ddd-cinore 20719 - Warsaw - Poland

A «ilcW»
S1driC
dildlyzcn:
17,./3

LOmiPlenR

Maurizio Martignano

Spazio IT — Soluzioni Informatiche s.a.s
Via Manzoni 40

46030 San Giorgio Bigarello, Mantova
https://www.spazioit.com

June 2019 1

© 2019 Spazio IT - Soluzioni Informatiche s.a.s.

June 2019 2

© 2019 Spazio IT - Soluzioni Informatiche s.a.s.

B Need for Speed

B Libraries, Libraries and again Libraries

B Clang/LLVM - SonarQube
B SAFe Toolset

B Future Activities

June 2019

© 2019 Spazio IT - Soluzioni Informatiche s.a.s.

Need for Speed

June 2019 4

© 2019 Spazio IT - Soluzioni Informatiche s.a.s.

Need for Speed

B The size of software codebases is increasing dramatically:

1974 F16A Plane

1981 Space Shuttle PFS
2008 ESA ATV

2012 NASA Curiosity
2012 F35 Plane

Nowadays Car

135 K
400 K
1M
25M
10M
10-150 M

B Compilers and Static Analyzers need to be fast and
efficient (i.e. able to “digest” large codebases in a

reasonable time).
June 2019

© 2019 Spazio IT - Soluzioni Informatiche s.a.s.

Need for Speed

= m] X
Projects b4 —
C ® Notsecure | sonarsrv.spazioit.com/projects?sort=-analysis_date Q W g Q O 3
3 Apps
- -
Perspective: | Qverall Status - Sort by: Last analysis date ~|IF Q Search by project name or key 5 projects
Filters
Quality Gate
! Nede js
2 L ; 31, 2019, 4:51 PA
0 63k @) 49 268k @) QO oo% 3.6%)
& Bugs @ Vulnerabilities & Code smells Coverage Duplications C++ (Community), P..
Reliability (% Bugs)
0 Naviserver @
L Last analysis: May 23, 2019, 1:3
. 661 @ 0® 25k @ Q 00% Qo02% sok @
% Bugs & Vulnerabilities @ Code smells Coverage Duplications C++ (Community)
Security (8 Vulnerabilities }
0 Crazyflie_EXPLODED
0
. 99 0® 24k @ QO 00% ® 280% sk @
& Bugs B Vulnerabilities @ Code Smells Coverage Duplications C++ (Community)
Maintainability (@ Code Smells)
2 Crazyflie
0
521 @ 2 45k O 00% 3.0% 62k @
B & Bugs B Vulnerabilities & Code Smells Coverage Duplications C++ (Community)
Coverage
B CCSDS File Delivery Protocol (D
707 o Last analysis: March 30, 2018, 6:38 P
Te5-EE) . 00 o) 5.8k O 00% O 14% 97« ©
Gk 5 ® Bugs 6 Vulnerabilities & Code Smells Coverage Duplications C#+ (Community)
No data 0 - -

June 2019 6

© 2019 Spazio IT - Soluzioni Informatiche s.a.s.

Need for Speed

B Deep vs. Shallow Parsing

B Unforgiving vs. Forgiving Parsing

June 2019 7

© 2019 Spazio IT - Soluzioni Informatiche s.a.s.

Libraries, Libraries and Again

Libraries

Are we siblings? | don’t know!
Do you use my libraries?

Static Analyzer Compiler

June 2019 8

© 2019 Spazio IT - Soluzioni Informatiche s.a.s.

Libraries, Libraries and Again

Libraries

B Suppose that for a given language we have a compiler and a
static analyzer that are two separate software products, using
different libraries and technologies (each one of them as its own
lexer, parser, semantic analyzer and so on).

B Suppose the developer community behind that language and
tools is not very big and doesn’t have many resources, lots of
energy.

B |n case the language changes, evolves, for whatever reason,
which of the two tools (the compiler or the static analyzer) will
keep up with the language evolution?

B In the same way, which of the two tools will be more
performant?

June 2019 9

© 2019 Spazio IT - Soluzioni Informatiche s.a.s.

Libraries, Libraries and Again

Libraries

PC-Lint does not support the latest C/C++ Standards.

B Frama-C Semantic Analyzer cannot process all C/C++
constructs.

/ai

B Cppcheck sometimes stops when “digesting
codebases (e.g. Brotli).

B Ada ASIS does not support Ada 2012 (but the GNAT compiler
does).

