /* flush the current block */
2242 }
2243 }
2244
2245 /* Output a literal byte */
2246 s->match_length = 0;
2247 Tracevv((stderr,"%c", s->window[s->strstart]));
2248 _tr_tally_lit (s, s->window[s->strstart], bflush){ uch cc = (s->window[s->strstart]); s->sym_buf[s->
sym_next++] = 0; s->sym_buf[s->sym_next++] = 0; s->sym_buf
[s->sym_next++] = cc; s->dyn_ltree[cc].fc.freq++; bflush
= (s->sym_next == s->sym_end); }
;
2249 s->lookahead--;
2250 s->strstart++;
2251 if (bflush) FLUSH_BLOCK(s, 0){ { Cr_z__tr_flush_block(s, (s->block_start >= 0L ? (Cr_z_charf
*)&s->window[(unsigned)s->block_start] : (Cr_z_charf
*)0), (ulg)((long)s->strstart - s->block_start), (0));
s->block_start = s->strstart; flush_pending(s->strm
); ; }; if (s->strm->avail_out == 0) return (0) ? finish_started
: need_more; }
;
2252 }
2253 s->insert = 0;
2254 if (flush == Z_FINISH4) {
2255 FLUSH_BLOCK(s, 1){ { Cr_z__tr_flush_block(s, (s->block_start >= 0L ? (Cr_z_charf
*)&s->window[(unsigned)s->block_start] : (Cr_z_charf
*)0), (ulg)((long)s->strstart - s->block_start), (1));
s->block_start = s->strstart; flush_pending(s->strm
); ; }; if (s->strm->avail_out == 0) return (1) ? finish_started
: need_more; }
;
2256 return finish_done;
2257 }
2258 if (s->sym_next)
2259 FLUSH_BLOCK(s, 0){ { Cr_z__tr_flush_block(s, (s->block_start >= 0L ? (Cr_z_charf
*)&s->window[(unsigned)s->block_start] : (Cr_z_charf
*)0), (ulg)((long)s->strstart - s->block_start), (0));
s->block_start = s->strstart; flush_pending(s->strm
); ; }; if (s->strm->avail_out == 0) return (0) ? finish_started
: need_more; }
;
2260 return block_done;
2261}