
© 2024 Spazio IT - Soluzioni Informatiche s.a.s.

1

Software
Verification

and

Generative AI

June 2024

Ada-Europe 2024 – Barcelona -

Spain

Maurizio Martignano

Spazio IT – Soluzioni Informatiche s.a.s

Via Manzoni 40

46051 San Giorgio Bigarello, Mantova

https://spazioit.com

NOTE: most of the images in this presentation

have been generated with Microsoft’s Image Creator

© 2024 Spazio IT - Soluzioni Informatiche s.a.s.

2

Agenda

June 2024

© 2024 Spazio IT - Soluzioni Informatiche s.a.s.

3

Agenda

◼ Generative AI

◼ Large Language Models

◼ Experiments with Language Models

◼ Local Language Models

◼ Software Verification

◼ Retrieval-Augmented Generation

◼ Future Activities

June 2024

© 2024 Spazio IT - Soluzioni Informatiche s.a.s.

4

Generative AI

June 2024

© 2024 Spazio IT - Soluzioni Informatiche s.a.s.

5

Generative AI

◼ Generative AI and Large Language Models (LLMs) are related but
distinct concepts in the field of artificial intelligence.

◼ The term Generative AI refers to any AI system whose primary
function is to generate content. This could include a variety of AI
models that generate different types of content, such as images,
text, code, audio and video. Generative AI emphasizes the
content-creating function of these systems.

◼ On the other hand, Large Language Models (LLMs) are a specific
type of AI system that works with language. They are designed
to analyze and produce text. LLMs are a form of generative AI, but
they specifically deal with text-based content.

June 2024

© 2024 Spazio IT - Soluzioni Informatiche s.a.s.

6

Large Language Models

June 2024

© 2024 Spazio IT - Soluzioni Informatiche s.a.s.

7

Large Language Models

◼ Some notable LLMs are:
– OpenAI’s family of GPT (Generative Pre-trained Transformer)

models – both OpenAI ChatGPT and Microsoft Copilot are based
on GPT;

– Google’s PaLM(Pathways Language Model) and Gemini;

– Meta’s LLaMA (Large Language Model Meta AI) open-source
models.

– The landscape of Open-Source Language Models is diverse,
ranging from large to small in terms of parameter count, and from
generic to domain-specific in their applications. Indeed, Small
Language Models (SLMs) refer to versions of language models
that have fewer parameters compared to larger models.

June 2024

© 2024 Spazio IT - Soluzioni Informatiche s.a.s.

8

Language Models Key

Parameters

◼ Some key parameters that characterize a language model
are:

– Model Architecture: The architecture of an LM determines how it
processes input data and generates output. Common architectures
include transformer-based models like BERT, GPT, and T5.

– Model Size: The number of parameters in an LM significantly impacts its
performance. Larger models tend to perform better but require more
computational resources.

– Vocabulary Size: The size of the vocabulary (i.e., the number of unique
tokens) used by the LM affects its ability to handle diverse language.

– Context Window: LMs consider a certain number of previous tokens
(context) to predict the next token. The context window size influences
the model’s understanding of long-range dependencies.

June 2024

© 2024 Spazio IT - Soluzioni Informatiche s.a.s.

9

Language Models Key

Parameters

– Embedding Dimension: The dimension of the embedding space (where
the tokens live) affects how well the model captures semantic
information.

– Training Data: The quality and quantity of training data impact the LM’s
performance. More diverse and relevant data lead to better
generalization.

– Pre-training Objective: LMs are pre-trained on large corpora using
objectives like masked language modeling (predicting masked tokens) or
next sentence prediction.

– Fine-Tuning: After pre-training, LMs can be fine-tuned on specific
downstream tasks (e.g., sentiment analysis, question answering) using
task-specific data.

– Hyperparameters: Parameters like learning rate, batch size, and
optimizer settings affect the training process.

– Regularization Techniques: Techniques like dropout, weight decay, and
layer normalization help prevent overfitting

June 2024

© 2024 Spazio IT - Soluzioni Informatiche s.a.s.