B |n the Ada “libadalang” GitHub website we have: “Libadalang
does not (at the moment) provide full legality checks for the

Ada language. If you want such a functionality, you'll need to
use a full Ada compiler, such as GNAT.”

B and soon...

strange”

June 2019 10

© 2019 Spazio IT - Soluzioni Informatiche s.a.s.

Libraries, Libraries and Again

Libraries

B “The LLVM Project is a collection of modular and
reusable compiler and toolchain technologies. (...) The
LLVM Core libraries provide a modern source- and
target-independent optimizer, along with code generation
support for many CPUs. (...) Clang is an LLVM native
C/C++/0Objective-C compiler, which aims to deliver
amazingly fast compiles.”

B |n fewer words Clang/LLVM is a compilation toolchain
where absolutely everything is built in a modular fashion
as collection of reusable libraries.

June 2019 11

© 2019 Spazio IT - Soluzioni Informatiche s.a.s.

Libraries, Libraries and Again

Libraries

B In the Clang/LLVM toolchain the two static analyzers are
Clang-Check (a.k.a. Clang-SA) and Clang-Tidy.

B Clang-Check relies on a set of Clang modules to perform
things like lexical analysis, parsing, semantic analysis,
AST manipulation and the like.

B Clang-Tidy relies on the very same Clang modules plus
some additional modules of Clang-Check itself (this is

why Clang-Tidy can be considered a sort of superset of
Clang-Check).

June 2019 12

© 2019 Spazio IT - Soluzioni Informatiche s.a.s.

Libraries, Libraries and Again

Libraries

ﬁx'C:\naviserver—src\clang—visitor.cc - Notepad++ — m} X
File Edit Search View Encoding Language Settings Tools Macro Run Plugins Window ? X
HEHE R R & MbIe hiyg @ EE= EEEEG = D ®E
L’jclang-visitor.cc [X] ’

29 n
30 | CXCursor cursor = clan Unit);

31 clang visitChildren(

37 CUrsor, -

33 L] (CXCHurgor €, CXCHESOE parent CXCllentDat Zlient data)

34 j {

35 @ if (clang Location K orhocation [€))) |

. — 1 , ' . ’

36J: if (strocomp ("Fu lang getCiurserEindspelll
37 printf ("Func "; €lang getCBtring{clan
38 }

oY }

40 return CXChildVisi

41 by

42 mallptr) ;

43

44 clang dlsposeTranslatloan(th .
< & >
C++ source file length : 1,283 lines : 47 LHTSO'COI :13 Sel:0|0 Windows (CRLF) ~ UTF-8 IN

June 2019 13

© 2019 Spazio IT - Soluzioni Informatiche s.a.s.

Libraries, Libraries and Again

Libraries

B “libclang” is nothing but a simple C API (with Python
bindings) exposing Clang functionalities (i.e. modules) to
external applications (deep / forgiving parsing);

B thanks to “libclang” also these third-party applications
can use the very same modules/libraries of Clang (for
instance they could parse a C program as efficiently as
Clang does).

June 2019 14

© 2019 Spazio IT - Soluzioni Informatiche s.a.s.

Libraries, Libraries and Again

Libraries

F <& @ RobustSoftware Engine X | + v = O X

i — O ') & | https://ti.arc.nasa.gov/tech/rse/research/ikos/ = g
f g .

A

NATIONAL AERONAUTICS
AND SPACE ADMINISTRATION

+ABOUT NASA +LATEST NEWS +MULTIMEDIA +MISSIONS +WORK FOR NASA

+ NASA Home Robust Software Engineering

+ Ames Home f:‘
+ Intelligent Systems 9

Division

IKOS Latest News

October 2018: IKOS 2.0
+ Home released on GitHub.

+ Research Themes Other information

+ Projects IKOS website
IKOS downloads

+ Publications

HReE IKOS: Inference Kernel for Open Static Analyzers Active Members

AU AT L The objective of this project is to perform scalable, precise static Maxime Arthaud
+ Missions analysis of C and C++ code for aviation. Guillaume Brat

Nija Shi
To this end, we have developed a tool, IKOS, that relies on the

theory of Abstract Interpretation for analyzing C and C++ code.

:zgstfg:.sr; FKOS is reglly a frarnework for static analysis basgd on abstract D

+ CoCoSim |nterPretat|on. It rellgs on the LLVM framewgrk for ns' front-end Arnaud Hamon
Gtrot and mplgments various analyses based on |-ts own library of Jorge Navas

+ IKOS abslrgct interpretation components (forward iterators, abstract Elodie-Jane Simms
+ MARGINS domains, ...). Sarah Thompson

+ MESA Arnaud Venet

June 2019 15

© 2019 Spazio IT - Soluzioni Informatiche s.a.s.

T ELEIEL]

B «.—'fl‘) GitHub - AdaCore/libad X I T e O %
&~ = O m @ hitps://github.com/AdaCore/libadalang hxd = /=&
EE README.md ~

build " passing

Libadalang

Libadalang is a library for parsing and semantic analysis of Ada code. It is meant as a building block for integration into other
tools. (IDE, static analyzers, etc.)

Libadalang provides mainly the following services to users:

« Complete syntactic analysis with error recovery, producing a precise syntax tree when the source is correct, and a best
effort tree when the source is incorrect.

« Semantic queries on top of the syntactic tree, such as, but not limited to:

o Resolution of references (what a reference corresponds to)
> Resolution of types (what is the type of an expression)

o General cross references queries (find all references to this entity)

Libadalang does not (at the moment) provide full legality checks for the Ada language. If you want such a functionality, you'll
need to use a full Ada compiler, such as GNAT.

If you have problems building or using Libadalang, or want to suggest enhancements, please open a GitHub issue. We also
gladly accept pull requests!

June 2019 16

© 2019 Spazio IT - Soluzioni Informatiche s.a.s.

N ELEIELT:]

«-3] () libadalang/ada/languac X l-l— N7 - O
< > O @ & | https://github.com/AdaCore/libadalang/tree/master/ada/language D¢ S= ﬁv g

O Why GitHub? Enterprise Explore Marketplace Pricing

IJ AdaCore / libadalang @®© Watch 21 % Star = 47

<> Code Issues 12 Pull requests 2 Projects 1 Insights

Branch: master v libadalang / ada / language /

. Roldak and raph-amiard S419-013: Make referenced_decl return the instantiation.

=] _init__.py Remove all unicode_literals imports from _ future__

B ast.py S419-013: Make referenced_decl| return the instantiation.
[£) documentation.py Reject aggregate projects in the project unit provider

& grammar.py Sort imported entities in all Python scripts

) lexer.py lexer: replace uses of the "ada_lexer.patterns" helper

https://github.com/AdaCore/libadalang/commit/a748e6e6a4d332e6fcf1866c2485b2069e9f2¢

June 2019

¥

Find file

Latest commit 39c97¢3 6

2y
34
3 mo
7 ¢

3 mo

< 1 >

v

17

© 2019 Spazio IT - Soluzioni Informatiche s.a.s.

T ELEIEL]

B <—E| () GitHub - AdaCore/libad X |—|— \V - O X

| = ‘ O m @& | https://github.com/AdaCore/libadalang g = 7. =&

Libadalang and ASIS

ASIS is widely used for static analysis of Ada code, and is an ISO standard. It is still the go-to tool if you want to create a tool
that analyses Ada code. Also, as explained above, Libadalang is not mature yet, and cannot replace ASIS in tools that require
semantic analysis.

However, there are a few reasons you might eventually choose to use Libadalang instead of ASIS:

1. The ASIS standard has not yet been updated to the 2012 version of Ada. More generally, the advantages derived from
ASIS being a standard also means that it will evolve very slowly.

2. Syntax only tools will derive a lot of advantages on being based on Libadalang:

o Libadalang will be completely tolerant to semantic errors. For example, a pretty-printer based on Libadalang will
work whether your code is semantically correct or not, as long as it is syntactically correct.

o Provided you only need syntax, Libadalang will be much faster than ASIS' main implementation (AdaCore's ASIS),
because ASIS always does complete analysis of the input Ada code.

3. The design of Libadalang's semantic analysis is lazy. It will only process semantic information on-demand, for specific
portions of the code. It means that you can get up-to-date information for a correct portion of the code even if the file
contains semantic errors.

4. Libadalang has bindings to C and Python, and its design makes it easy to bind to new languages.

5. Libadalang is suitable to write tools that work on code that is evolving dynamically. It can process code and changes to
code incrementally. Thus, it is suitable as an engine for an IDE, unlike AdaCore's ASIS implementation.

June 2019 18

© 2019 Spazio IT - Soluzioni Informatiche s.a.s.