10

Parameters in Ollama Modelfile

June 2024

Pameter Description Value Type Example Usage

mirostat Enable Mirostat sampling for controlling perplexity. (default: 0, 0 = disabled, 1 = Mirostat, 2 = Mirostat
2.0)

int mirostat 0

mirostat_eta Influences how quickly the algorithm responds to feedback from the generated text. A lower learning
rate will result in slower adjustments, while a higher learning rate will make the algorithm more
responsive. (Default: 0.1)

float mirostat_eta 0.1

mirostat_tau Controls the balance between coherence and diversity of the output. A lower value will result in more
focused and coherent text. (Default: 5.0)

float mirostat_tau 5.0

num_ctx Sets the size of the context window used to generate the next token. (Default: 2048) int num_ctx 4096

repeat_last_n Sets how far back for the model to look back to prevent repetition. (Default: 64, 0 = disabled, -1 =
num_ctx)

int repeat_last_n 64

repeat_penalty Sets how strongly to penalize repetitions. A higher value (e.g., 1.5) will penalize repetitions more
strongly, while a lower value (e.g., 0.9) will be more lenient. (Default: 1.1)

float repeat_penalty 1.1

temperature The temperature of the model. Increasing the temperature will make the model answer more
creatively. (Default: 0.8)

float temperature 0.7

seed Sets the random number seed to use for generation. Setting this to a specific number will make the
model generate the same text for the same prompt. (Default: 0)

int seed 42

stop Sets the stop sequences to use. When this pattern is encountered the LLM will stop generating text and
return. Multiple stop patterns may be set by specifying multiple separate stop parameters in a
modelfile.

string stop "AI assistant:"

tfs_z Tail free sampling is used to reduce the impact of less probable tokens from the output. A higher value
(e.g., 2.0) will reduce the impact more, while a value of 1.0 disables this setting. (default: 1)

float tfs_z 1

num_predict Maximum number of tokens to predict

© 2024 Spazio IT - Soluzioni Informatiche s.a.s.

11

Experiments with Language

Models

June 2024

© 2024 Spazio IT - Soluzioni Informatiche s.a.s.

12

Experiments with Language

Models

◼ The conducted experiments are reported on Spazio IT Website, at
https://spazioit.com/pages_en/sol_inf_en/experiments-with-
language-models/.

◼ These experiments put under text different models:

– In the case of text, they compared ChatGPT with Salesforce’s xgen-7b-8k-
inst and Mistral AI‘s Mixtral-8x7b from the ; Salesforce’s xgen-7b-8k-inst
and Mixtral-8x7b models were executed on a local computing platform –
a gaming laptop with an Intel i7-10875H CPU @ 2.30GHz CPU, 32GB of
RAM and an NVIDIA GPU RTX 2080 GPU.

– For source code, ChatGPT was compared against Mistral AI‘s Mixtral-
8x7b-instruct and Meta’s Codellama-70b-instr; these last two models were
executed via the Perplexity AI GUI presumably on AWS P4d instances,
which are powered by NVIDIA A100 Tensor Core GPUs.

– All local examples of “Artificial Hallucinations” and “Artificial Illiteracy”
have been produced using models available in the Ollama Models

Library and executed on the same gaming laptop described above.
June 2024

https://spazioit.com/pages_en/sol_inf_en/experiments-with-language-models/
https://spazioit.com/pages_en/sol_inf_en/experiments-with-language-models/
https://ollama.com/

© 2024 Spazio IT - Soluzioni Informatiche s.a.s.

13

Experiments with Language

Models

◼ What is common in most of these experiments is the
presence in the prompt (i.e. in the query) of two main
elements:

– A piece of text, a piece of code to be analysed

– Some questions about this piece of text, piece of of
code

◼ Creating a “good” prompt, a query with a proper
association between these two elements is very, very
important.

June 2024

© 2024 Spazio IT - Soluzioni Informatiche s.a.s.

14

Local Language Models

June 2024

© 2024 Spazio IT - Soluzioni Informatiche s.a.s.