N ELEIEL]

B Interesting related projects:
- libadalang-tools - Libadalang-based tools

- lal-checkers - Libadalang-based code checking
infrastructure

- ada_language_server - prototype implementation of

the Microsoft Language Server Protocol for
Ada/SPARK

- langkit - Language creation framework.

June 2019 19

© 2019 Spazio IT - Soluzioni Informatiche s.a.s.

Clang / LLVM - SonarQube
Integration

cC ® ® @ https;//www.spazioit.com/software ooe w N @ @ =
93 static Basié b; A
94 static MeasData m;
95
96 // Only use on O-terminated strings.’ - The expression is an uninitializ. X + = O X
97 static int Skip_to_neXt (Char i Sp, « (— (€5 Q @® sonarsrv spazioit.com/mow(t/’mue;s?fd*my' ,3Acrazyflie&c e ﬁ INn O e =
98 int steps:;
3« 'steps' declared without an initial value — J
—1 Crazyflie master May 1, 2019, 10:1
i == * * | =
=K while (ch ! 0 && M) { Overview Issues Security Reports ¥ Measures Code Activity
A
4 Assuming the condition | - 1/ 24 issues) gtgps.c alt | +
92
src/deck/drivers/src/gtgps.c 93 static Basic b;
. « Loop condition is true. Entering loop body - The expression is an uninitialized valte 94 static MeasData m;
The computed value will also be 95 e B
100 (*Sp) ++; % Bug @ Major 97 static int skip_to_next(char ** sp, const char ch) {
101 skepst+; = g = 98 B} int steps;
—_— & 99 3B while (ch != @ 8& (**sp) != ch) {
100 (*sp)++3
6 <« The expression is an uninitialized value. T 101 B steps++;
102 } The expression is an uninitialized value. The computed value will also be garbage 3 yea
& Bug @ Major O Open Not assigned
102 }
Undefined or garbage value returned 103 if (ch != @)
to caller b 102 1 (*en)as. Y
< >

June 2019 20

© 2019 Spazio IT - Soluzioni Informatiche s.a.s.

SonarQube - What

Source Code
Files

XMLAda

lashboard Profiie MM Ada Proflie 5 SonarCiubie - Intermet Explorer - oliEl
lotspots Severity @ procedure body Add_Default_Attributes has code percentage = 87.1 (in1

v isues © Blocker 0 Commont | OOpen Confim » | Assignftome] | Plan | Mors Actions » i€
ime Machine © Crtical 1,121 WM 1

@ procedure body Add_Default_Attributes has cyclomatic complexity = 12
Major 216
ooLs ° u

t OOpen C: A
omponents © Minor 0 =

SonarQube W ¥ st

Engine sonarcut) =

unicode

s Resolve s bute 1 is

— v
e ¢ orocadurs body Rescive Atibute Namesoaces has code oercentaos =
schemaltest 52 "4 dom-core-nodes.adb

SonarQube™ tachnology Is powered
‘Ada support is powered b

CIC++ support is powered by the C++ Plugin
Version 4.3 - Community - Documentation

modified by Spazio IT sas
Get Support - Plugins

Analyses
Results

SonarQube
Database

June 2019 21

© 2019 Spazio IT - Soluzioni Informatiche s.a.s.

SonarQube / Plugins / Sensors

Plugin-1 Pre-Processing
e.g. scanning
9. Ada and parsing
Sensor-1
eg. CppCheck
Plugin-I Sensor-J
SonarQube e.g. CIC++ M eg PC-Lint
Sensor-M
e.g. GCOV
Plugin-M
e.g. Java Post-Processing
e.g. MeausreComputers
(Ex. Decorators)

June 2019 22

© 2019 Spazio IT - Soluzioni Informatiche s.a.s.