15

Local Language Models

◼ When users utilize generative AI systems like OpenAI’s ChatGPT,
Google’s Gemini, or others provided by major tech companies for
free, there’s no assurance that the data they input, i.e. the Content,
specifically the information within the prompts, remains
confidential.

◼ Certainly, it is always feasible to set up commercial registrations or
contractual agreements that prohibit the service provider from
retaining and exploiting user content, but these are merely business
assurances.

◼ The sole method for users to ensure their content isn’t misused is
by exclusively utilizing open-source models (with a thorough
understanding of their functions) and operating these models on a
private and local computing platform.

June 2024

© 2024 Spazio IT - Soluzioni Informatiche s.a.s.

16

Local Language Models

◼ Large language models demand huge computational resource.

◼ To be able to run these models on local and affordable computing
platforms a technique, called “quantization” is used. Quantization
refers to the process of reducing the precision of model parameters,
typically by converting floating-point numbers (which have decimal
precision) into integers with a smaller bit-width representation.

◼ While quantization introduces some loss of information, dithering,
that is adding small amounts of random noise to the data before
quantization, can help mitigate this loss by spreading the
quantization error.

◼ In addition to streamlining or "downsizing" the model, another
method of conserving resources is to utilize efficient software
platforms or frameworks, such as "ggml".

June 2024

https://github.com/ggerganov/ggml

© 2024 Spazio IT - Soluzioni Informatiche s.a.s.

17

Software Verification

June 2024

© 2024 Spazio IT - Soluzioni Informatiche s.a.s.

18

Software Verification

◼ Software Verification entails reading and analyzing big if not
huge documents sets and code bases.

◼ Both the documents and the sources can be described as list of
«things», list of «objects», e.g.:

– A System Specification (RS) is a list of System Requirements

– a Software Specification is a list of of Software Requirements

– a DDF is a list of Architectural Components

– a code base is a list of compilation units

– each compilation units is a list of classes, procedures and
functions (of course the actual names of these «things»
depend on the programming language).

June 2024

© 2024 Spazio IT - Soluzioni Informatiche s.a.s.

19

Software Verification

◼ All «things» in a list are identified by some kind of «ID»

◼ The lists are usually at different levels of abstraction, e.g. a
list of specifications implements a list of requirements.

◼ Traceability information, binds together, establishes a
relationship between «things» usually belonging to lists at
different level of abstraction, e.g.:
requirements → design → code

◼ Automatic traceability checks have been working (up to
now) only at «ID» level.

◼ Generative AI opens new opportunities for a semantic
match.

June 2024

© 2024 Spazio IT - Soluzioni Informatiche s.a.s.

20

Software Verification – Typical

Prompts

◼ Prompt 1:

– Piece of text / piece of code

– Is it correct or does it contain any error or contradiction?

◼ Prompt 2

– Piece of text #1

– Piece of text #2 (following the traceability relationship)

– Are they consistent? Does piece #2 implement piece #1?

◼ Prompt 3

– Piece of text

– Piece of code (following the traceability relationship)

– Are they consistent? Does piece of code implement piece of text?

June 2024

© 2024 Spazio IT - Soluzioni Informatiche s.a.s.

21

Software Verification – Typical

Prompts – But…

◼ How to make the model «digest» huge documents sets
and code bases?

◼ How to build the correct prompts?

◼ Enter Retrieval-Augmented Generation and Spazio IT
work on RAG.

June 2024

© 2024 Spazio IT - Soluzioni Informatiche s.a.s.

22

Retrieval-Augmented Generation

June 2024

© 2024 Spazio IT - Soluzioni Informatiche s.a.s.

23

What is Retrieval-Augmented

Generation?

◼ “Retrieval-Augmented Generation (RAG) is the process of optimizing
the output of a large language model, so it references an authoritative
knowledge base outside of its training data sources before generating
a response. Large Language Models (LLMs) are trained on vast
volumes of data and use billions of parameters to generate original
output for tasks like answering questions, translating languages, and
completing sentences.