SonarQube C++ plugin

(Community)

B Parser supporting C89, C99, C11, C++03, C++11, C++14 and C++17 standards
- Microsoft extensions: C++/CLI, Attributed ATL
- GNU extensions
- CUDA extensions

B Sensors for static code analysis:
- Cppcheck warnings support (http://cppcheck.sourceforge.net/)

- GCC/G++ warnings support (https://gcc.gnu.org/)

- Clang Static Analyzer support (https://clang-analyzer.llvm.org/)

- Clang Tidy warnings support (http://clang.llvm.org/extra/clang-tidy/)

- PC-Lint warnings supyport (http://www.gimpel.com/)

- (...) many others

June 2019 23

© 2019 Spazio IT - Soluzioni Informatiche s.a.s.

http://cppcheck.sourceforge.net/
https://gcc.gnu.org/
https://clang-analyzer.llvm.org/
http://clang.llvm.org/extra/clang-tidy/
http://www.gimpel.com/

Clang / LLVM - SonarQube
Integration

C @ @® @ https://www.spazioit.com/software ooe pk In @0 @ =

93 | static Basic b; A
94 static MeasData m;
95

, ; Th ion i initial - O X
96 | // Only use on O-terminated strings! - w epression isan urinkialze <. I
97 static int SkipitoineXt (char »* sp, ¢l & (€ Q @® sonarsrv spazioit.com/project/issues?id=my%3Acrazyflie&c e ﬁ INn O e =
98 IRENSECRs ;
3 « 'steps' declared without an initial value — J
—1 Crazyflie master May 1, 2019, 10:1
99 while (ch != 0 && (**sp) != ch) { Overview Issues Security Reports ¥ Measures Code Activity
A
4 — Assuming the condition | <~ 1/ 24 issues (& gtgps.c alt | +
92
src/deck/drivers/src/gtgps.c 93 static Basic b;
. « Loop condition is true. Entering loop body The expression is an uninitialized value. = statlt MeasDaian;
The computed value will also be 95 . :
garbage 96 J Entered call from 'gpgsaParser' [ESSSTETY]
100 (*sp) ++; % Bug @ Major 97 B3 static int skip_to_next(char ** sp, const char ch) {
101 steps++; i i — 98 m ,,.int steps;
— & 99 3B while (ch != @ 8& (**sp) != ch) {
Entered call from 'gpgsaParser 100 (*sp)++;
6 <« The expression is an uninitialized value. T 101 B .. stepss;
102 } The expression is an uninitialized value. The computed value will also be garbage 3 yea
ﬂ Bug @ Major O Open Not assigned
9] g
102 }
Undefined or garbage value returned 103 if (ch != @)
to caller b 102 1 (*en)as. Y
< >

June 2019 24

© 2019 Spazio IT - Soluzioni Informatiche s.a.s.

SAFe Toolset

["—SI-SAFE-VM [Running] - Oracle VM VirtualBox = o X

File Machine View Input Devices Help

Activities sab 15:15 @ P U 2

Facilitator

G P o = @ E] cTRL (DESTRA)

June 2019 25

© 2019 Spazio IT - Soluzioni Informatiche s.a.s.

SAFe Toolset

B @I %/ JSON Compilation Data X [-l— v - O X

< o INE) ‘) & | https://clang.llvm.org/docs/JSONCompilationDatabase.html Dkg = 1 »
Clang 9 documentation
« How To Setup Clang Tooling For LLVM :: Contents :: Clang’s refactoring engine

JSON Compilation Database Format Specification

This document describes a format for specifying how to replay single compilations independently of the build system.

Background

Tools based on the C++ Abstract Syntax Tree need full information how to parse a translation unit. Usually th
information is implicitly available in the build system, but running tools as part of the build system is not necessaril
the best solution:

Build systems are inherently change driven, so running multiple tools over the same code base without changing
the code does not fit into the architecture of many build systems.

Figuring out whether things have changed is often an 10 bound process; this makes it hard to build low latency en
user tools based on the build system.

Build systems are inherently sequential in the build graph, for example due to generated source code. While tools
that run independently of the build still need the generated source code to exist, running tools multiple times ove
unchanging source does not require serialization of the runs according to the build dependency graph.

v

< I > |

June 2019 26

© 2019 Spazio IT - Soluzioni Informatiche s.a.s.

SAFe Toolset

normalized
compile_commands.json

—————

Project.Int

run_pclint.sh
/

e] Project.cppcheck
‘ ’ ' run_cppcheck.sh

I e e e e e e 1 e

N P Project_clang-sa.sh
I ‘ I

————
- -

o
(@)
=

o,

I(T
o
(@)
3
=
o)
S
Q.
e

;-
(@)
=]

Project_clang-tidy.sh
e

I Project_comp.sh
R —

Project.json sonar-project.properties
run_sonar.sh

June 2019 27

© 2019 Spazio IT - Soluzioni Informatiche s.a.s.

SAFe Toolset

B The SAFe Toolset is an Ubuntu Virtual Machine containing
various open source tools that can be used to perform
Software Verification and Validation.