◼ RAG extends the already powerful capabilities of LLMs to specific
domains or an organization's internal knowledge base, all without the
need to retrain the model. It is a cost-effective approach to improving
LLM output, so it remains relevant, accurate, and useful in various
contexts.”

[https://aws.amazon.com/what-is/retrieval-augmented-generation]

June 2024

https://aws.amazon.com/what-is/retrieval-augmented-generation

© 2024 Spazio IT - Soluzioni Informatiche s.a.s.

24

Query LLM Response

STD

Retrieval-Augmented Generation:

Experiments / Directions

© 2024 Spazio IT - Soluzioni Informatiche s.a.s.

25

Query LLM Response

STD

SD-

SERVER

Retrieval-Augmented Generation:

Experiments / Directions

© 2024 Spazio IT - Soluzioni Informatiche s.a.s.

26

Query LLM Response

Embedding
Model

Vector
DB

Retrieved
Contexts

Docs Embedding
Model

Text
Splitter RAG

Retrieval-Augmented Generation:

Experiments / Directions

© 2024 Spazio IT - Soluzioni Informatiche s.a.s.

27

Query LLM Response

Docs

Code

ISVV
Specific

Tool

SI-

STD

Retrieval-Augmented Generation:

Experiments / Directions

© 2024 Spazio IT - Soluzioni Informatiche s.a.s.

28

Query LLM Response

Embedding
Model

Vector
DB

Retrieved
Contexts

Docs Embedding
Model

Text
Splitter

Docs

Code

ISVV
Specific

Tool

SI-

RAG

Code

Retrieval-Augmented Generation:

Experiments / Directions

© 2024 Spazio IT - Soluzioni Informatiche s.a.s.

29

Future/Current Activities

June 2024

© 2024 Spazio IT - Soluzioni Informatiche s.a.s.

30

Future/Current Activities

◼ Work on RAG:

– Experimenting with models on different actual ISVV
projects.

– Develop a sensible RAG platform (probably a matter of
putting together the proper open-source models and
software components).

◼ Integrate this RAG Platform within the SAFe Toolset
https://spazioit.com/pages_en/sol_inf_en/code_quality
_en/safe-toolset-en/.

June 2024

https://spazioit.com/pages_en/sol_inf_en/code_quality_en/safe-toolset-en/
https://spazioit.com/pages_en/sol_inf_en/code_quality_en/safe-toolset-en/

© 2024 Spazio IT - Soluzioni Informatiche s.a.s.

31

Thank you for your time!

June 2024

	Slide 1: Ada-Europe 2024 – Barcelona - Spain
	Slide 2: Agenda
	Slide 3: Agenda
	Slide 4: Generative AI
	Slide 5: Generative AI
	Slide 6: Large Language Models
	Slide 7: Large Language Models
	Slide 8: Language Models Key Parameters
	Slide 9: Language Models Key Parameters
	Slide 10: Parameters in Ollama Modelfile
	Slide 11: Experiments with Language Models
	Slide 12: Experiments with Language Models
	Slide 13: Experiments with Language Models
	Slide 14: Local Language Models
	Slide 15: Local Language Models
	Slide 16: Local Language Models
	Slide 17: Software Verification
	Slide 18: Software Verification
	Slide 19: Software Verification
	Slide 20: Software Verification – Typical Prompts
	Slide 21: Software Verification – Typical Prompts – But…
	Slide 22: Retrieval-Augmented Generation
	Slide 23: What is Retrieval-Augmented Generation?
	Slide 24: Retrieval-Augmented Generation: Experiments / Directions
	Slide 25: Retrieval-Augmented Generation: Experiments / Directions
	Slide 26: Retrieval-Augmented Generation: Experiments / Directions
	Slide 27: Retrieval-Augmented Generation: Experiments / Directions
	Slide 28: Retrieval-Augmented Generation: Experiments / Directions
	Slide 29: Future/Current Activities
	Slide 30: Future/Current Activities
	Slide 31: Thank you for your time!