B [n particular the current version (June 2019) of the SAFe VM
contains:

- cppcheck - v. 1.87 - http:/ /cppcheck.sourceforge.net/ - a C/C++ static
analyzer.

- Clang - v. 9.0.0 - https:/ /clang.llvim.org - the “new” compiler toolset
from LLVM Foundation, with its Clang-SA and Clang-Tidy static
analyzers.

- SonarQube - v. 7.7. - https:/ /www.sonarqube.org/ - a code quality
platform used to show and manage the issues found by the static
analyzers.

June 2019 28

© 2019 Spazio IT - Soluzioni Informatiche s.a.s.

http://cppcheck.sourceforge.net/
https://clang.llvm.org/
https://www.sonarqube.org/

SAFe Toolset

B Optionally the SAFe VM may also contain:

- PC-Lint (or PC-Lint Plus) - v. 9.0.0L - https:/ /www.gimpel.com/ - but its
license needs to be acquired from Gimpel.

B Apart from the static analyzers the SAFe VM contains also
some (native and cross) build environments, that is:
- GNU GCC Version 7.3.0 - https:/ / gcc.enu.org/ ecc-7/ - Native

- Clang Version 9.0.0 - - https:/ /clang.llvm.org - Native and Cross
(Multiplatforms - use the command “llc --version” to see the supported
architectures).

- BCC2: Bare-C Cross-Compiler System for LEON2/3/4 GCC 7.2.0 -
https:/ /www.gaisler.com/ - Cross.

- GNU Arm Embedded Toolchain - v. 5-2016-q3 -
https:/ /launchpad.net/gcc-arm-embedded - Cross.

June 2019 29

© 2019 Spazio IT - Soluzioni Informatiche s.a.s.

https://www.gimpel.com/
https://gcc.gnu.org/gcc-7/
https://clang.llvm.org/
https://www.gaisler.com/
https://launchpad.net/gcc-arm-embedded

SAFe Toolset

B Should a user need to work on a codebase not supported by the
provided build environments, she would need to install the
corresponding compilation toolchain.

B Additionally Spazio IT has complemented the SAFe Toolset
with:
- a specially modified version of SonarQube -
https:/ /www.sonarqube.org/ ;

- a specially modified version of the SonarQube C++ Community
Plugin - https:/ / github.com/SonarOpenCommunity/sonar-cxx ;

- the SAFacilitator - an application largely simplifying the static
analyzers usage and the integration of their results into

SonarQube - more info @
https:/ /www.spazioit.com/pages en/sol inf en/code_quality en/safe-

toolset/

June 2019 30

© 2019 Spazio IT - Soluzioni Informatiche s.a.s.

https://www.sonarqube.org/
https://github.com/SonarOpenCommunity/sonar-cxx
https://www.spazioit.com/pages_en/sol_inf_en/code_quality_en/safe-toolset/

SAFe Toolset

B The development of the SAFe Toolset has been funded by
the European Space Agency Contract # RFP/3-

15558/18/NL/FE/as.

June 2019 31

© 2019 Spazio IT - Soluzioni Informatiche s.a.s.

Future/Current Activities

Nves VA +€TLs10 2
{M} L3n-u 1R

e
{ﬂ}"(f new, /J>O—> (r

e Lip
)\/_Zr<n e ons) VneN, ‘? L2

_ hangfe)
A/—'R n> no(x 5)<£ | /ca a«t J:l:}

f{x A>J7€[u1) VxxéJC__L_ /) ; ﬁ; 0-0'¢ ",
an \
'Q

e 9)4E Rosner (o)8 fﬁ —
; I
, b | Gk P

XiN—-R |
i' wnldf{x *Yu

I
5
Jn-
313
.\-//’l
gy g\

32

June 2019

© 2019 Spazio IT - Soluzioni Informatiche s.a.s.

Future/Current Activities

B Spazio IT has just started working on Software
Verification and Validation and Artificial Intelligence
(especially Machine Learning). This research work is
active on two complementary fronts:

1. how to verify and validate Al software

2. how to improve the “traditional” verification and
validation activities with the adoption of Al
techniques.

B Some new generations of static analyzers may be based on
Al techniques.

June 2019 33

© 2019 Spazio IT - Soluzioni Informatiche s.a.s.

Thank you for your time!

June 2019 34

© 2019 Spazio IT - Soluzioni Informatiche s.a.s.

